導航:首頁 > 網路數據 > docomo大數據

docomo大數據

發布時間:2023-09-10 08:51:35

1. 大數據時代是什麼意思的

大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,而這個海量數據的時代則被稱為大數據時代。

隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。

大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

(1)docomo大數據擴展閱讀:

大數據時代的影響:

1、不是隨機樣本,而是全體數據:

在大數據時代,人們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前人們通常把這看成是理所應當的限制,但高性能的數字技術讓人們意識到,這其實是一種人為限制)。

2、不是精確性,而是混雜性:

研究數據如此之多,以至於人們不再熱衷於追求精確度;之前需要分析的數據很少,所以人們必須盡可能精確地量化人們的記錄,隨著規模的擴大,對精確度的痴迷將減弱。

擁有了大數據,人們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓人們在宏觀層面擁有更好的洞察力;

3、不是因果關系,而是相關關系:

人們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,人們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴人們某件事情為何會發生,但是它會提醒人們這件事情正在發生。

參考資料來源:網路-大數據時代

2. 目前大數據在哪些行業有案例或者說應用

大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。

大數據應用案例之:醫療行業

SetonHealthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

大數據應用案例之:能源行業

智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些大稿數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。

大數據應用案例之:通信行業

XOCommunications通過使用IBMSPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。

電信業者透過數以千萬計的禪者客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。

中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。

NTTdocomo把手機位置信息和互聯網上的信息結合起來,為顧滾襲孝客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。

大數據應用案例之:零售業

"我們的某個客戶,是一家領先的專業時裝零售商,通過當地的百貨商店、網路及其郵購目錄業務為客戶提供服務。公司希望向客戶提供差異化服務,如何定位公司的差異化,他們通過從Twitter和Facebook上收集社交信息,更深入的理解化妝品的營銷模式,隨後他們認識到必須保留兩類有價值的客戶:高消費者和高影響者。希望通過接受免費化妝服務,讓用戶進行口碑宣傳,這是交易數據與交互數據的完美結合,為業務挑戰提供了解決方案。"Informatica的技術幫助這家零售商用社交平台上的數據充實了客戶主數據,使他的業務服務更具有目標性。

零售企業也監控客戶的店內走動情況以及與商品的互動。它們將這些數據與交易記錄相結合來展開分析,從而在銷售哪些商品、如何擺放貨品以及何時調整售價上給出意見,此類方法已經幫助某領先零售企業減少了17%的存貨,同時在保持市場份額的前提下,增加了高利潤率自有品牌商品的比例。

3. 大數據是什麼

作者:李麗
鏈接:https://www.hu.com/question/23896161/answer/28624675
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。
亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。
研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二、大數據分析
從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
三、大數據技術
1、數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
2、數據存取:關系資料庫、NOSQL、SQL等。
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or
association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text,
Web ,圖形圖像,視頻,音頻等)
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
四、大數據特點
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
1、
數據體量巨大。從TB級別,躍升到PB級別。
2、
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
3、
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4、
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。
五、大數據處理
大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理
六、大數據應用與案例分析
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
[1] Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
[2] 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
[3] 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
[1] 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

[2] 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
[1] XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
[2] 電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
[3] 中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
[4] NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。

