導航:首頁 > 網路數據 > 大數據分塊演算法

大數據分塊演算法

發布時間:2023-09-14 00:33:32

1. 大數據的四種主要計算模式包括

數據的四種主要計算模式包括:批處理模式、流處理模式、互動式處理模式、圖處理模式。

1、批處理模式(Batch Processing):將大量數據分成若干小批次進行處理簡隱隱,通常是非實時的、離線的方式進行計算,用途包括離線數據分析、離線數據挖掘等。

2、流處理模式(Stream Processing):針對數據源的實時性要求更高,實時計算每個事件(Event)或者一組事件的處理結果,能夠進行非常低延遲的計算和響應,用途包括實時監控、實時推薦等。

3、互動式處理模式(Interactive Processing):這種模式的特點是快速響應交互請求,在數據中進行查詢、分組、排序等等,處理的時間通常在數秒內,用途包括復雜報表生成、數據可視化、數據探索等。

4、圖處理模式(Graph Processing):針對數據之間的關系進行計算,通常以圖的形式表示數據之間的聯系,能夠解決一些復雜的問攜遲題,如社交網路分析、路徑規劃、推薦系統等。

這四種計算模式通常都需要在大規模分布式計算框架中實現,如Hadoop、Spark、Storm、Flink等,以應對大數據量的處理需求。

大數據技術主要涉及以下方面的學科

1、數學和統計學:大數據處理離不開高等數學、線性代數、概率論和數理統計等數學和統計學的基礎。

2、攔廳計算機科學:大數據分析和處理需要有扎實的計算機編程基礎,掌握各種編程語言和開發工具,並熟悉分布式系統和資料庫等技術。

3、數據挖掘:數據挖掘是從大量數據中發現隱藏的關系、規律和趨勢的過程,需要深入理解各種數據挖掘演算法和技術。

4、人工智慧:人工智慧技術中的機器學習、深度學習等方法也常常用於大數據分析和處理,並能夠為大數據提供更深入、更高級的分析。

5、網路和通信:現代大數據技術需要支持海量數據的傳輸和處理,因此還需要掌握網路和通信技術,如雲計算、分布式存儲和通信協議等。

總之,大數據技術是涉及多個學科領域的綜合性學科,需要廣泛的知識面和深入的專業技能,未來有很大的發展空間和挑戰。

2. 大數據分析方法,求助!

現在大數據分析越來越受歡迎.首先,由於各種網路平台收集了越來越多的數據,如何鄭伏整理這些數據,生成有用的東西?這就是大數據分析的目的.以下是一些常見的大數據喊缺攜分析方法.

大數據挖掘:定義目標,分析問題.在開始大數據處理之前,必須確定處理數據的目標,然後開始數據挖掘.

例如,統計近三年畢業生的各種情況.應該收集有關畢業生的信息.大數據挖掘:建立模型,收集數據,通過網路爬蟲類,或者通過往年的扮殲數據資料,建立相應的數據挖掘模型,收集數據,獲得大量的原始數據.

大數據挖掘:導入並准備數據.通過工具和腳本,將原始轉換為MySQL、數據文本等可處理的數據.大數據分析演算法:機器學慣用機器學習的方法處理收集的數據.根據具體問題來決定.

這里有很多方法.常見的方法是人工神經網路、隨機森林樹、LMS演算法.

大數據分析目標:語義引擎.在處理大數據的時候,往往會花費大量的時間和費用,所以每次生成的報告後,都應該支持語音發動機功能,這樣才能讓數據自己說話,人們從中提交數據就可以了.

大數據分析目標:產生可視化報告,便於人工分析.通過軟體處理大量數據後.然後可視化結果,便於人類分析.常見的軟體有splunk等.

大數據分析目標:預測性.通過大數據分析演算法,應該對數據進行一定的推斷,這樣的數據更具指導性.

3. 大數據最常用的演算法有哪些

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發布了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的演算法,以下是這次調查的結果,按照英文名稱字母順序排序。

大數據等最核心的關鍵技術:32個演算法

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-最大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、最大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的最大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton』s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Sch?nhage-Strassen演算法——在數學中,Sch?nhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的演算法的調查結果。你們熟悉哪些演算法?又有哪些演算法是你們經常使用的?

