導航:首頁 > 網路數據 > 大數據經典論文

大數據經典論文

發布時間:2023-09-12 20:59:53

大數據下的計算機信息處理技術研究論文

大數據下的計算機信息處理技術研究論文

摘要: 現如今,隨著科學技術的快速發展,計算機技術已經融入到人們的生活之中,想想10年前的計算機技術和現如今的計算機技術,真的是天壤之別,發生了翻天覆地的變化。同時,大數據的應用也越來越廣泛,帶來了豐厚的利潤,各種「雲」層出不斷,對大數據的背景下,計算機信息處理的技術提出更高的競爭和要求。本文首先介紹大數據的概念,闡述基於大數據背景下的各種計算機信息處理技術,並對技術進行分析研究,最後對大數據未來的發展的機會做出分析。

關鍵詞: 大數據;計算機信息;技術研究

隨著科技的迅猛發展,大數據的應用愈來愈廣,隨之產生的數據系統總量大,十分龐大,這就對大數據時代下的計算機信息處理技術提出了更高的要求,如何將大數據處理的井然有序,有條不紊,值得每一位考研人員進行探討。

一、大數據的概念

什麼是大數據?大數據,另一種叫法稱之為巨型資料,是一個十分復雜密集的數據集,這樣的數據集在一定的時間內,依靠於傳統普通的數據加工軟體無法最終實現管理、抓取及處理的功能,需要進行創新,用新的處理模式才能夠實現。大數據具有虛擬化、按需服務、低成本等等特點。在每一個消費者的角度來看,大數據中的計算技術資源服務可以幫助每一個大數據用戶完成想要的資源信息,用戶只需進行付費就可以直接使用,根本不需要到處搜尋資料,跑來派去的打聽。這從根本上改變了人們對信息資源的需求方式,為用戶提供一種超大規模的網路資源共享。同時,面對海量的大資料庫資源,如何對大數據資源進行處理,得到用戶們想要的信息資源,需要計算機信息技術不斷的進行挖掘。

二、大數據下的計算機信息處理技術

總體的來說,基於大數據背景下的計算機信息處理技術總共可以分成以下3個方面:信息的獲取及加工技術、信息的存儲技術和信息安全方面的技術。下面就針對這三種技術,進行研究分析。1)信息的獲取及加工技術。信息的獲取及加工技術是實現信息化的第一步,是最基礎的工作內容,只有完成了信息數據的搜集工作,才能進行下面的計算機信息技術的處理。因此,如若進行信息的採集工作,需要首先明確信息的目標源,對信息數據進行監控,時刻把握信息的流向及動態,然後將採集的信息數據輸入至計算機資料庫中,實現了信息的獲取採集工作。接下來是第二步,信息的加工及處理工作,所有的加工和處理技術的核心在於用戶的指引,完全由用戶導向,設定信息的篩選范圍,確定信息的豐富度等等。最後是依照於用戶的要求,將信息資源傳輸到用戶手中。這樣就實現了整個信息從採集到處理,再從處理到傳送工作的整個流程。2)信息的存儲技術。在大數據的背景下,對於整個計算機信息的處理,信息技術的存儲是十分關鍵的環節,可以將處理加工的數據得以保存,更方便用戶對於數據的調取和應用。而且,現如今的信息數據總量大、更新速度快,合理的運用存儲方面的技術,可以快速的實現信息的存儲工作,提高工效效率,將復雜變簡單。在目前的時代下,應用最廣泛的是分布式數據存儲技術,應用十分方便,能夠實現快速大量的數據存儲。3)信息安全方面的技術。大數據在方便用戶使用和享受的同時,信息數據資源的安全性也是不容忽略的,而且隨著社會的發展,數據資源的安全性和隱私性逐漸受到關注,如何實現資料庫的安全是個十分值得研究的課題。首先最主要的是建立計算機安全體系,充分引進更多的人才。其次需要加強安全技術的研發速度,由於大數據發展及更新速度快,需要快速的更新原有的安全體系,盡快的適應大數據時代的更新速度。除此之外,加強對信息的監測是十分必要的,避免不法之人進行數據的盜取,在信息數據龐大的體量下,依然能夠提供穩定有效的安全體系。

三、大數據下的計算機信息技術的發展前景

1)雲技術的發展是必然趨勢。雲計算網路技術是越來越得到大的發展,一方面由於計算機硬體系統的數據處理技術有限,雲技術可以完全的將弊端破除,同時,它能夠利用最新的數據資源和處理技術,不依賴於計算機硬體系統。因此,隨著龐大的數據越來越復雜,傳統的數據處理方式已經不能夠適應,未來將計算機信息處理必將朝著雲計算發展。2)計算機網路不再受限於計算機硬體。未來,計算機網路技術將會不再受制於計算機硬體的限制,網路的傳輸技術更加趨向於開放化,計算機網路和計算機硬體將會分隔開,重新定義新的網路架構。3)計算機技術和網路相互融合。傳統的計算機技術需要運用計算機的硬體系統才能夠實現信息的處理、加工及存儲工作,未來新的.計算技術將脫離於計算機硬體配備,可以僅僅用計算機網路就可以實現數據的加工和處理。同時,二者也將會相互融合、相互發展真正的滿足由於大數據時代的更新所帶來的困擾,這是未來大數據背景下計算機技術發展的又一個方向。

四、大數據下的計算機信息技術面臨的機遇和挑戰

在大數據背景下,計算機信息技術的機遇和挑戰並存,首先,病毒及網站的惡意攻擊是少不了的,這些問題是站在計算機信息技術面前的巨大挑戰,同時,近些年,網路詐騙不斷,社會關注度逐漸提高,網路的安全問題也是不同忽視,再者,信息之間的傳送速度也有限,需要對傳送技術進行創新,以適應更高的用戶需求。最後,隨著大資料庫的不斷豐富,越來越龐大的數據資源進行加工和處理,對數據的存儲又有了新的要求,如何適應不斷龐大的數據信息量,實現更加便捷的、滿足用戶需求的調取也是一個巨大的挑戰。與此同時,也存在著許多的機遇。首先,大數據對信息安全的要求越來越大,一定程度上帶動了信息安全的發展,其次,大數據在應用方面,對企業及用戶帶來了巨大的便利,同時也豐富了產業資源,未來用戶及企業面前的競爭可能會轉化為大數據信息資源的競爭。最後,大數據時代的來臨,構造了以信息安全、雲計算和物聯網為主要核心的新形勢。

五、結論

通過一番研究,目前在大數據時代下,計算機信息技術確實存在著一定的弊端,需要不斷的進行創新和發展,相信未來的雲計算會越來越先進,越來越融入到人們的生活及工作當中,計算機信息技術面臨的巨大的挑戰和機遇,面對挑戰,抓住機遇,相信未來我國的計算機技術會越來越好,必將超過世界領先水平!

參考文獻:

[1]王秀蘇.計算機信息處理技術在辦公自動化上的應用[J].科技經濟市場,2010(03).

[2]張連傑.企業管理中計算機技術的應用[J].電腦知識與技術,2011(26).

[3]陳靜.淺談計算機處理技術[J].科技與企業,2012(11).

[4]趙春雷,喬治納漢."大數據"時代的計算機信息處理技術[J].世界科學,2012.

[5]庄晏冬.智能信息處理技術應用與發展[J].黑龍江科技信息,2011.

