Ⅰ 大數據和人工智慧技術在健康產業有哪些具體應用請舉例說明,謝謝!
大健康產業順應了中國經濟轉型升級、綠色發展的趨勢,全球醫療健康產業投融資金額最多集中在2021年,全年達到6846.03億元,投融資數量最多在2019年,達2044起。大數據和人工智慧技術賦能多個大健康產業領域,包括公共衛生大數據、疾病快速診斷、遠程醫療、識別診斷、葯物研發、康復治療等
在數字健康產業供應鏈,智慧眼一方面「深挖洞」,縱向深耕數字健康產業,形成自主可控、安全可靠的AI核心技術;另一方面是「廣積糧」,橫向擴展健康產業多元化市場應用場景,幫助政府、醫院、群眾乃至整個產業界激發數字化力量。
AI+社會保障
基於大數據+人臉識別技術的養老金待遇資格認證系統應用於全國社保二十餘個省份的省級平台,解決了養老金防冒領的世界難題,保障社保基金安全,穩定社會大局。
AI+醫療保障
基於大數據+生物識別技術的醫保智能場景監控系統已應用於全國近二十個省級醫保平台,實現了門診、住院、購葯、血透、健康理療等場景的智能監控,防範醫保欺詐騙保行為,確保醫保基金安全。
AI+血透管理
遵循醫院血液透析中心臨床業務流程,從患者管理、透析日程准備、患者治療排班、臨床輔助決策等不同環節對血液透析治療進行智能管理和監控。以患者為核心,從根本上改變診療信息的採集處理、分析查詢和傳輸方式,為醫護人員提供智能化工作方式,輔助醫生制定更加人性、優質的治療決策,提高科室工作質量和院內服務水平,提升患者滿意度,做到醫療行為溯源全記錄,保障醫療質量和醫療安全。
AI+慢病管理
依託智慧眼雲慢病管理系統,門診慢病患者可在就診醫生處便捷化生成健康管理檔案,通過機器學習和醫學知識圖譜資料庫,智能化形成疾病管理目標,幫助醫生快速掌握患者信息,指導開葯和開展疾病管理,形成以患者為中心的數字化病程管理體系,實現診前導診、疾病預判,診後用葯提醒等閉環服務,助力醫療健康行業的持續發展。
AI+健康鄉村
以健康鄉村綜合服務平台&智能終端為載體,將大醫院的優質資源通過平台與基層衛生室進行互聯,提高基層衛生室的首診能力和水平,幫助基層的醫生在診斷方面有更大的把握和信心,讓村民「足不出村」就能享受到便捷的健康服務,助力國家鄉村振興戰略落地。
Ⅱ 物聯網、大數據、人工智慧之間如何深度融合
物聯網、大數據及人工智慧都是近年來互聯網行業比較火熱的話題,三者之間具有非常緊密的聯系。想探討物聯網、大數據及人工智慧之間如何融合,首先需要了解其基本概念。
概念
1、物聯網
根據網路的解釋,物聯網(InternetofThings,IoT)是一個基於互聯網、傳統電信網等的信息承載體,它讓所有能夠被獨立定址的普通物理對象形成互聯互通的網路(萬物互聯)。物聯網網路架構設計由感知層、網路層及應用層組成,分別實現數據採集、數據傳輸及數據應用的功能。目前,物聯網已經廣氏余泛應用於智慧醫療、智慧環保、智慧城市、智能家居及物流等領域。
2、大數據
大數據指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據具有體量大(Volume)、及時性(Velocity)、多樣性(Variety)、低價值密度(Value)及真實性(Veracity)的「5V」特性。
3、人工智慧
人工智慧是研究、開發用於模擬、延伸和擴展人的智能的螞轎理論、方法、技術及應用系統的一門新的技術科學。目前,人工智慧正在改變各行各業的傳統模式,作為人工智慧分支的機器學習/深度學習已經廣泛用於自然語言處理(NLP)、計算機視覺(CV)、機器翻譯及推薦系統等領域。
