Ⅰ 大數據怎樣提升人工智慧應用
一方面,人工智慧基礎理論技能的開展為大數據機器學習和數據發掘供給了更豐厚的模型和演算法,如深度神經網路衍生出的一系列技能和辦法,這些技能便是深度學習、強化學習、搬遷學習、對立學習等。在另一方面,大數據為人工智慧的開展供給了新的動力和燃料,數據規劃大了之後,傳統機器學習演算法面對應戰,要做並行化、要加速要改進。當前的弱人工智慧使用都遵從這一技能路線,繞不開大數據。
互聯網的快速開展,綜合使用大數據和人工智慧一直在進行深層次的研討和開展。人工智慧的更全面更才智開展需求依託大數據技能,需求大數據的支撐。
隨著計算機硬體方面以及計算才能的提高,大數據的方面的相關技能為人工智慧的開展供給了多樣豐厚的學習樣本。大數據的開展為人工智慧供給了有力的技能支持,一起計算機計算才能以及存儲才能的提高,也為人工智慧擴展性存儲以及生長供給了有力的硬體基礎。
人工智慧的開展也促進了大數據的開展,人工智慧與大數據之間形成了項目促進開展效果。在大數據時代背景之下,人工智慧技能需求進行進一步的完善,一起也有著更多應戰,跟著大數據、雲計算以及計算機硬體的完善開展,人工智慧也能獲得長足的開展,人工智慧將會愈加智能化、才智化開展。
關於大數據怎樣提升人工智慧應用,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
Ⅱ 大數據的應用領域有哪些
1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
5.提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
Ⅲ 大數據和人工智慧在互聯網金融領域有哪些應用
大
數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。
大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。
數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。
為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。
1.價值導向與內嵌式變革—BCG對大數據的理解
「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。
1.1成就大數據的「第四個V」
大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。
雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。
另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。
「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?
BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。
1.2變革中的數據運作與數據推動的內嵌式變革
多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?
無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。
因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。
具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。
1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度
在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。
1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」
在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。
1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻
大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。
1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化
在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。
例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。
2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐
金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。
2.1大數據的金融應用場景正在逐步拓展
大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。
2.1.1海外實踐:全面嘗試
2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」
在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。
BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。
銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。
相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。
銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。
客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。
在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。
銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。
BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。
銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。
Ⅳ 大數據都能應用在哪些方面
隨著5G時代的到來,大數據應用得到迅速的發展,並且得到很多人的關注。大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。
1.製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
2.電商行業:電商行業是最早將大數據用於精準營銷的行業,它可以根據消費者的習慣提前生產物料和物流管理。隨著電子商務的越來越集中,大數據在行業中的數據量變得越大,並且種類非常多。
3.金融行業:大數據在金融行業的使用是非常廣泛的,主要使用在交易過程中。現在許多股權交易都是使用大數據演算法進行的。這些演算法能夠越來越多地考慮社交媒體和網站新聞,並且決定接下來的幾秒內是選擇購買還是出售。
4.互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
5.能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式棚和,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
6.物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。
7.生物技術:基因技術是人類未來挑戰疾病的重要武器。科學家可以利用大數據技術的應用,這樣能夠加速他們自己的基因和其他動物基因的研究過程,臘和野並且還能成為人類未來克服疾病的重要武器之一。
大數據的價值輪喊遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。
數通暢聯專注於企業IT架構、SOA綜合集成、數據治理分析領域,感謝您的閱讀與關注。
Ⅳ 談談身邊大數據、人工智慧應用的例子以及用到了哪些技術、演算法等
現在有很多的大數據人工智慧都有這樣的例子,可以出數據和演算法。
Ⅵ 大數據技術的應用
大數據的應用是以大數據技術為基礎,對各行各業或生產生活方面提供決策參考。
大數據應用的典型有:電商領悟、傳媒領領域、金融領域、交通領域、電信領域、安防領域、醫療領域等。
同時大數據的應用是把雙刃劍,一方面可以為我們帶來便利,另一方面也會造成個人隱私泄露的問題。
Ⅶ 如何理解機器學習演算法在大數據裡面的應用
現在深度學習在機器學習領域是一個很熱的概念,不過經過各種媒體的轉載播報,這個概念也逐漸變得有些神話的感覺:例如,人們可能認為,深度學習是一種能夠模擬出人腦的神經結構的機器學習方式,從而能夠讓計算機具有人一樣的智慧;而這樣一種技術在將來無疑是前景無限的。那麼深度學習本質上又是一種什麼樣的技術呢?