[6]艾伯特拉斯洛,巴拉巴西,著.馬慧,譯.爆發:大數據時代預見未來的新思維[M].北京:中國人民大學出版社,2012.河南省高等學校重點科研項目計劃(16A520008)


;

⑵ 大數據驅動公共管理學科現代化論文

大數據驅動公共管理學科現代化論文

在各領域中,大家肯定對論文都不陌生吧,藉助論文可以有效提高我們的寫作水平。相信許多人會覺得論文很難寫吧,以下是我整理的大數據驅動公共管理學科現代化論文,供大家參考借鑒,希望可以幫助到有需要的朋友。

摘要

我們目前所處的是一個由數據主宰的大數據時代,數據的共享正改變著我們的工作和生活。而在該時代中,公共管理有著極為深刻的影響,政府部門應該清楚地認識到公共管理學科的重要性,並以科學的態度來面對該學科所面臨的機遇和挑戰,並且分析大數據對公共管理學科所產生的影響,反思傳統管理模式中存在的不足之處,對公共管理行為模式進行改進,從而有效地促進大數據時代下公共管理學科的發展與進步。

關鍵詞:

大數據驅動;公共管理;改革方式

引言:

在公共管理的實施過程中,工程的使用不只意味著管理的過程,因為這需要對各個公共資源進行再分配。行使這個權利的時候是需要調配各種公共資源,在國家法律法規體系下,安排各種公共資源,保障各項資源的有效運轉。需要注意的是,必須以群眾的利益作為基本前提,防止公共資源的濫用甚至其他嚴重的後果發生。在整個大數據不斷發展的情況下,公共資源的使用,有了更多透明化的監督過程,可以對這些公共資源進行科學合理的配置。

在未來,公共學科的發展變得越來越高效,公共學科也是建立在現代高新技術的基礎上,針對目前公共管理存在的弊端,和高新技術進行深入分析,將這些找到的矛盾用人文學科的思想得以解決。在公共管理學科的發展歷程之中,各種數據的處理是極為重要的。只有有效利用大數據處理的方法,才能夠更好地促進公共管理,將公共政策和現代數據結合,促進我國的公共管理不斷進步。在現代化的發展歷程之後,我們還應該不斷關注公共學科的發展特點,探討公共學科可能出現的風險問題,不斷提高科學決策的准確度,根據大數據的分析結果,促進公共學科的改進。

一、大數據的實際內涵以及其發展概述

在運用大數據技術時,部門研究者認為大數據是一種統計模式,是運用各種現代信息技術進行自動記錄和延續擴充的過程,而非人工設計的數據。不過,這類觀點是以大數據統計為出發點,然而實際上大數據並不僅僅只是進行數據資源的整理和收集,更重要的是對數據進行分析[1]。

二、大數據對公共管理學科的驅動機制

大數據的發展給公共管理的影響是深遠的,從大數據的發展可以不斷提高公共管理的效率,大數據的深入發展,能夠幫助我們先入進行公共管理。在未來,要促進公共學科的發展,就需要依靠大數據,在大數據的幫助之下,深入挖掘公共管理的實質,幫助我們找到科學的管理項目,從而為公共決策做出准確的判斷。以往在公共學科的時候還沒有發揮大數據的價值,缺乏一定大數據的思想。發展是一個緩慢過程,在這個公共學科的成長過程中,我們必須研究大數據的專業特徵。利用公共學科的機制,回到數據的創新作用。總地來說,可以從以下幾個方面找到大數據的影響。

(一)巨大數據體量對公共管理學科的影響到時候就意味著更多的海量數據。這些數據的發展不僅擁有著較大的體量,還意味著公共管理的難度也在增加。公共管理需要依靠大數據技術,但是卻要利用好,到時候做好分析的腳本研究。改善傳統的思維,讓我們用現代的思想為公共管理做出更多的分析。大數據在現代的應用是深遠的,我們要利用各種各樣的大數據技術,更多的大數據手段找到公共學科的真正內涵。從而為到時候去建設提供物質基礎,這些基本的數據出發,讓政府面臨更多的公共決策類型,公共管理樣本的採集為大數據做出了更多的支持。基礎的公共管理樣本可以成為數據的來源,也為公共管理學科發展做出深入的影響。為進一步找到目前存在的問題,就需要對公共決策的數據進行整合,從而發揮學科的時代性特徵,達到公共管理的具體目標[2]。

(二)多樣化的數據對公共管理學科產生的影響大數據時代不只是大數據的數量增加,更多的是數據的種類。公共學科要掌握更高的管理方法,就需要研究現在的數據種類,利用公共學科的深入特點找到管理的不同類型,從而實現較高的管理目標。大數據時代是一個多種類型的時代,在過去的時代中不需要這樣多的信息,也不會利用現在的存儲資源。然而目前的公共管理,需要我們更多的存儲空間是處於到時候去時代之中所面臨的管理種類是多種多樣的,類型也是十分廣泛。在這些眾多的種類中,我們面臨多種形式的公共資源,必須要深入研究,採取適合於公共管理學科的應對方法,促進我公共管理學科的深入發展,找到承載的.問題,找到學科的管理方向,從而豐富各種類型的表達方式和存儲方法[3]。

(三)低密度的數據價值對公共管理學科的影響大數據時代不僅意味著數據的多樣化,但需要很多的載體承擔這些數據。我們需要提高存儲的空間,對目前的存儲空間進行深入探索,不斷進行改革,從根本上提高存在的空間數據。加強存儲空間的創新。首先,現在都很多數據看似已經傳出,然而卻沒有經過深入的加工,且沒有一定的壓縮功能,這些數據在存儲的時候造成了較多的空間佔用,空間資源在一定程度上造成了一些無用的數據存儲。面對這種情況我們要找到數據存儲的內在問題,從根本上提高存儲的有效性,並且加強數據之間的傳遞和流通。目前的現狀來看,很多大數據還沒有取得較好的效果,信息的關注還停留在過去階段,這些數據本身價值不好發揮。數據在挖掘的過程中必須依託公共管理學科的知識。融入現代大數據的技術,對數據的價值進行深入發掘和研究,也是公共管理學科的研究型態,幫助我們深入數據的內部,積極探索數據存儲的類型,釋放更多的空間[4]。

三、大數據驅動下公共管理學科的未來發展

我們目前所處的大數據時代依然處於不斷發展的狀態,通過上文的分析不難發現,大數據不斷的以其龐大的數據體系和繁多的數據類型來影響著公共管理學科的發展,因此,公共管理學科也應該隨著大數據時代的發展而做出改變和創新[5]。

(一)公共治理模式與大數據的結合公共學科的管理,需要深入考量學科的特點,對公共治理存在的問題進行深入分析,依託現代大數據的功能,擴大數據的包容性,加強信息的獲取渠道探索。利用更多的公眾信息平台引導熱點話題,從而能夠找到公共管理存在的弊端。在施行公共管理時,應該充分地考慮大數據對公共管理和公共治理之間的影響進行分析。大數據時代極大的擴張了人們的信息獲取渠道,在此基礎上,社會個體可以通過各類信息平台來討論熱點話題,由於各類言論會在互聯網中迅速蔓延,在輿論的壓力下,公眾的言論和態度將會直接影響到政府作出的公共決策。比如,政府可以對一些觀點和言論進行審核,利用大數據來進行思維分析[6]。