4. 坐擁大數據「金礦」卻難挖掘

坐擁大數據「金礦」卻難挖掘
大數據將成運營商「去管道化」利器,近期圍繞這一話題,國內運營商人士討論熱烈。由受OTT的沖擊,到「去電信化」等思索,再到大數據這一運營商手中天然的金礦成為理論中的突破口,這一邏輯順理成章。
大數據並非運營商獨家的概念,它已成為整個互聯網行業共同關注的領域。那麼運營商手中的金礦,含金量究竟幾分,金礦如何挖?敢不敢挖?能否比其他人挖得更好?這是全球運營商共有的話題。
日本
隱私問題讓NTT Docomo頭疼
陶旭駿告訴記者,日本最大的移動通信運營商NTT Docomo 2010年以前就開始著手大數據運用的規劃。Docomo不但著重搜集用戶本身的年齡、性別、住址等信息,而且製作精細化的表格,要求用戶辦理業務填寫更詳細信息。
「我曾見過這樣的表格,包括用戶家裡有幾口人,每個人的教育水平,通信需求等都會有所涉及。而且他們的優勢是可以掌握全國用戶的數據,而不像我們的運營商劃省而治,各地數據收集、整合方式不一。Docomo的CRM系統和知識庫為此大大加強,業務辦理中很少出現愚蠢的狀況,比如一個用戶此前剛投訴過還向其推銷同類產品等。」
盡管信息完整度高,但因為日本社會十分注重個人隱私,Docomo多年來在大數據運營上仍停留在規劃階段,對如何越過隱私問題進行商用還是比較頭疼。陶旭駿表示,Docomo曾為未來的大數據商業化制定了三個階段:首先是建立資料庫,其次是建立活用機制,最後是實現活用,而當前只處於第一階段。
歐洲
運營商謹慎開放地理位置信息服務
方紅剛表示,在德國,身為主流運營商的德國電信和Vodafone在利用大數據為自身業務服務之餘,已向商業模式跨出了一步。主要嘗試是通過開放API,向數據挖掘公司等合作方提供部分用戶匿名地理位置數據,以掌握人群出行規律,有效地與一些LBS應用服務對接。而西班牙電信的商業模式與之比較相像,去年推出的「智慧足跡」大數據服務同樣是通過人流移動網路數據,為零售客戶開店選址和促銷提供借鑒。
「歐洲運營商對大數據API開放同樣持比較謹慎的態度,有時帶有戰略意圖。比如數據開放同時伴隨著收費,對於和自己合作緊密的初創型企業,就以更寬松政策予以扶持,而對於有競爭關系的OTT企業等,則要求更高。總而言之,運營商不太可能將未經加密的用戶數據直接提供給第三方。」方紅剛稱。
美國
Verizon激進,向特定商家「兜售」數據
步子最為激進的則數美國運營商Verizon,其一項舉措則讓譚炎明等業內人士感到錯愕:Verizon已開始通過一項名為Precision MarketInsights的服務,將手中的用戶數據直接向第三方出售。譚炎明對此業務進行過詳細了解,Verizon的該項服務主要針對商場、球場等特定的公開場所,搜集手機用戶的背景信息,為第三方所用。
在美國,棒球和籃球比賽是觀眾雲集,商家最為看中的營銷場合,此前在超級碗和NBA的比賽中,Verizon針對觀眾的來源地進行了精確數據分析,球隊得以了解觀眾對贊助商的喜好等。體育比賽中,觀眾隨機買票,沒有什麼環節可以將身份信息進行錄入,通過任何其他方式搜集數據成本都會更高,運營商的大數據在這項服務中無可替代。
「金礦」體量最大 挖掘出來有難度
與《IT時報》記者交流中,專家們一致認為運營商對大數據資源掌握的完整性遠超任何一家互聯網公司。「用戶的屬性、整個通信消費數據、GPS行走軌跡、登錄網站的偏好、頻率等運營商手中都有數據,這么完整、詳盡的精準用戶行為數據單一網站無法掌握。」方紅剛總結,正因為運營商的「管道」特性,管道中的任何一個細節都逃不過運營商的眼睛。從這個層面來說,運營商手中大數據的金礦體量是最大的,如從事大數據業務是具有天然優勢的。
正因為運營商手中的數據量太大,其整合為有價值信息的成本也較高。如何將「金礦」開采成不同屬性的輕產品,是全球運營商面臨的課題。
「之所以當前大數據應用多停留在零售層面,而非更復雜的功能,一方面是因為運營商手中數據到底該怎麼用,還是取決於合作方最切實可行的需求。其次,復雜需求從技術上或尚難做到,或成本太高。」談到技術局限,方紅剛表示自己就曾親自對一些大數據項目展開調研,發現提取有效數據的時間精力很高。
「互聯網上的數據收集相對簡單,例如用戶在網路搜索某個關鍵詞,網路後台一目瞭然。但通信網中的數據有物理層、邏輯層、應用層等層級化的特徵,每層都是映射方式,所以問題就產生了,數據都存在於邏輯層以下,需要把它們從邏輯層解構到應用層,數據分析成為了協議分析。」方紅剛表示,他曾在電腦上僅僅針對某一小塊特定區域一小時內的通信數據進行採集,結果就跑了兩個多小時。
「如今是一個信息泛濫的時代,在成本非常高,而且數據來源往往分散在各個部門的情況下,運營商內部需要做大量的工作才能進行有效的精華數據深度挖掘,所以如果沒有來自合作方的非常明確需求,且該需求能帶來相匹配的商業價值,業務發展就可能陷於停滯。」方紅剛解釋。為避免內部結構問題阻礙大數據業務的發展,西班牙電信與Verizon都已於去年專門成立了大數據部門,脫離於傳統體制而單獨發展業務,這也是這兩家的大數據業務發展相對更快的原因之一。
顧洪文直言,基於上述因素,盡管國外運營商有一些突破性的應用案例,但純屬個別,且初始階段的痕跡明顯:「嚴格來說,全球運營商在大數據商業化挖掘方面都停留在一個淺層次的階段。該概念當前過熱,實際運營良好與否取決於數據持有方的運營能力。」

