導航:首頁 > 網路數據 > 大數據系統架構設計

大數據系統架構設計

發布時間:2023-09-18 01:44:05

A. 大數據計算體系的基本層次是什麼

大數據計算系統可以概括為三個基本層次:數據應用系統、數據處理系統和數據存儲系統。
計算的殲模整體架構。HDFS (Hadoop分布式文件系統)(1)設計思路:分而治之,將大文件以分布式的方式存儲在大量的伺服器中,以分而治之的方式方便海量數據的計算和分析。(2)首先,它是一個文件系統,用於存儲文件,並通過統咐改氏一的命名空間-目錄樹進行定位。然後,它是分布式的,很多伺服器聯合起來實現衡散它的功能。集群中的伺服器有自己的角色。有兩個部分,namenode和datanode,有點類似於索引結構,並且是備份的。例如,第二個namenode和b1出現了三次。
總之,小數據大採集是一種在二級內存中採集存儲部分數據的方式。這種數據集也有一定的特點,比如盡量不重復。

B. 如何架構大數據系統hadoop

大數據數量龐大,格式多樣化。

大量數據由家庭、製造工廠和辦公場所的各種設備、互聯網事務交易、社交網路的活動、自動化感測器、移動設備以及科研儀器等生成。

它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。

因此必須開發新的數據架構,圍繞「數據收集、數據管理、數據分析、知識形成、智慧行動」的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。

一、大數據建設思路

1)數據的獲得

大數據產生的根本原因在於感知式系統的廣泛使用。

隨著技術的發展,人們已經有能力製造極其微小的帶有處理功能的感測器,並開始將這些設備廣泛的布置於社會的各個角落,通過這些設備來對整個社會的運轉進行監控。

這些設備會源源不斷的產生新數據,這種數據的產生方式是自動的。

因此在數據收集方面,要對來自網路包括物聯網、社交網路和機構信息系統的數據附上時空標志,去偽存真,盡可能收集異源甚至是異構的數據,必要時還可與歷史數據對照,多角度驗證數據的全面性和可信性。

2)數據的匯集和存儲

互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果你真的想做,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了

數據只有不斷流動和充分共享,才有生命力。

應在各專用資料庫建設的基礎上,通過數據集成,實現各級各類信息系統的數據交換和數據共享。

數據存儲要達到低成本、低能耗、高可靠性目標,通常要用到冗餘配置、分布化和雲計算技術,在存儲時要按照一定規則對數據進行分類,通過過濾和去重,減少存儲量,同時加入便於日後檢索的標簽。

3)數據的管理

大數據管理的技術也層出不窮。

在眾多技術中,有6種數據管理技術普遍被關注,即分布式存儲與計算、內存資料庫技術、列式資料庫技術、雲資料庫、非關系型的資料庫、移動資料庫技術。

其中分布式存儲與計算受關注度最高。

上圖是一個圖書數據管理系統。

4)數據的分析

數據分析處理:有些行業的數據涉及上百個參數,其復雜性不僅體現在數據樣本本身,更體現在多源異構、多實體和多空間之間的交互動態性,難以用傳統的方法描述與度量,處理的復雜度很大,需要將高維圖像等多媒體數據降維後度量與處理,利用上下文關聯進行語義分析,從大量動態而且可能是模稜兩可的數據中綜合信息,並導出可理解的內容。

大數據的處理類型很多,主要的處理模式可以分為流處理和批處理兩種。

批處理是先存儲後處理,而流處理則是直接處理數據。

挖掘的任務主要是關聯分析、聚類分析、分類、預測、時序模式和偏差分析等。

5)大數據的價值:決策支持系統

大數據的神奇之處就是通過對過去和現在的數據進行分析,它能夠精確預測未來;通過對組織內部的和外部的數據整合,它能夠洞察事物之間的相關關系;通過對海量數據的挖掘,它能夠代替人腦,承擔起企業和社會管理的職責。