4. 大數據常用的各種演算法

我們經常談到的所謂的​​ 數據挖掘 是通過大量的數據集進行排序,自動化識別趨勢和模式並且建立相關性的過程。那現在市面的數據公司都是通過各種各樣的途徑來收集海量的信息,這些信息來自於網站、公司應用、社交媒體、移動設備和不斷增長的物聯網。

比如我們現在每天都在使用的搜索引擎。在自然語言處理領域,有一種非常流行的演算法模型,叫做詞袋模型,即把一段文字看成一袋水果,這個模型就是要算出這袋水果里,有幾個蘋果、幾個香蕉和幾個梨。搜索引擎會把這些數字記下來,如果你想要蘋果,它就會把有蘋果的這些袋子給你。

當我們在網上買東西或是看電影時,網站會推薦一些可能符合我們偏好的商品或是電影,這個推薦有時候還挺准。事實上,這背後的演算法,是在數你喜歡的電影和其他人喜歡的電影有多少個是一樣的,如果你們同時喜歡的電影超過一定個數,就把其他人喜歡、但你還沒看過的電影推薦給你。 搜索引擎和推薦系統 在實際生產環境中還要做很多額外的工作,但是從本質上來說,它們都是在數數。

當數據量比較小的時候,可以通過人工查閱數據。而到了大數據時代,幾百TB甚至上PB的數據在分析師或者老闆的報告中,就只是幾個數字結論而已。 在數數的過程中,數據中存在的信息也隨之被丟棄,留下的那幾個數字所能代表的信息價值,不抵其真實價值之萬一。 過去十年,許多公司花了大價錢,用上了物聯網和雲計算,收集了大量的數據,但是到頭來卻發現得到的收益並沒有想像中那麼多。

所以說我們現在正處於「 數字化一切 」的時代。人們的所有行為,都將以某種數字化手段轉換成數據並保存下來。每到新年,各大網站、App就會給用戶推送上一年的回顧報告,比如支付寶會告訴用戶在過去一年裡花了多少錢、在淘寶上買了多少東西、去什麼地方吃過飯、花費金額超過了百分之多少的小夥伴;航旅縱橫會告訴用戶去年做了多少次飛機、總飛行里程是多少、去的最多的城市是哪裡;同樣的,最後讓用戶知道他的行程超過了多少小夥伴。 這些報告看起來非常酷炫,又冠以「大數據」之名,讓用戶以為是多麼了不起的技術。

實際上,企業對於數據的使用和分析,並不比我們每年收到的年度報告更復雜。已經有30多年歷史的商業智能,看起來非常酷炫,其本質依然是數數,並把數出來的結果畫成圖給管理者看。只是在不同的行業、場景下,同樣的數字和圖表會有不同的名字。即使是最近幾年炙手可熱的大數據處理技術,也不過是可以數更多的數,並且數的更快一些而已。

在大數據處理過程中會用到那些演算法呢?

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的較佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是較佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——較佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數較大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的較大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-較大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-較大演算法在概率模型中尋找可能性較大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其較大可能估計值;第二步是較大化,較大化在第一步上求得的較大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、較大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到較大的流。它優勢被定義為找到這樣一個流的值。較大流問題可以看作更復雜的網路流問題的特定情況。較大流與網路中的界面有關,這就是較大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的較大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton's method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。較早的適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Schönhage-Strassen演算法——在數學中,Schönhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待較大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

5. 請教大數據分表分資料庫的問題

1 基本思想之什麼是分庫分表?
從字面上簡單理解,就是把原本存儲於一個庫的數據分塊存儲到多個庫上,把原本存儲於一個表的數據分塊存儲到多個表上。
2 基本思想之為什麼要分庫分表?

資料庫中的數據量不一定是可控的,在未進行分庫分表的情況下,隨著時間和業務的發展,庫中的表會越來越多,表中的數據量也會越來越大,相應地,數據操作,增刪改查的開銷也會越來越大;另外,由於無法進行分布式式部署,而一台伺服器的資源(CPU、磁碟、內存、IO等)是有限的,最終資料庫所能承載的數據量、數據處理能力都將遭遇瓶頸。
3 分庫分表的實施策略。