(二)重新認識公共管理決策在這項研究中,實證分析是提出比較四個案例的公眾參與風險相關的決策。本研究選取的案例均涉及政府決策者願意與公共利益團體合作的廢物管理沖突,但每一案例的公眾參與程度和性質有所不同。與公眾參與有關的沖突在所有四個案件中都出現。針對傳統問題解決方法的不足,我們開發了一個更廣泛的分析框架來解釋這些沖突。沖突分析考慮對手關系的歷史、權力分配、對解決沖突的態度、隱藏的議程、各種談判策略以及對談判協議的承諾(或缺乏承諾)。雖然這種方法是為了分析的目的而制定的,但我們認為,這種方法對於解決此類沖突也具有特定的相關性。沖突管理的概念,作為提高公眾參與質量的一種方法。沖突管理的主要特點是:

(1)賦予公眾權力;

(2)「良好」(公平)的解決辦法;

(3)各方積極支持最終決定。在公共管理的過程中,由於大數據時代的各個特點,公共管理必須進行適當的改革創新,從而更好地應對未來的挑戰和機遇。

(三)准確滿足公眾訴求公共管理決策和決策的一個明顯方面基本上沒有引起決策內容的注意。我們通過對預算削減和信息技術決策提出以下問題來檢驗決策內容的影響:內容如何影響決策所需的時間?內容如何影響參與者?內容如何影響所採用的決策標准?內容如何影響決策過程和繁文縟節中使用的信息質量?結果表明,信息技術和預算削減決策在重要方面有所不同。對於信息技術決策而言,成本效益不是一個重要的標准,平均決策時間要長得多,決策通常被視為永久和穩定的。對於削減決策,成本效益是一個重要的標准,決策的速度要快得多,而且被視為不穩定和多變的。令人驚訝的是,決策內容似乎並不影響參與者的數量。在大數據時代到來以前,群眾與政府之間缺乏有效的溝通手段,導致群眾與政府之間存在隔閡。在如今的大數據時代下,政府和群眾之間的溝通交流更加的順暢,政府能夠實時了解到群眾所反饋的一些信息,並且在短時間內進行整理和收集,從而使各項公共資源的配比能夠科學有效的實施,最大限度地保證群眾的利益[7]。

四、結語

公共管理行為涉及的范圍非常廣泛,公權力的使用者應該謹慎運用每一項公共管理的權利,滿足人民群眾的利益訴求,即使給出反饋和針對性的公共管理決策。因此,在未來的發展中,公共管理學科的研究領域將不僅僅是為政府的公共決策提供支撐和依據,而是幫助政府更加理性的收集數據,在龐大的數據體量基礎上對各項數據資源進行整合,從而提高公共管理和服務質量,使公共管理對人們利益實現最大化。

參考文獻:

[1]王博.大數據驅動的公共管理學科現代化[J].湖南工業職業技術學院學報,2018,18(5):30—33.

[2]黃欣卓,李大宇.大數據驅動的公共管理學科現代化———《公共管理學報》高端學術研討會視點[J].公共管理學報,2018,15(1).

[3]黃欣卓,李大宇.大數據驅動的公共管理學科現代化———《公共管理學報》高端學術研討會視點[J].公共管理學報,2018,15(1):147—152.

[4]王琳.大數據時代下我國政府公共關系能力建設研究[D].重慶:重慶大學,2017.

[5]王陳程.大數據驅動的公共管理創新[J].山西青年,2019,(2):234.

[6]秦浩.大數據驅動的公共政策轉型[J].中國共產黨政幹部論壇,2020,(2):62—65.

[7]張黎黎.大數據技術與公共管理範式的轉型[J].中文信息,2019,(5):255.

;

⑶ 大數據時代企業人力資源績效管理創新論文

摘要: 在互聯網技術的發展和各種數據信息化、共享化的背景之下, 大數據時代得到了應用與發展。在現代的生活之中,我們可以明顯的 看到,在人們的日常生活或者在各行各業的管理之中大數據時代得到 了廣泛的應用與發展。在這些的領域之中,大數據時代發展的最為理 想的就是在企業大的管理之中。大數據時代的運用使得企業的人力資 源大的管理更加的優化。

關鍵字: 大數據時代;電力供電企業;人力資源;績效管理;

正文:

一、大數據對供電企業績效管理的影響

(一)職位多元化

大數據時代可能促進新職位的產生,如首席數據官、數據科學家、數據分析師等,他們的主要職責是管理供電企業擁有的及其他的數據資源,挖掘、分析和利用這些數據為供電企業創造價值。因此,面對供電企業復雜多樣的績效管理數據,人力資源部門無需進行分析和解讀,只需進行簡單地收集和提取,這樣他們將從以往重復且低效的績效管理任務中跳脫出來,從而大大提高管理效率。

(二)管理工具高效化,

傳統人力資源管理部門對績效相關信息的處理效率低,同時處理手段過於主觀粗糙,很難對員工的績效、素質等內容做出客觀公正的評價。大數據時代下,績效管理工具將變得更加多元且高效,如績效儀表盤、基於「雲計算」技術下的「共同體GTT供電企業雲管理平台」等。

(三)考核目的多元化,

大數據時代下考核結果不僅是薪酬獎金、職務晉升的可靠依據,更是成為員工職業發展的指導標桿。一方面,通過對績效數據的收集處理,測試員工和崗位的匹配度,幫助供電企業了解員工並將其調整到更適合的位置;另一方面,員工可通過考核反饋了解自己的興趣,並且充分利用供電企業中的發展機會。

二、我國供電企業人力資源績效管理現狀分析

(一)績效考核的主觀性較強,缺乏客觀數據認識

績效管理是部門領導對該部門員工的考核和評價過程。目前,我國大部分供電企業的人力資源管理系統是通過管理部門把數據導出,利用資料庫或EXCEL辦公軟體進行處理,最終得出績效考核的結果,而部門領導在面對該考核結果時往往容易看重員工在某一方面或某一時期的表現,因此,這在很大程度上容易受上級觀念的影響,從而使考核結果具有片面性和主觀隨意性。

(二)供電企業缺乏數據復合型人才,智能化程度較低

傳統供電企業信息處理局限於某一職位人的單項工作,且由於受到晉升機制和管理的束縛,企業無法引進高素質人才,數據復合型人才匱乏。同時,許多供電企業的績效管理成為一種形式,大多數時候僅僅在月末及季末、年終的時候進行績效考核,相關領導也只是憑借有限的材料對員工的表現進行總結和評價。

(三)管理者對數據的挖掘不夠深入,績效管理成果沒有得到充分應用

對於績效信息的處理和分析結果,諸多企業高層並未進行深入挖掘,他們對資料庫中的數據關聯了解不透徹,只單一注重供電企業的年度財務報表和供電企業的利潤情況,而不對數據存在的問題進行分析,忽視一些看似不相關的數據,如飲食情況、工作環境等。實際上,這些信息如若經過整合分析,將能夠更合理地解釋員工現階段的績效情況,並有利於供電企業改進人力資源管理的方法。

三、在大數據時代下對於供電企業人力資源績效管理的新舉措

(一)充分的數據信息

為了進一步提升供電企業中人力資源的管理水平,各供電企業管理階層除了要進一步完善供電企業內部的管理機制和運行方式,最重要的就是要及時利用各種數據對人員進行管理。而在大數據時代之下,利用其特點,可以充分的利用其所能提供的相關數據信息,根據具體詳盡的數據信息對人員進行進一步的管理。在人力資源管理中,主要是注意以下3個方面的數據信息。