6)數據的使用

大數據有三層內涵:一是數據量巨大、來源多樣和類型多樣的數據集;二是新型的數據處理和分析技術;三是運用數據分析形成價值。

大數據對科學研究、經濟建設、社會發展和文化生活等各個領域正在產生革命性的影響。

大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。

二、大數據基本架構

基於上述大數據的特徵,通過傳統IT技術存儲和處理大數據成本高昂。

一個企業要大力發展大數據應用首先需要解決兩個問題:一是低成本、快速地對海量、多類別的數據進行抽取和存儲;二是使用新的技術對數據進行分析和挖掘,為企業創造價值。

因此,大數據的存儲和處理與雲計算技術密不可分,在當前的技術條件下,基於廉價硬體的分布式系統(如Hadoop等)被認為是最適合處理大數據的技術平台。

Hadoop是一個分布式的基礎架構,能夠讓用戶方便高效地利用運算資源和處理海量數據,目前已在很多大型互聯網企業得到了廣泛應用,如亞馬遜、Facebook和Yahoo等。

其是一個開放式的架構,架構成員也在不斷擴充完善中,通常架構如圖2所示:

Hadoop體系架構

(1)Hadoop最底層是一個HDFS(Hadoop Distributed File System,分布式文件系統),存儲在HDFS中的文件先被分成塊,然後再將這些塊復制到多個主機中(DataNode,數據節點)。

(2)Hadoop的核心是MapRece(映射和化簡編程模型)引擎,Map意為將單個任務分解為多個,而Rece則意為將分解後的多任務結果匯總,該引擎由JobTrackers(工作追蹤,對應命名節點)和TaskTrackers(任務追蹤,對應數據節點)組成。

當處理大數據查詢時,MapRece會將任務分解在多個節點處理,從而提高了數據處理的效率,避免了單機性能瓶頸限制。

(3)Hive是Hadoop架構中的數據倉庫,主要用於靜態的結構以及需要經常分析的工作。

Hbase主要作為面向列的資料庫運行在HDFS上,可存儲PB級的數據。

Hbase利用MapRece來處理內部的海量數據,並能在海量數據中定位所需的數據且訪問它。

(4)Sqoop是為數據的互操作性而設計,可以從關系資料庫導入數據到Hadoop,並能直接導入到HDFS或Hive。

(5)Zookeeper在Hadoop架構中負責應用程序的協調工作,以保持Hadoop集群內的同步工作。

(6)Thrift是一個軟體框架,用來進行可擴展且跨語言的服務的開發,最初由Facebook開發,是構建在各種編程語言間無縫結合的、高效的服務。

Hadoop核心設計

Hbase——分布式數據存儲系統

Client:使用HBase RPC機制與HMaster和HRegionServer進行通信

Zookeeper:協同服務管理,HMaster通過Zookeepe可以隨時感知各個HRegionServer的健康狀況

HMaster: 管理用戶對表的增刪改查操作

HRegionServer:HBase中最核心的模塊,主要負責響應用戶I/O請求,向HDFS文件系統中讀寫數據

HRegion:Hbase中分布式存儲的最小單元,可以理解成一個Table

HStore:HBase存儲的核心。

由MemStore和StoreFile組成。

HLog:每次用戶操作寫入Memstore的同時,也會寫一份數據到HLog文件

結合上述Hadoop架構功能,大數據平台系統功能建議如圖所示:

應用系統:對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量數據撲面而至。

於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。

數據平台:藉助大數據平台,未來的互聯網路將可以讓商家更了解消費者的使用**慣,從而改進使用體驗。

基於大數據基礎上的相應分析,能夠更有針對性的改進用戶體驗,同時挖掘新的商業機會。

數據源:數據源是指資料庫應用程序所使用的資料庫或者資料庫伺服器。

豐富的數據源是大數據產業發展的前提。

數據源在不斷拓展,越來越多樣化。

如:智能汽車可以把動態行駛過程變成數據,嵌入到生產設備里的物聯網可以把生產過程和設備動態狀況變成數據。

對數據源的不斷拓展不僅能帶來採集設備的發展,而且可以通過控制新的數據源更好地控制數據的價值。

然而我國數字化的數據資源總量遠遠低於美歐,就已有有限的數據資源來說,還存在標准化、准確性、完整性低,利用價值不高的情況,這**降低了數據的價值。

三、大數據的目標效果

通過大數據的引入和部署,可以達到如下效果:

1)數據整合

·統一數據模型:承載企業數據模型,促進企業各域數據邏輯模型的統一;