深度學習是什麼
深度學習是機器學習領域中對模式(聲音、圖像等等)進行建模的一種方法,它也是一種基於統計的概率模型。在對各種模式進行建模之後,便可以對各種模式進行識別了,例如待建模的模式是聲音的話,那麼這種識別便可以理解為語音識別。而類比來理解,如果說將機器學習演算法類比為排序演算法,那麼深度學習演算法便是眾多排序演算法當中的一種(例如冒泡排序),這種演算法在某些應用場景中,會具有一定的優勢。
深度學習的「深度」體現在哪裡
論及深度學習中的「深度」一詞,人們從感性上可能會認為,深度學習相對於傳統的機器學習演算法,能夠做更多的事情,是一種更為「高深」的演算法。而事實可能並非我們想像的那樣,因為從演算法輸入輸出的角度考慮,深度學習演算法與傳統的有監督機器學習演算法的輸入輸出都是類似的,無論是最簡單的Logistic Regression,還是到後來的SVM、boosting等演算法,它們能夠做的事情都是類似的。正如無論使用什麼樣的排序演算法,它們的輸入和預期的輸出都是類似的,區別在於各種演算法在不同環境下的性能不同。
那麼深度學習的「深度」本質上又指的是什麼呢?深度學習的學名又叫深層神經網路(Deep Neural Networks ),是從很久以前的人工神經網路(Artificial Neural Networks)模型發展而來。這種模型一般採用計算機科學中的圖模型來直觀的表達,而深度學習的「深度」便指的是圖模型的層數以及每一層的節點數量,相對於之前的神經網路而言,有了很大程度的提升。
深度學習也有許多種不同的實現形式,根據解決問題、應用領域甚至論文作者取名創意的不同,它也有不同的名字:例如卷積神經網路(Convolutional Neural
Ⅷ 大數據時代 無處不在的演算法應用
大數據時代 無處不在的演算法應用
能不能講講演算法在工作中的運用?你個人學習演算法的過程是怎樣的?我對演算法還是有點怕。除此之外,你認為大學是應該多花時間學應用技術還是理論知識呢?
今天就來聊聊我自己學習演算法的過程,以及演算法在實際工作中的應用。
以前,我們認為大數據總是優於好演算法。也就是說,只要數據量足夠大,即使演算法沒有那麼好,也會產生好的結果。
前一陣子「極客時間」 App 發布了一條極客新聞:「演算法比數據更重要,AlphaGo Zero 完勝舊版。」新聞的內容是谷歌人工智慧團隊 DeepMind 發布了新版的 AlphaGo 計算機程序,名為 AlphaGo Zero。這款軟體能夠從空白狀態開始,不需要人類輸入任何命令,便可以迅速自學圍棋,並以 100 比 0 的戰績擊敗了上一代 AlphaGo。
AlphaGo Zero 最大的突破在於實現了「白板理論」。白板理論認為:嬰兒是一塊白板,可以通過後天學習和訓練來提高智力。AI 的先驅圖靈認為,只要能用機器製造一個類似於小孩的 AI,然後加以訓練,就能得到一個近似成人智力,甚至超越人類智力的 AI。
自學成才的 AlphaGo Zero 正是實現了這一理論。AlphaGo 的首席研究員大衛·席爾瓦(David Silver)認為,從 AlphaGo Zero 中可以發現,演算法比所謂的計算或數據量更為重要。事實上,AlphaGo Zero 使用的計算要比過去的版本少一個數量級,但是因為使用了更多原理和演算法,它的性能反而更加強大。
由此可見,在大數據時代,演算法的重要性日漸明晰。一個合格的程序員,必須掌握演算法。