5. 外行人的大數據五問 帶你了解大數據

外行人的大數據五問 帶你了解大數據
大數據是什麼?是一種運營模式,是一種能力,還是一種技術,或是一種數據集合的統稱?今天我們所說的「大數據」和過去傳統意義上的「數據」的區別又在哪裡?大數據有什麼特點?來源有哪些?又應用於哪些方面等等。接下來小編帶您一起了解大數據。
>>>>>大數據概念
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
網路知道—大數據概念
大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity。
互聯網周刊—大數據概念
"大數據"的概念遠不止大量的數據(TB)和處理大量數據的技術,或者所謂的"4個V"之類的簡單概念,而是涵蓋了人們在大規模數據的基礎上可以做的事情,而這些事情在小規模數據的基礎上是無法實現的。換句話說,大數據讓我們以一種前所未有的方式,通過對海量數據進行分析,獲得有巨大價值的產品和服務,或深刻的洞見,最終形成變革之力
研究機構Gartner—大數據概念
"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。 亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。 研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
>>>>>大數據分析
眾所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
>>>>>大數據技術
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
>>>>>大數據特點
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。
當下我國大數據研發建設應在以下四個方面著力
一是建立一套運行機制。大數據建設是一項有序的、動態的、可持續發展的系統工程,必須建立良好的運行機制,以促進建設過程中各個環節的正規有序,實現統合,搞好頂層設計。
二是規范一套建設標准。沒有標准就沒有系統。應建立面向不同主題、覆蓋各個領域、不斷動態更新的大數據建設標准,為實現各級各類信息系統的網路互連、信息互通、資源共享奠定基礎。
三是搭建一個共享平台。數據只有不斷流動和充分共享,才有生命力。應在各專用資料庫建設的基礎上,通過數據集成,實現各級各類指揮信息系統的數據交換和數據共享。
四是培養一支專業隊伍。大數據建設的每個環節都需要依靠專業人員完成,因此,必須培養和造就一支懂指揮、懂技術、懂管理的大數據建設專業隊伍。
>>>>>大數據作用
大數據時代到來,認同這一判斷的人越來越多。那麼大數據意味著什麼,他到底會改變什麼?僅僅從技術角度回答,已不足以解惑。大數據只是賓語,離開了人這個主語,它再大也沒有意義。我們需要把大數據放在人的背景中加以透視,理解它作為時代變革力量的所以然。
變革價值的力量
未來十年,決定中國是不是有大智慧的核心意義標准(那個"思想者"),就是國民幸福。一體現在民生上,通過大數據讓有意義的事變得澄明,看我們在人與人關繫上,做得是否比以前更有意義;二體現在生態上,通過大數據讓有意義的事變得澄明,看我們在天與人關繫上,做得是否比以前更有意義。總之,讓我們從前10年的意義混沌時代,進入未來10年意義澄明時代。
變革經濟的力量
生產者是有價值的,消費者是價值的意義所在。有意義的才有價值,消費者不認同的,就賣不出去,就實現不了價值;只有消費者認同的,才賣得出去,才實現得了價值。大數據幫助我們從消費者這個源頭識別意義,從而幫助生產者實現價值。這就是啟動內需的原理。
變革組織的力量
隨著具有語義網特徵的數據基礎設施和數據資源發展起來,組織的變革就越來越顯得不可避免。大數據將推動網路結構產生無組織的組織力量。最先反映這種結構特點的,是各種各樣去中心化的WEB2.0應用,如RSS、維基、博客等。
大數據之所以成為時代變革力量,在於它通過追隨意義而獲得智慧。
>>>>>大數據處理
大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。
大數據處理的流程
具體的大數據處理方法確實有很多,但是根據筆者長時間的實踐,總結了一個普遍適用的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,最後是數據挖掘。
大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
>>>>>大數據應用與案例分析
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是我整理的關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
[1] Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
[2] 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
[3] 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
[1] 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
[2] 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
[1] XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
[2] 電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
[3] 中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
[4] NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。
大數據應用案例之:零售業
[1] "我們的某個客戶,是一家領先的專業時裝零售商,通過當地的百貨商店、網路及其郵購目錄業務為客戶提供服務。公司希望向客戶提供差異化服務,如何定位公司的差異化,他們通過從 Twitter 和 Facebook 上收集社交信息,更深入的理解化妝品的營銷模式,隨後他們認識到必須保留兩類有價值的客戶:高消費者和高影響者。希望通過接受免費化妝服務,讓用戶進行口碑宣傳,這是交易數據與交互數據的完美結合,為業務挑戰提供了解決方案。"Informatica的技術幫助這家零售商用社交平台上的數據充實了客戶主數據,使他的業務服務更具有目標性。
[2] 零售企業也監控客戶的店內走動情況以及與商品的互動。它們將這些數據與交易記錄相結合來展開分析,從而在銷售哪些商品、如何擺放貨品以及何時調整售價上給出意見,此類方法已經幫助某領先零售企業減少了17%的存貨,同時在保持市場份額的前提下,增加了高利潤率自有品牌商品的比例