1、客觀的基礎數據信息。這些信息主要是在人力資源管理中最為基礎的信息。這些信息都是員工們最客觀的基本信息。主要包括員工的姓名、性別、年齡、籍貫、學歷、特長和工作時間等。根據這些最為基本的信息,了解員工最基本的`情況,同時人力資源部門要將這些信息進一步記錄存檔,進一步完善,做好整理工作,為以後的人員的管理提供相應的數據支持。

2、人員變動情況的相關信息。人員的變動情況主要有調動、辭退、招聘和重新分配等。人力資源部門在對這些信息進行整理時,要著重關心員工的變動情況,一名員工何時參加工作,何時進行崗位調動,何時提升崗位等。

3、人員的質量信息所謂的人員的質量信息是指員工在供電企業的工作過程中,對於供電企業的奉獻的情況,以及員工對於供電企業的人力資源管理的滿意度的情況。在了解這些數據和信息的基礎之上,有利於企業進一步了解員工的向心力和內在的優勢。只有在了解這些數據的基礎之上,才能准確的運用員工的特點進行人員的管理,進一步完善人力資源績效的管理。

(二)進一步創新人力資源績效管理的方式方法

在大數據時代之下,供電企業的人力資源績效管理得到了進一步的發展。為了進一步提升供電企業的人員績效管理的能力,全面的發揮大數據時代的有利作用。在人力資源績效管理方面還需要從幾個方面進行進一步的考慮優化。主要表現在以下幾個方面:

1、進一步創新人力資源績效的管理辦法。在之前的一般的供電企業的考評時,對於員工的考評主要是一句員工對於供電企業的奉獻和年終的表現情況進行考核評價。這樣的考核方法一定程度上是可以表現員工的總體的貢獻的,但是由於數據考慮的不慎全面,對於員工的考核也是存在一定的不平等。

2、建立健全供電企業績效考核體系。在對員工進行績效考核是,對於一些具體的數據和信息的收集對於供電企業員工的績效公平的管理也是十分重要的。只有在全面的核查過每一位員工和供電企業相關的具體信息之後才能進一步完善員工的考核體系。在考核體系進一步確定的基礎之上才能實現對於供電企業中人力資源績效管理工作的優化。

3、合理的利用全面的考核方法。在對於供電企業的員工進行考評時,供電企業的管理部門還可以改變考核方法,完善考核機制。其中360度考核方法就是一種對於員工的全面的考核方法。

參考文獻:

[1] 劉雅輝,張鐵贏,靳小龍等.大數據時代的個人隱私保護[J].計算機研究與發展,2015,52(1):229-247.

[2] 盧黎歌,吳歡.基於大數據時代的大學生價值觀教育[J].西安交通大學學報(社會科學版),2016,36(6).

[3] 何振,周芳檢,楊文等.大數據時代城市應急管理行業協作體制創新研究?[J].湘潭大學學報(哲學社會科學版),2016,40(6):26-31.DOI:10.3969/j.issn.1001-5981.2016.06.006.

[4] 孫光寧.大數據時代對司法審判的沖擊及其應對——從指導性案例29號切入[J].湖北社會科學,2016,(5).

⑷ 有關大數據應用的論文(2)

有關大數據應用的論文篇二

《大數據技術對財務管理的影響》

摘 要:大數據可以快速幫助財務部門建立財務分析工具,而不是單純做賬。大數據應該不僅僅局限於本單位的微觀數據,更為重要的關注其他單位的宏觀數據。大數據技術不僅帶來了企事業單位財務數據搜集的便利和挑戰,而且也衍生出了諸多關於單位人員個人信息保密等問題的積極探索。本文主要研究大數據技術(meta-data或big data)對企業或事業單位財務管理的影響,以期為財務數據管理的安全性提供一種分析的依據和保障。

關鍵詞:大數據;財務管理;科學技術;知識進步

數據是一個中性概念。人類自古以來幾千年的輝煌變遷,無外乎就是數據的搜集和使用過程而已。縱觀古今中外的人際交流與合作,充滿著爾虞我詐和勾心鬥角,那麼他們在爭什麼呢?實際上是在爭奪信息資源;歷史上品相繁多的戰爭,實際上不是在維持什麼所謂的正義和和平,抑或為了人間的正道,而是在爭奪數據的使用權;“熙熙攘攘皆為利往、攘攘熙熙皆為利來”的世俗變遷邏輯已經讓位於數據游戲的哲學法則。人類自英國產業革命以來所陸續發明的技術,盡管被人們美其名曰“第四次科技革命的前沿技術”,實際上不過就是“0”和“1”兩個數字的嬉戲而已。正如有學者指出的,汽車技術、生命科學技術、基因技術、原子能技術、宇宙航天技術、納米技術、電子計算機技術,看起來美輪美奐,實則隱含著殺機,那就是由於人們把技術當成了目的後,導致了“技術專制”後的“技術腐敗”和“技術災難”。人類一方面在懶惰基因的誘惑下,發明了諸多所謂的機械裝置,中國叫“機巧”;另一方面又在勤奮的文化下,發明了諸多抑制懶惰的制度和機制。本來想尋求節儉,結果卻越來越奢侈;本來想節約,結果卻越來越浪費;本來想善良,結果卻越來越邪惡;本來想美好,結果卻越來越醜陋。正如拉美特里所說:“人是什麼?一半是天使,一半是野獸。當人拚命想成為天使的時候,其實他會逐漸變成野獸;當人想極力崇拜野獸的時候,結果會逐漸接近天使。”我們不是在宣講宿命的技術,我們只是在預測技術的宿命。本文主要研究大數據技術(meta-data或big data)對企業或事業單位財務管理的影響,以期為財務數據管理的安全性提供一種分析的依據和保障。

一、大數據技術加大了財務數據收集的難度

財務數據的收集是一個復雜的系統工程,國際上一般採用相對性原則,即首先利用不完全統計學的知識對數據進行初步的計算,接著對粗糙的數據進行系統的羅列,最後對類型化的數據進行明分梳理。使用者如果想進入該資料庫,就必須擁有注冊的用戶名和密碼。由於國際上對於網路數據的監督均採取了實名注冊的模式,所以一旦該用戶進入到核心資料庫之後想竊取數據,一般都會暴露自己的bug地址源,網管可以循著這一唯一性存留,通過雲計算迅速找到該網路終端的IP地址,於是根據人機互動原理,再加上各種網吧所安裝的監控平台,可以迅速找到資料庫的剽竊者。如果按照上述數據變遷邏輯,那麼財務數據的收集似乎變得易如反掌,而事實並非如此。因為:①數據的量化指標受制於雲計算伺服器的安全性。當雲伺服器受到不可抗力的打擊,如地震、水患、瘟疫、鼠疫、火災、原子能泄露或各種人為破壞的作用,數據會呈現離散型散落。這時的數據丟失會演變成數字災難;②各種數據版權的擁有者之間很難實現無縫隙對接。比如在經過不同伺服器的不同數據流之間,很難實現現實意義上的自由流通。正如專家所指出的,教育伺服器的事業單位的人員數據、行政部門人事管理部門的保密性數據、軍事單位的軍事數據、醫療衛生事業的數據、工商注冊數據、外事數據等在無法克服實際權力的分割陷阱之前,很難實現資源的共享,這時對數據的所謂搜集都會演化為“不完全抽樣”的數字假象。由此而衍生的資料庫充其量只是一部分無用的質料而已。