我不知道大家是怎樣一步步開始精通演算法和數據結構的。大二時,我第一次接觸到了《數據結構》,因為從來沒有過這方面的思維訓練,當時的我學習這門課比較費力。那時候接觸到的編程比較少,所以並沒有很多實際經驗讓我欣賞和體味:一個好的數據結構和演算法設計到底 「美」 在哪裡。
開始學習的時候,我甚至有點死記硬背的感覺,我並不知道 「如果不這樣設計」,實際上會出現哪些問題。各種時間和空間復雜度對我而言,也僅僅是一些不能融入到實際問題的數學游戲。至於「每種最壞情況、平均情況的時間空間復雜度與各種排序」,這些內容為什麼那麼重要,當時我想,可能因為考試會考吧。
沒想到後來的時日,我又與演算法重新結緣。可能是因為萊斯大學給的獎學金太高了,所以每個研究生需要無償當五個學期的助教 。好巧不巧,我又被演算法老師兩次挑中當助教。所以,在命運強制下,一本《演算法導論》就這樣被我前前後後仔細學習了不下四遍。這樣的結果是,我基本做過整本書的習題,有些還不止做了一遍。我學習演算法的過程,就是反復閱讀《演算法導論》的過程。
那麼,學習演算法到底有什麼用處呢?
首先,演算法是面試的敲門磚國內的情況我不太清楚,但就矽谷的 IT 公司而言,不但電話面試偏演算法,現場面試至少有兩輪都是考演算法和編程的。
大一些老一些的公司,像谷歌、Facebook、領英、Dropbox 等,都是直接在白板上寫程序。小一些新一些的公司,如 Square、Airbnb 等,都是需要現場上機寫出可運行的程序。Twitter、Uber 等公司則是白板上機兼備,視情況而定。
雖說還有其它考系統設計等部分,但如果演算法沒有打好基礎,第一關就很難過,而且演算法要熟悉到能夠現場短時間內寫出正解,所以很多人准備面試前都需要刷題。
有一次我當面試官,電話面試另外一個人,當時是用 Codepad 共享的方式,讓對方寫一個可運行的正則表達式解析器。45 分鍾過去了,對方並沒有寫出來。我就例行公事地問:「你還有什麼問題想問或者想了解么?」 對方估計因為寫不出程序很有挫敗感,就反問:「你們平時工作難道就是天天寫正則表達式的解析器么?」
一瞬間,我竟無言以對。想了想,我回復說:「不用天天寫。那我再給你 15 分鍾,你證明給我看你還會什麼,或者有什麼理由讓我給你進一步面試的機會?」 對方想了一會,默默掛掉了電話。
老實說,我對目前面試中偏重演算法的程度是持保留意見的。演算法題答得好,並不能說明你有多牛。牛人也有因為不願刷題而馬失前蹄的時候。但是除了演算法測試,顯然也沒有更好的方法佐證候選人的實力;然而怎樣才能最優化面試流程,這也是個討論起來沒完的話題,並且每次討論必定無果而終。
其次,編程時用到的更多是演算法思想,而不是寫具體的演算法說到實際工作中真正需要使用演算法的機會,讓我想一想 —— 這個范圍應該在 10% 的附近遊走。
有些朋友在工作中遇到演算法場景多些,有的少些。更多的時候,是對業務邏輯的理解,對程序語言各種特性的熟練使用,對代碼風格和模式的把握,各種同步非同步的處理,包括代碼測試、系統部署是否正規化等等。需要設計甚至實現一個演算法的機會確實很少,即使用到,現學可能都來得及。
但是熟悉基本演算法的好處在於:如果工作需要讀的一段代碼中包含一些基本演算法思想,你會比不懂演算法的人理解代碼含義更快。讀到一段爛代碼,你知道為什麼爛,爛在哪,怎麼去優化。
當真的需要在程序中設計演算法的時候,熟悉演算法的你會給出一個更為完備的方案,對程序中出現的演算法或比較復雜的時間復雜度問題你會更有敏感性。熟悉演算法你還可以成為一個更優秀的面試官,可以和別的工程師聊天時候不被鄙視。