·統一數據標准:統一建立標準的數據編碼目錄,實現企業數據的標准化與統一存儲;

·統一數據視圖:實現統一數據視圖,使企業在客戶、產品和資源等視角獲取到一致的信息。

2)數據質量管控

·數據質量校驗:根據規則對所存儲的數據進行一致性、完整性和准確性的校驗,保證數據的一致性、完整性和准確性;

·數據質量管控:通過建立企業數據的質量標准、數據管控的組織、數據管控的流程,對數據質量進行統一管控,以達到數據質量逐步完善。

3)數據共享

·消除網狀介面,建立大數據共享中心,為各業務系統提供共享數據,降低介面復雜度,提高系統間介面效率與質量;

·以實時或准實時的方式將整合或計算好的數據向外系統提供。

4)數據應用

·查詢應用:平台實現條件不固定、不可預見、格式靈活的按需查詢功能;

·固定報表應用:視統計維度和指標固定的分析結果的展示,可根據業務系統的需求,分析產生各種業務報表數據等;

·動態分析應用:按關心的維度和指標對數據進行主題性的分析,動態分析應用中維度和指標不固定。

四、總結

基於分布式技術構建的大數據平台能夠有效降低數據存儲成本,提升數據分析處理效率,並具備海量數據、高並發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。

C. 大數據量快速處理的架構設計

大數據量快速處理的架構設計
在業務數據的處理過程中,經常會遇到夜間批次處理大量的數據,而且會有時效的要求。特別是當應用系統跑了2年以上時,就會有大表或者特大表的操作了,數據量達到百萬甚至上億。 這時回顧前期的設計,就會發現好多問題。 可能是數據模型設計的時候沒有考慮表的分區和及時歸檔、sql的設計沒有考慮索引或全表掃描、數據的處理沒有考慮及時的分批切分、並發處理的多線程可配置化等等, 為了以後的設計不要走相同的錯路。這里暫時簡要總結一下。
1 最初要考慮歸檔和分區。所有可能的大表設計,都要在最初的時候考慮歸檔和分區。
數據沖上高水位(HighWaterMark)後,即使有歸檔也不會降低高水位,性能可能也存在消耗,所以要及時歸檔轉移數據。 最好是設置分區表,這樣分區表可以進行及時的truncate或者drop再重新add分區。 可以靈活的控制存儲。
2 sql條件精準定位。大的關聯sql查詢,一定要盡量的精準抽取數據范圍,不要模糊抽取過多數據,含好多無用的後面再過濾,這很可能影響資料庫的執行計劃判斷導致性能下降。
3 快速定位數據,分批支持流水並發。大批量數據處理,首先要用最簡單的方式找到目標最小集群的數據,從大范圍中抽出來,並進行切分。切分的目的是可以使用多線程並發處理數據,並且隔離各分區的數據不會重復,也不能有遺漏,這樣並發時不會造成數據干擾。
4 流水線並發處理提升時效。
採用3的切分多批+多線程並發的方式,就可以針對有多個步驟的業務邏輯處理時,不用瀑布模式等待執行,而是可以流水線樣的多條執行,實現了多並發,無時間和空間的浪費。 對於有高時效的任務處理,具有可觀的價值。

D. 建立大數據需要設計一個什麼大型系統

建立大數據需要設計一個大型系統步驟。
1、數據收集從外部數據源收集各種原始數據,並進行整合和清洗。
2、數據存儲存儲原始數據和清洗過的數據,支持大數據計算框架的存儲。
3、數據分析使用機器學習、深度學習等技術對殲喚數據進行分析,挖掘數據中的模式和規律。
4、.數據可視化使用可視化工具,將分析出的信息展示出來,以便更好返知的理解和掌握數據的規律,以及發現潛在的問題和機會。
5、數據安全保護數漏改消據安全,防止數據被惡意篡改或濫用。

E. 大數據架構流程圖

大數據管理數據處理過程圖

大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察力。大數據處理的主要流程包括數據收集、數據存儲、數據處理、數據應用等主要環節。隨著業務的增長,大量和流程、規則相關的非結構化數據也爆發式增長。

平台數據架構流程圖

標准大數據平台架構,標准大數據平台架構,大數據平台架構,數據倉庫,數據集市,大數據平台層級結構,數據挖掘,舉報,包含該模版的分享。數據架構設計(數據架構組) 概述 總體描述 相對於業務架構和應用架構,數據架構在總體架構中處於基礎和核心地位。