二、大數據技術影響了財務數據分析的准確性

對於搞財務管理的人來說,財務數據的收集只是有效實現資源配置的先決條件,真正有價值的或者說最為關鍵的環節是對財務數據的分析。所謂“財務數據分析”是指專業的會計人員或審計人員對紛繁復雜的單位人力資源信息進行“去魅”的過程。所謂“去魅”就是指去粗取精、去偽存真、由此及彼、由表及裡、內外互聯,彼此溝通、跨級交流、跨界合作。在較為嚴格的學術意義上,分析的難度廣泛存在與財務工作人員的日常生活中。大數據技術盡管為數據的搜集提供了方便法門,但同時加大了財務人員的工作量和工作難度。原先只是在算盤或者草稿紙上就可以輕松解決的數據計算,現在只能藉助於計算機和雲圖建模。對於一些藉助於政治權力因素或者經濟利益因素,抑或是藉助於自身的人際關系因素上升到財務管理部門的職工來說,更大的挑戰開始了。他們不知道如何進行數據流的圖譜分析,不知道基於計算機軟體技術的集成線路技術的跌級分類,不知道基於非線性配置的液壓傳動技術的模板沖壓技術,不知道逆向網路模型來解決外部常態財務變數的可篡改問題。由於技術不過硬,導致了領導安排的任務不能在規定的時間內完成,即時倉促做完的案例,也會因為數據分析技術的落後而授人以柄,有的脾氣不好的領導可能會大發雷霆;脾氣好的領導只是強壓著內心的怒火,那種以靜制動的魄力和安靜更是攝魂奪魄。所以說數據分析難度的增加不是由於財務人員的良心或善根缺失,在很大程度上是由於技術的進步和大數據理念給我們帶來的尖銳挑戰。對於普通的沒有家庭和社會背景的財務管理人員來說,能做的或者說唯一可做的就是尊重歷史發展的周期律,敬畏生生不息的科學革命,認真領會行政首長的戰略意圖,提升自己的數據分析技術,升華在自身的“硬實力”。否則覬覦於領導的良心發現和疏忽大意,期望技術的靜止或者倒退,抑或是在違法犯罪之後天真的認為可以相安無事,可能都只會落得“恢恢乎如喪家之犬”的境遇。

三、大數據技術給財務人事管理帶來了挑戰

一個單位的財務人事管理牽扯到方方面面的問題,其意義不可小視。一般來講,單位在遴選財務管理部門管理人員的時候,大多從德才績行四個方面全面權衡。然而這種“四有標准”卻隱含著潛在的危機和不可避免的長遠威脅,這其中的緣由就在於人性的復雜性和不可猜度性。歷史和現實一再告訴人們,單純看眼前的表現和話語的華麗,不僅不能對人才的素質進行准確的評價,而且還會導致官員的遠期腐敗和隱性腐敗。對於中國的腐敗,國人大多重視了制度和道德的緣起,卻往往忽視了財務管理的因素。試想如果財務管理人員牢牢踐行“焦裕祿精神”,不對任何政治權力開綠燈,國有資產又如何流出國庫而了無人知曉呢?事實上,中國的所有腐敗,不論是國有資產的國外流失抑或是國內流失,都在很大程度上與財務人員有關,可能有些管理人員會強調那不是自己的責任,出納簽字是領導的授意,會計支出費用那是長官的意思清晰表示。實際上,處於權力非法授予的簽字、蓋章、取現、流轉和變相洗錢都是違法的,甚至是犯罪的。間接故意也是應當追究責任的。值得高興的是,伴隨著數字模擬技術的演進,財務管理中的腐敗現象和人事管理科學化問題得到了極大的改善,相關領導伸手向財務要錢的行為,不僅會受到數據進入許可權的限制,而且還會受到跟數據存留的監控,只要給予單位科技人員以足夠的許可權,想查找任何一筆資金的走向就變得非常簡單,而且對於每一筆資金的經手者的信息也會了如指掌。這在一定程度上減少了只會指揮、不懂電腦的首長的孵化幾率。

四、大數據技術加大了單位信息保密的難度

IMA(美國注冊會計師協會)研發副總裁Raef・Lawson博士曾經指出:“客觀上講,大數據技術的正面效用是非常明顯的,但一個不容迴避的事實是大數據技術為財務信息的安全性提出了越來越嚴峻的挑戰。我們已經注意到,在歐洲大陸、美洲大陸已經存在基於數據泄露而產生的各種抗議活動,這些活動牽扯到美國的數據竊聽丑聞、俄羅斯對軍事數據的強制性戰友舉動、以色列數據專家出賣阿拉伯世界經濟數據的案件、在東方的中國香港一部分利用數據的竊取而發家致富的頂尖級黑客專家。”在數據集成的拓撲領域,大數據技術的保密性挑戰肇始於蟻群演算法的先天性缺陷。本來數據流的控制是依靠各種所謂的交易密碼,實際上這些安全密碼只是數據的另一種分類和組合而已。在數據的非線性組合和線路的真空組裝模式下,任何密碼都只是阻擋了技術侏儒的暫時性舉動,而沒有超出技術本身的惰性存在。當一個hacker掌握了源代碼的介質性接洽技術之後,所剩下的就是信息和數據的搜集了,只要有足夠的數據源,信息的戶的幾乎是輕而易舉的。

2003年,北京的一家名為飛塔公司的防火牆安全軟體在中關村科技城閃亮上市。該安全控制軟體的開發者隨機開發了一款名曰MAZE天網的軟體,並且採用了“以其之矛攻其之盾”的攻防策略。測試的結果是盡管maze的源代碼採用了24進制蝶形加密技術,但 FortiGate防火牆技術仍然能夠阻擋住善意木馬對電腦終端用戶信息的剽竊和非法利用。FortiWeb已經通過全球權威的ICSA認證,可以阻斷如跨站腳本、SQL注入、緩沖區溢出、遠程文件包含、拒絕服務,同時防止敏感資料庫外泄,為企事業單位Web應用提供了專業級的應用安全防護。飛塔公司之所以耗費人力和物力去開發這一新型的換代產品,就在於大數據時代對單位信息保密性的沖擊。試想,如果一個單位連職工最起碼的個人信息都不能安全存儲的話,那麼財務管理的科學性和人本性將從何談起?只能說,即使在人權保護意識相對薄弱的法治環境里,我們也應該盡量提升自己的保密意識,加強對個人信息的保護和合理運用。

作者簡介:田惠東(1967- ),女,漢族,河北定興人,副高級會計師,本科學歷,研究方向:財務管理,單位:保定市第一醫院

⑸ 大數據和人工智慧論文

隨著大數據和人工智慧技術的發展,未來的保險保障將不僅僅能提供經濟補償,還能實現損失干預,具體到人身險方面,以下是我精心整理的大數據和人工智慧論文的相關資料,希望對你有幫助!