最後,不精通演算法的工程師永遠不是好工程師當然,除了演算法導論中那些已成為經典的基本演算法以及演算法思想(Divide-and-conquer,Dynamic programming)等,其實我們每天接觸到的各種技術中,演算法無處不在。
就拿人人都會接觸的存儲為例吧,各種不同的資料庫或者鍵值存儲的實現,就會涉及各種分片(Sharding)演算法、緩存失敗(Cache Invalidation)演算法、 鎖定(Locking)演算法,包括各種容錯演算法(多復制的同步演算法)。 雖然說平時不太會去寫這些演算法 —— 除非你恰恰是做資料庫實現的 —— 但是真正做到了解這項技術的演算法細節和實現細節,無論對於技術選型還是對自己程序的整體性能評估都是至關重要的。
舉個例子,當你在系統里需要一個鍵值存儲方案的時候,面對可供選擇的各種備選方案,到底應該選擇哪一種呢?
永遠沒有一種方案在所有方面都是最佳的。就拿 Facebook 開源的 RocksDB 來說吧。了解它歷史的人都知道,RocksDB 是構建在 LevelDB 之上的,可以在多 CPU 伺服器上高效運行的一種鍵值存儲。而 LevelDB 又是基於谷歌的 BigTable 資料庫系統概念設計的。
早在 2004 年,谷歌開始開發 BigTable,其代碼大量的依賴谷歌內部的代碼庫,雖然 BigTable 很牛,卻因此無法開源。2011 年,谷歌的傑夫·迪恩和桑傑·格瑪沃爾特開始基於 BigTable 的思想,重新開發一個開源的類似系統,並保證做到不用任何谷歌的代碼庫,於是就有了 LevelDB。這樣一個鍵值存儲的實現也用在了谷歌瀏覽器的 IndexedDB 中,對於谷歌瀏覽器的開源也提供了一定的支持。
我曾經在文章中提到過 CockroachDB,其實又可以看作是基於 RocksDB 之上的一個分布式實現。從另一個層面上講,CockroachDB 又可以說是 Spanner 的一個開源實現。知道這些,就知道這些資料庫或鍵值存儲其實都同出一系。再來看看 LevelDB 底層的 SSTable 演算法,就知道他們都是針對高吞吐量(high throughput),順序讀 / 寫工作負載(sequential read/write workloads)有效的存儲系統。
當然,一個系統里除了最基本的演算法,很多的實現細節和系統架構都會對性能及應用有很大的影響。然而,對演算法本身的理解和把握,永遠是深入了解系統不可或缺的一環。
類似的例子還有很多,比如日誌分析、打車軟體的調度演算法。
拿我比較熟悉的支付領域來說吧,比如信用卡 BIN 參數的壓縮,從服務端到移動 App 的數據傳輸,為了讓傳輸數據足夠小,需要對數據進行壓縮編碼。
每個國家,比如中國、韓國、墨西哥信用卡前綴格式都不一樣,如何盡量壓縮同時又不會太復雜,以至於影響移動 App 端的代碼復雜度,甚至形成 Bug 等,也需要對各種相關演算法有詳盡地了解,才有可能做出最優的方案。
關於演算法我們來總結一下:
在大數據時代,數據和演算法都同等重要,甚至演算法比計算能力或數據量更為重要。
如何學習演算法呢?讀經典著作、做題,然後在實踐中閱讀和使用演算法。
演算法是面試的敲門磚,可以幫助你得到一份自己喜歡的工作。
寫程序中用到的更多是演算法思想,不是寫具體的演算法。
不精通演算法的工程師永遠不會是一個優秀的工程師,只有對各種相關演算法有詳盡理解,才有可能做出最優的方案。