分庫分表有垂直切分和水平切分兩種。
3.1 何謂垂直切分,即將表按照功能模塊、關系密切程度劃分出來,部署到不同的庫上。例如,我們會建立定義資料庫workDB、商品資料庫payDB、用戶資料庫userDB、日誌資料庫logDB等,分別用於存儲項目數據定義表、商品定義表、用戶數據表、日誌數據表等。
3.2 何謂水平切分,當一個表中的數據量過大時,我們可以把該表的數據按照某種規則,例如userID散列,進行劃分,然後存儲到多個結構相同的表,和不同的庫上。例如,我們的userDB中的用戶數據表中,每一個表的數據量都很大,就可以把userDB切分為結構相同的多個userDB:part0DB、part1DB等,再將userDB上的用戶數據表userTable,切分為很多userTable:userTable0、userTable1等,然後將這些表按照一定的規則存儲到多個userDB上。
3.3 應該使用哪一種方式來實施資料庫分庫分表,這要看資料庫中數據量的瓶頸所在,並綜合項目的業務類型進行考慮。
如果資料庫是因為表太多而造成海量數據,並且項目的各項業務邏輯劃分清晰、低耦合,那麼規則簡單明了、容易實施的垂直切分必是首選。
而如果資料庫中的表並不多,但單表的數據量很大、或數據熱度很高,這種情況之下就應該選擇水平切分,水平切分比垂直切分要復雜一些,它將原本邏輯上屬於一體的數據進行了物理分割,除了在分割時要對分割的粒度做好評估,考慮數據平均和負載平均,後期也將對項目人員及應用程序產生額外的數據管理負擔。
在現實項目中,往往是這兩種情況兼而有之,這就需要做出權衡,甚至既需要垂直切分,又需要水平切分。我們的游戲項目便綜合使用了垂直與水平切分,我們首先對資料庫進行垂直切分,然後,再針對一部分表,通常是用戶數據表,進行水平切分。
4 分庫分表存在的問題。

4.1 事務問題。
在執行分庫分表之後,由於數據存儲到了不同的庫上,資料庫事務管理出現了困難。如果依賴資料庫本身的分布式事務管理功能去執行事務,將付出高昂的性能代價;如果由應用程序去協助控制,形成程序邏輯上的事務,又會造成編程方面的負擔。
4.2 跨庫跨表的join問題。
在執行了分庫分表之後,難以避免會將原本邏輯關聯性很強的數據劃分到不同的表、不同的庫上,這時,表的關聯操作將受到限制,我們無法join位於不同分庫的表,也無法join分表粒度不同的表,結果原本一次查詢能夠完成的業務,可能需要多次查詢才能完成。
4.3 額外的數據管理負擔和數據運算壓力。
額外的數據管理負擔,最顯而易見的就是數據的定位問題和數據的增刪改查的重復執行問題,這些都可以通過應用程序解決,但必然引起額外的邏輯運算,例如,對於一個記錄用戶成績的用戶數據表userTable,業務要求查出成績最好的100位,在進行分表之前,只需一個order by語句就可以搞定,但是在進行分表之後,將需要n個order by語句,分別查出每一個分表的前100名用戶數據,然後再對這些數據進行合並計算,才能得出結果。

6. c語言處理文件里的大數據

只能分塊處理了,讀入一塊、處理一塊、存儲一塊,資料庫就是這么乾的。

閱讀全文

與大數據分塊演算法相關的資料

熱點內容
文件在桌面怎麼刪除干凈 瀏覽:439
馬蘭士67cd機版本 瀏覽:542
javaweb爬蟲程序 瀏覽:537
word中千位分隔符 瀏覽:392
迷你編程七天任務的地圖怎麼過 瀏覽:844
word2003格式不對 瀏覽:86
百度雲怎麼編輯文件在哪裡 瀏覽:304
起名app數據哪裡來的 瀏覽:888
微信怎麼去泡妞 瀏覽:52
百度廣告html代碼 瀏覽:244
qq瀏覽器轉換完成後的文件在哪裡 瀏覽:623
jsp中的session 瀏覽:621
壓縮完了文件去哪裡找 瀏覽:380
武裝突襲3浩方聯機版本 瀏覽:674
網路機頂盒移動網路 瀏覽:391
iphone手機百度雲怎麼保存到qq 瀏覽:148
資料庫設計與實踐讀後感 瀏覽:112
js對象是什麼 瀏覽:744
網頁文件存pdf 瀏覽:567
文件夾正裝 瀏覽:279

友情鏈接