大數據和人工智慧論文篇一

基於大數據和人工智慧的被保險人行為干預

【摘要】隨著大數據和人工智慧技術的發展,未來的保險保障將不僅僅能提供經濟補償,還能實現損失干預,具體到人身險方面,則可以實現對被保險人行為的干預,降低給付發生的概率和額度,提高人民健康水平。基於此,文章介紹了利用大數據和人工智慧技術對被保險人行為干預的優點及干預方式,並預期可能實現的干預結果,最後對保險公司進行被保險人行為干預提出了階段建議。

【關鍵詞】大數據 人工智慧 行為干預

近年來隨著大數據和人工智慧技術的發展,越來越多的領域應用這些技術來提高自身的專業水平。保險作為基於大數法則進行風險管理的一種方式,對數據的處理和應用要求更高。目前大數據技術在保險業的應用主要是精準營銷、保險產品開發和理賠服務等,但在保險中的防災防損方面的應用還不夠。如果能夠深入挖掘大數據在被保險人行為方面的研究,再結合人工智慧進行智能幹預,則可以對被保險人實現有效的風險管理,提高被保險人的身體健康狀況,從而極大程度的提升客戶效用,提高社會整體福利水平。

一、被保險人行為干預簡介

行為干預是通過對環境進行控制從而使個體產生特定行為的方式,目前主要在教育,醫療等方面發揮作用。但在被保險人管理方面,行為干預應用很少。現行的對被保險人的管理主要集中在投保審核的過程中,而在投保後提供的服務和干預很少,一般也就是提供健康體檢等服務,而對被保險人投保後的日常生活行為方式,健康隱患則基本處於放任自流的狀況。而被保險人行為干預則是通過對被保險人日常生活行為,飲食習慣等進行實時數據收集和分析,然後制定干預方式進行針對化管理的模式。

二、利用大數據和人工智慧進行被保險人行為干預的優點

實現精準、良好的對被保險人的行為干預,需要利用大數據和人工智慧技術。大數據相比傳統數據具有海量、高速、多樣等特點,它實現了對信息的全量分析而不是以前的抽樣分析。在被保險人行為干預模式中,需要對每一個個體的日常生活作息,行為,飲食,身體健康指標的進行實時數據採集,然後進行分析,這用傳統的數據統計方法是難以做到的。利用大數據技術進行分析能從海量信息中獲取被保險人的風險狀況,從而為精準干預提供基礎。簡單的干預難以實現特定的干預結果,而人工智慧則讓干預顯得更加自然,讓被保險人更加易於接受,從而很大程度上提高了干預效果。

三、如何利用大數據和人工智慧進行被保險人行為干預

利用大數據和人工智慧進行被保險人的行為干預主要有以下步驟:

首先利用人工智慧設備進行被保險人數據收集,除了目前的手機APP,網路等軟體和設備上的數據能夠被收集外,未來人工智慧家居能提供更多的被保險人信息。例如提供體重、坐姿等數據的椅子,提供飲食時間和品種的筷子,提供身體運動和健康數據的智能穿戴式設備等等。數據收集後,需要利用大數據技術對海量數據進行清洗,去噪等技術處理,然後對數據進行分析。第三步是根據數據分析結果,制定具體的行為干預方案。最後一步是根據制定的方法,利用人工智慧進行干預,如智能椅子調整坐姿,智能廚具減少含油量,針對性的健康食譜推薦,鍛煉提醒,智能家居輔助鍛煉等等。與此同時,新一輪的數據收集又開始了,整個過程是連續進行,不斷循環的。

四、利用大數據和人工智慧進行被保險人行為干預的預期成果

對被保險人來說,這種干預方式能有效的進行健康管理。未來的健康保險將成為個人真正的健康管家,從日常生活行為,到身體機能都能提供很好的干預,並且讓良好生活方式的養成更加容易,從而提高自身的健康狀況,達到更好的生活狀況。但另一方面,全面數據化,智能化的方式可能會帶來很大的數據泄露風險,所以如果保護客戶私密數據是另一個值得研究的問題。另外,對於投保前健康狀況較差的客戶,或者是對行為干預較為抵制,干預效果較差的客戶,可能需要承擔更多的保費。當然對於優質客戶和樂於提升和改變的客戶則可以享受到更加優惠的費率。也就是說在大數據和人工智慧技術下,客戶進行了進步一步細分。

對保險人來說,行為干預能夠降低被保險人的風險,很多疾病能實現防範於未然,降低賠償程度。另外,藉助大數據和人工智慧,保險人還能根據分析結果,被保險人對干預的反應等進行客戶的進一步分類,從而實現區塊化管理。但這對保險公司也提出了更高的技術要求,尤其在前期,可能會帶來加大的成本。

五、保險公司推進被保險人行為干預的建議

對於保險公司來說,目前的一些人工智慧技術還未能實現,或者成本高昂,難以普及。所以現階段對保險公司來說首先是提高大數據能力。

具體來說,首先是利用大數據對公司已有客戶信息進行數據挖掘,包括承保數據,理賠數據等,從而一定程度挖掘出客戶的特徵,並提供服務。如根據挖掘出的性別差異,地區差異,年齡差異等,提供不同的生活建議。

如果公司已經充分進行了自身客戶已有數據的挖掘,則可以利用目前的手機APP,佩戴設備進行數據的進一步收集。例如,利用薄荷、飲食助手、微信運動、春雨掌上醫生、血糖記錄、小米手環等數據進行用戶數據收集。同時可以針對被保險人開發專門的手機APP,集數據收集和服務於一身。

更進一步,保險公司可以嘗試與其他高科技企業合作,開發一些智能穿戴式設備,智能家居等,逐步實現對被保險人的行為干預。

參考文獻

[1]彼得・迪亞曼迪斯.將會被人工智慧和大數據重塑的三個行業[J].中國青年,2015,23:41.

[2]王和,鞠松霖.基於大數據的保險商業模式[J].中國金融,2014,15:28-30.

[4]尹會岩.保險行業應用大數據的路徑分析[J].上海保險,2014,12:10-16.

下一頁分享更優秀的<<<大數據和人工智慧論文

⑹ 淺談計算機與大數據的相關論文

在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是我給大家推薦的計算機與大數據的相關論文,希望大家喜歡!

計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術

[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。

[關鍵詞]大數據時代;計算機;信息處理技術

在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經佔領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。

一、大數據時代信息及其傳播特點

自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的資料庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、列印能力等各項能力均有顯著提升,尤其是當前軟體技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。

大數據信息不但具有較大容量,同時相對於傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在 網路技術 發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網路傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬體所具有的限製作用。因為在當前計算機網路發展中還存在一定的不足,在完成雲計算機網路構建之後,才能夠在信息處理過程中,真正的實現收放自如[2]。

二、大數據時代的計算機信息處理技術

(一)數據收集和傳播技術

現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要採用信息處理技術實施相應的信息處理。計算機採用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之後首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之後,才能夠把這些信息完整的在計算機網路上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,藉助於計算機傳播特點將信息數據的閱讀價值有效的實現。

(二)信息存儲技術

在目前計算機網路中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關於不同信息的存儲需求滿足,但是也有一部分用戶對於計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。

(三)信息安全技術

大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個資料庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,並且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬體中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網路信息管理體系發展需求,同時也要加強關於安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對於大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬於重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關於計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種 方法 具有一定可行性。

(四)信息加工、傳輸技術

在實施計算機信息數據處理和傳輸過程中,首先需要完成數據採集,同時還要實時監控數據信息源,在資料庫中將採集來的各種信息數據進行存儲,所有數據信息的第一步均是完成採集。其次才能夠對這些採集來的信息進行加工處理,通常來說也就是各種分類及加工。最後把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。

結語:

在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬體中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是雲計算網路,把網路數據和計算機硬體數據兩者分開,也就有助於實現雲計算機網路的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。

參考文獻

[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光碟軟體與應用,2014,(05):105+107.

[2] 詹少強.基於“大數據”時代剖析計算機信息處理技術[J].網路安全技術與應用,2014,(08):49-50.