深度融合
物聯網、大數據、人工智慧三者之間相輔相成,可以形成一個閉環通路。物聯網作為智能感知層,主要負責採集現場的數據並將數據上傳至分布式資料庫中;大數據作為數據存儲層,將經過ETL處理後的數據保存到分布式文件系統(HDFS)或數據倉庫(HIVE)中;人工智慧作為應用層,可利用sparkml或tensorflow實現相關的機器學習或深度學習演算法,對存儲在HDFS或HIVE中的數據進行數據挖掘。
應用案例
目前,物聯網、大數據、人工智慧已經廣泛用於智慧城市、智慧環保、智慧交通等領域。以智慧環保中的空氣預警為例,首先,物聯網殲物滾可以作為智慧感知層,安裝在客戶現場的空氣監測設備採集的空氣質量信息通過網路傳輸數據中心;而後,利用大數據ETL工具(spark、hive)進行數據清洗並存儲至分布式資料庫/文件系統/數據倉庫中;最後,利用人工智慧相關技術進行大數據分析(sparkml、tensorflow),預測未來若干天的空氣質量,並以此輔助進行科學決策及改善環境。
Ⅲ 人工智慧和大數據的前景和未來
人工智慧和大數據的前景和未來如下:
人工智慧產業鏈可分為基礎層、技術層和應用層。基礎層方面:包括AI晶元市場、大數據服務市場提高。以自主為中心的雲生態建設,制定標准實現大數據交流共享,大數據產業信息安全。
隨著人工智慧的日益成毀歲熟,它將會陸續普及到其他領含余晌域,繼續深入發展,從未來發展趨勢看,人工智慧的發展前景是十分廣闊的。目前,我國互聯網正處於從消費互聯網轉向工業互聯網的發展進程之中,通過綜合應用物聯網、
大數據和人工智慧等新一代技術手段來賦能傳統產業後,中國工業將會展現出一個全新的產業互聯網。而由於人工智慧的大量運用,必然會在產業升級過程中釋放出大量的就業崗位,與此同時,也將淘汰許多落後產能,使用現代化人工智慧生產線後,將可以節省大量勞動力。
Ⅳ 人工智慧技術有哪些應用
人工智慧技術的應用如下:
隨著數字化時代的到來,人工智慧被廣泛應用。特別是在家居、製造、金融、醫療、安防、交通、零售、教育和物流等多領域。
1、智能製造
隨著工業製造4.0時代的推進,傳統的製造業在人工智慧的推動下迅速爆發。人工智慧在製造的應用領域主要分為三個方面:
(1)智能裝備:主要包括自動識別設備、人機交互系統、工業機器人和數控機床等。
(2)智能工廠:包括智能設計、智能生產、智能管理及集成優化等。
(3)智能服務:個性化定製、遠程運維及預測性維護等。
2、智能家居
智能家居主要是引用物聯網技術,通過智能硬體、軟體、雲計算平台等構成一套完整的家居生態系統。這些家居產斗神品都有一個智能AI你可以設置口令指揮產品自主運行,同時AI還空碼虧可以搜索你模漏的使用數據,最後達到不需要指揮的效果。
3、智慧金融
人工智慧在金融方面可以進行自動獲客、身份識別、大數據風控、智能投顧、智能客服和金融雲等。
4、智能醫療
智能醫療主要是通過大數據、5G、雲計算、大數據、AR/VRh和人工智慧等技術與醫療行業進行深度融合等。智能醫療主要是起到輔助診斷、醫療影像及疾病檢測、葯物開發等作用。
Ⅳ 什麼叫人工智慧、大數據
人工智慧(Artificial Intelligence,簡稱AI)是指通過計算態唯機技術實現的智能化系統,能夠模擬人類的思維和行為,帆橡培具有自主學習、推理、判斷、決策等能力。