產品體驗結構流程圖

產品的功能結構圖,產品功能結構圖,產品主要流程圖,產品的核心流程,我們繼續圍繞著得到app的核心流程探究。還原產品,產品結構、核心流程體驗、核心頁面體驗的情況,而不僅僅是界面表層;從產品視角、用戶視角來分析,而不是自我感覺,撰寫報告,推出報告。產品體驗從產品現狀、目標用戶及場景、關鍵功能體驗

程序流程圖

程序流程圖又稱程序框圖,是用統一規定的標准符號描述程序運行具體步驟的圖形表示。程序框圖的設計是在處理流程圖的基礎上,通過對輸入輸出數據和處理過程的詳細分析,將計算機的主要運行步驟和內容標識出來。

軟體開發周期

軟體生命周期(Software Life Cycle,SLC)是軟體的產生直到報廢或停止使用的生命周期。軟體生命周期內有問題定義、可行性分析、總體描述、系統設計、編碼、調試和測試、驗收與運行、維護升級到廢棄等階段一個軟體產品或軟體系統也要經歷孕育、誕生、成長、成熟、衰亡等階段

軟體測試流程魚骨圖

軟體測試流程: 需求分析,制訂測試計劃,設計測試用例與編寫,實施測試,提交缺陷報告,生成測試總結和報告。軟體測試按照研發階段一般分為5個部分:單元測試、集成測試、確認測試、系統測試、驗收測試。根據設計用例的方法不同,黑盒測試包括等價劃分法、邊界值分析法、錯誤推測法、因果圖法等。

雲平台整體架構圖

雲計算的體系結構由5部分組成,分別為應用層,平台層,資源層,用戶訪問層和管理層,雲計算的本質是通過網路提供服務,所以其體系結構以服務為核心。公認的雲架構是劃分為基礎設施層、平台層和軟體服務層三個層次的。

項目管理九大體系

項目管理思維導圖包括項目采購管理、項目成本核算、時間管理等關於項目管理的九大體系。項目管理十大領域:進度、成本、質量、范圍等4個核心領域,風險、溝通、采購、人力資源、干係人等5個輔助領域,1個整體領域。

產品經理項目管理思維導圖

思維導圖可以幫助產品經理梳理多而亂的產品思路,也可以幫助產品經理進行需求管理、產品分析等。產品經理會使用思維導圖來對產品的思路進行一個有效的分析,梳理產品邏輯,然後再畫原型圖。一個優秀的產品經理,不僅僅是會畫原型,寫需求文檔,更重要的是做出用戶滿意的產品。

項目規劃時間軸流程圖

項目規劃時間軸流程圖,對一個項目從開始到竣工的整個過程進行總結歸納。時間線圖,又叫時間軸圖,能以歷史進程為載體,將過往的重要事項或者里程碑,標注在軸線上,並加以說明。它的作用是能夠可視化內容,以圖文的形式呈現出來。時間軸是一種表達事物發展進程的可視化圖示,被許多商業管理人士所使用。

閱讀全文

與大數據系統架構設計相關的資料

熱點內容
壓縮完了文件去哪裡找 瀏覽:380
武裝突襲3浩方聯機版本 瀏覽:674
網路機頂盒移動網路 瀏覽:391
iphone手機百度雲怎麼保存到qq 瀏覽:148
資料庫設計與實踐讀後感 瀏覽:112
js對象是什麼 瀏覽:744
網頁文件存pdf 瀏覽:567
文件夾正裝 瀏覽:279
剛復制的文件找不到怎麼辦 瀏覽:724
試運行適用於哪些體系文件 瀏覽:987
ghost文件復制很慢 瀏覽:967
傑德原車導航升級 瀏覽:240
編程dest是什麼意思 瀏覽:935
linux埠鏡像 瀏覽:820
iphone5屏幕清塵 瀏覽:157
機頂盒密碼怎麼改 瀏覽:672
w7系統下載32位教程 瀏覽:618
pcb文件包括哪些內容 瀏覽:598
g00文件 瀏覽:607
用bat程序刪除程序 瀏覽:516

友情鏈接