[3] 曹婷.在信息網路下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI

[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光碟軟體與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟體技術在大數據時代的應用

摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更准確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求採用一套全新的、對企業決策具有深遠影響的解決方案。

關鍵詞:計算機 大數據時代 容量 准確 價值 影響 方案

1 概述

自從計算機出現以後,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網路公司開始致力於數據存儲與資料庫的研究,為互聯網用戶提供各種服務。隨著雲時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。

大數據是IT行業在雲計算和物聯網之後的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對於企業的運營模式、組織結構以及 文化 塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網路資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代。可見,這是一個競爭與機遇並存的時代。

2 大數據時代的數據整合應用

自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都准備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取捨,以及如何解決數據資產化和價值挖掘問題。

企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平台與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。

2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取 措施 ,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對 企業運營 的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。

2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的遊客和商務信息的服務。藉此,動物園可以獲得新的收入來源和提高營收,並根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。

3 企業信息解決方案在大數據時代的應用

企業信息管理軟體廣泛應用於解決欺詐偵測、雇員流動、客戶獲取與維持、網路銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特徵,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:

3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標准為:包含足夠的重要信息,同時也要便於分析操作。該步驟涉及的處理工具為:數據導入、合並、粘貼、過濾以及統計抽樣方法。

3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對於數據的認識。該步驟涉及的工具為:統計 報告 、視圖探索、變數選擇以及變數聚類等方法。

3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變數的方式來修改數據集。該步驟涉及工具為:變數轉換、缺失處理、重新編碼以及數據分箱等。

3.4 Model 為了獲得可靠的預測結果,我們需要藉助於分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網路、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型演算法。

3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。

在完成SEMMA步驟後,可將從優選模型中獲取的評分公式應用於(可能不含目標變數的)新數據。將優選公式應用於新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據並以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。

如果您將優選模型注冊進入SAS元數據伺服器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入 工作報告 和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。

在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。

4 結束語

在近十年時間里,數據採集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,並且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。

參考文獻:

[1]薛志文.淺析計算機網路技術及其發展趨勢[J].信息與電腦,2009.

[2]張帆,朱國仲.計算機網路技術發展綜述[J].光碟技術,2007.

[3]孫雅珍.計算機網路技術及其應用[J].東北水利水電,1994.

[4]史萍.計算機網路技術的發展及展望[J].五邑大學學報,1999.

[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.

[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟體導刊.

[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).

[8]楊鳳霞.淺析 Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略

[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席捲全球,尤其是在進入新時期之後數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步並將其質量拔高就需要結合大數據,依託於大數據實現長足發展,本文基於此就大數據於CAT影響進行著手分析,之後探討依託於大數據良好推進CAT,以期為後續關於CAT方面研究提供理論上參考依據。

[關鍵詞]大數據 計算機審計 影響

前言:相較於網路時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合於大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。

一、初探大數據於CAT影響

1.1影響之機遇

大數據於CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較於以往僅僅關注數據因果有了較大進步。基於上述三大變化趨勢,也深刻的代表著大眾對於數據處理的態度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯後性,只有依託於大數據並發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。

1.2影響之挑戰

大數據於CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依託於其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息准確三方面,而在CAT實際工作環節中常常由於外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。

二、探析依託於大數據良好推進CAT措施

2.1數據質量的有效保障

依託於大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現並找出信息系統不可靠不準確地方;其二是把控電子數據採集,通常電子數據具備多樣化採集方式,如將審計單位相應資料庫直接連接採集庫進而實現數據採集,該種直接採集需要備份初始傳輸數據,避免數據採集之後相關人員隨意修改,更加可以與審計單位進行數據採集真實性 承諾書 簽訂等等,最終通過電子數據方面採集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。

2.2公共數據平台的建立

依託於大數據良好推進CAT措施還集中在公共數據平台的建立,建立公共化分析平台一方面能夠將所有採集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標准予以良好執行。如果將分析模型看作是CAT作業標准以及相應的核心技術,則公共分析平台則是標准執行和相應技術實現關鍵載體。依託於公共數據平台不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利於CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。

2.3審計人員的強化培訓

依託於大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作於計算機上的具 體操 作以及操作重點難點,可以構建統一培訓平台,在該培訓平台中予以多元化資料的分享,聘請高技能豐富 經驗 人士予以平台授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。

三、結論

綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依託於大數據促使審計人員得以素質提升,並利用公共數據平台建立和相應的數據質量保障促使CAT工作更加高效,而本文對依託於大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。

猜你喜歡:

1. 人工智慧與大數據論文

2. 大數據和人工智慧論文

3. 計算機大數據論文參考

4. 計算機有關大數據的應用論文

5. 有關大數據應用的論文

⑺ 大數據時代電力營銷管理創新研究論文

大數據時代電力營銷管理創新研究論文

摘要: 對電力企業來說,大數據營銷能基於海量數據的分析,為其制定營銷戰略提供依據,而如何在大數據基礎上進行電力營銷管理創新是亟待解決的大問題。本文首先闡述了目前基於大數據電力營銷管理的弊端;其次分析了基於大數據的電力營銷管理面臨的機遇和挑戰;最後提出了基於大數據的電力營銷管理創新,以促進電力企業穩定、長久發展。

關鍵詞: 大數據;電力營銷管理;創新

在當前的大數據環境下,電力系統既面臨新的發展機遇,也面臨著新的挑戰。對電力系統來說,大數據不僅是科技生產力進步的具體體現,也是新形勢下電力系統發展、管理及技術改革的重要依據,電力系統的大數據包括生產、運營和管理三方面。電力營銷是電力系統的重要部分,對提高企業的核心競爭力及確保企業的可持續發展具有十分重要的作用。然而由於各種因素的影響,電力營銷管理目前存在諸多弊端,在大數據時代,對電力營銷創新管理模式進行研究迫在眉睫,基於此,筆者對基於大數據的電力營銷管理創新進行研究。

1.基於大數據的電力營銷管理的弊端

在大數據背景下,國內電力企業營銷管理存在諸多弊端,具體表現在下述幾方面:

第一,電力營銷管理理念亟待改進。電力行業長久以來屬於國家的壟斷行業,而隨著各種新型能源的不斷出現,電能面臨著巨大的競爭,然而其營銷設計仍以業務導向為核心,很少考慮市場的競爭狀況和客戶的需求,沒有建立一種以客戶為核心的營銷管理機制;

第二,電力營銷業務功能亟待完善。電力系統的營銷政策、技術研究、運維及市場開拓等方面的機構不完善,不健全,部分功能缺失;

第三,電力營銷運營效率亟待提升。電能計量檢定、人員及相關設備重復配置;規劃、生產的部門對電力營銷管理支持力度較弱;故障搶修、業擴報裝等服務流程不協同。綜上所述,電力營銷管理亟待進行創新,以適應新形勢下客戶對供電服務的要求。

2.基於大數據的電力營銷管理面臨的機遇和挑戰

2.1機遇

在大數據快速發展的背景下,電力系統營銷管理面臨的機遇主要表現為:

第一,國內經濟穩定發展,電力需求仍持續增加;

第二,國家實施節能減排,電能應用范圍更加廣泛;

第三,國家電網創建「雙一流」,為加快營銷發展注入新動力。

2.2挑戰

在大數據快速發展的背景下,電力系統營銷管理也面臨諸多挑戰,具體表現為:

第一,國家經濟轉型期的'結構優化調整及節能減排戰略的實施,國家控制能源消費總量,大工業用電比重會呈現一定程度的下降。循環經濟、節能環保產業、分布式電源等會日益增加,對電力營銷市場的發展帶來威脅,影響電能的市場佔有率;

第二,國家大力開發低碳技術,清潔能源要求必須建立一種新型的供用電模式,而現有的供電模式要滿足這些應用需要法律、政策、技術等眾多方面的支持才能實現;

第三,國家電網推進「三集五大」要求電力系統必須要轉變營銷發展方式。目前電力系統的營銷仍然資源分散、管理層級多,亟待進行整合;營銷管理的專業化、組織結構扁平化、管理層級等方面亟待改進,集約化、智能化的服務手段亟待提升等,使得目前電力系統的營銷管理面臨巨大挑戰。

3.基於大數據的電力營銷管理創新研究

在大數據及信息化背景下,電力企業要提高核心競爭力,必須要順應時代潮流,及時對傳統的營銷管理體系進行重構,通過利用大數據分析研究結果進行電力營銷,具有極大的市場價值。

3.1通過大數據分析客戶的潛在需求行為

大數據最主要的特徵之一是海量的數據,電力企業要獲取比較精準的數據,必須進行大量數據的分析研究尋找客戶的潛在需求。所以對電力企業來說要重建營銷管理體系,提高核心競爭力必須要制定多種方案,通過大數據的分析結果尋找潛在的客戶需求,站在用戶的角度,分析用戶的電能消費行為和特點,通過這些分析及時改變自己的營銷管理模式,提升服務質量,提高客戶滿意度和忠誠度,最終提高電力企業的知名度。

3.2通過大數據分析精準定位消費客戶,進行個性化營銷

從大數據提供的海量信息中分析客戶的消費行為,找出電力系統最精準的用戶,以便電力企業的營銷能實現精準化,同時根據精準化消費群體的特徵建立針對性的營銷方式,從而能劃分出精準的消費客戶,進行個性化營銷。隨著經濟的發展和用戶需求的提升,電力企業也逐漸重視電力營銷的精準化,而大數據的出現不僅使精準化營銷變得更加高效,也極大地提升了服務和產品質量,使得消費者市場也發生一定程度的變化。消費者市場的劃分必須要經過大數據才能實現精準的分析,這種分析結果面臨的是個體消費者,而並非是群體,在這種情況下,電力系統的個性化營銷在不久的將來一定會成為電力系統的營銷主體。

3.3運用大數據分析,製品新產品,拓展新市場

對電力系統來說,傳統的以業務導向為核心的營銷管理已經難以滿足現代化的需求,通過大數據分析結果制定針對性的營銷策略是十分重要的,這對於電力企業開拓市場和業務起著決定性作用。如騰訊在開發游戲時,總是先通過大數據對游戲用戶行為進行精準的分析然後再推出產品,通過這種方法能使其在推出手游時更具有針對性和精準性。因此電力企業通過使用大數據分析客戶的消費行為,開拓新業務、新市場是未來發展的必然趨勢,根據大數據分析的結果為客戶制定更加個性化的需求,並進一步制定針對性的營銷渠道,拓寬產品領域。

3.4依靠互聯網技術,合作開展大數據營銷,開展多元化服務

隨著互聯網營銷的風靡,很多行業越來越重視網路營銷,他們通過使用大數據進行網路營銷。電力系統要想持續、穩定、可持續發展,必須要充分利用互聯網進行大數據營銷,除了要在電力系統領域建立相關的資料庫,利用資源優勢外,還要不斷拓展業務,通過業務延伸實現電力企業的多元化發展模式。多樣化服務的開展可從下述幾方面著手:客戶經理對客戶的用電狀況進行詳細的統計和分析,提出的建議中不僅要有生產班次的安排,還必須要為客戶的用電狀況提供針對性的無功補償。站在客戶角度為客戶節約電費著想,為客戶的用電負荷進行合理、科學的指導,這不僅能有效地節約電費,還能有效減少設備的能耗。電力企業還要在基於自身優勢的基礎上,不定期檢查用電設備的運營狀況,及時排查運行過程中存在的安全隱患,這對確保配電網的穩定運行具有重要作用。要對所在區域的電網進行改造時,要及時通知大客戶,並將規劃改造的詳細情況與大客戶進行溝通交流,以得到客戶的理解和支持,這對電力企業的穩定發展意義重大。

3.5與稅務部門合作減小電費回收風險

對電力企業來說,電費能否正常回收是確保其正常運作和提高經濟效益的關鍵環節,尤其是大客戶的電費回收,由於受到各種因素的影響,電費回收難一直是難以解決的難題。目前多數電力企業為了加強電費回收,通常採取如下措施:強化合同管理、建立信用評級制度、嚴格客戶資質審核、高壓用戶電費擔保模式等,在這些措施中,高壓用戶擔保模式具有較好的效果,然而也存在一定的不足之處。對電力企業來說,僅僅具有採集客戶的用電信息數據,對客戶的資金信息難以准確把握,高壓用戶擔保模式雖然讓電力企業通過銀行掌握相關的資金信息,然而很多企業的現金流並不通過銀行,因此獲得信息並不準確,在一定程度上影響電費回收風險的控制效果。為了有效解決這種弊端,可建立一種能將用電企業的資金流動信息整合到電力系統大資料庫的營銷管理中,而與稅務部門進行合作能達到此目的。具體實施措施如下:首先,與稅務部門協調,將電力系統大數據平台增加一個調取用電企業每月納稅信息的模塊;其次,根據用電企業的納稅和銀行信貸狀況,計算電費回收風險指數,評估風險;最後,根據評估結果建立預警機制,對於部分電費回收風險較大的企業可採取各種手段介入電費回收。

4結束語

綜上所述,大數據時代的來臨給傳統企業和互聯網企業的營銷管理帶來巨大的沖擊,越來越多的企業開始利用大數據進行營銷管理,電力企業也要與時俱進,持續改革,在大數據時代下重構營銷管理體系,以提高其核心競爭力和經濟效益。

參考文獻:

[1]宋寶香.資料庫營銷:大數據時代引發的企業市場營銷變革[J].價值工程,2014,31(30):132-134.

[2]孫柏抓.大數據技術及其在電力行業中的應用[J].電氣時化,2013.8:33-35.

[3]龐建軍.大數據背景下的電力營銷市場行業發展趨勢分析[J].科技視界,2014(32):295-296.

;
閱讀全文

與大數據經典論文相關的資料

熱點內容
js執行文件 瀏覽:343
微信公眾號注銷方法 瀏覽:743
app賣酒有哪些平台 瀏覽:731
java部分中文亂碼 瀏覽:228
iis添加dll文件 瀏覽:578
appleld的代碼是什麼形式 瀏覽:659
圖片轉word文件保存在哪 瀏覽:757
count是哪個編程語言 瀏覽:85
寫言情小說哪個網站好 瀏覽:365
iphone外接電視 瀏覽:423
哪些地方網路信號更好些 瀏覽:753
jar反編輯工具 瀏覽:614
描述數據波動大小有哪些 瀏覽:584
u盤exfat可復制4g以上的文件嗎 瀏覽:667
a4大小的文件過塑多少錢 瀏覽:26
暢天游2app在哪裡下載 瀏覽:844
微信看文字的圖片 瀏覽:298
將文件直接粘入word 瀏覽:134
VIP解析APP有哪些 瀏覽:463
怎樣徹底卸載cad文件 瀏覽:829

友情鏈接