6. 看看全球十大電信巨頭的大數據玩法

看看全球十大電信巨頭的大數據玩法

大數據時代,掌握海量數據無疑使自己在這競爭激烈的時代佔得先機,對於電信運營商來說,更是如此。通過深度挖掘這些數據,他們正試圖打造全新的商業生態圈,實現新的業績增長點,當然也實現從電信網路運營商到信息運營商的轉變。中雲網的這篇文章將從全球十大電信運營商的角度分析它們是如何利用大數據的,從中或許可以給你一點啟示。

對於電信運營商而言,沒有哪一個時代能比肩4G時代,輕松掌握如此海量的客戶數據。4G時代,手機購物、視頻通話、移動音樂下載、手機游戲、手機IM、移動搜索、移動支付等移動數據業務層出不窮。它們在為用戶創造了前所未有的新體驗同時,也為電信運營商挖掘用戶數據價值提供了大數據的視角。數據挖掘、數據共享、數據分析已經成為全球電信運營商轉變商業模式,贏取深度商業洞察力的基本共識。

目前,全球120家運營商中,已經有48%的企業正在實施大數據戰略。通過提高數據分析能力,他們正試圖打造著全新的商業生態圈,實現從電信網路運營商(Telecom)到信息運營商(Infocom)的華麗轉身。從曾經的「管道」到大數據戰略融合,電信運營商到底該如何善用大數據?全球10強電信「大佬們」的大數據應用之道及其培育的新經濟增長點啟示頗多。

1. AT&T:位置數據貨幣化

AT&T是美國最大的本地和長途電話公司,創建於1877年。2009年,AT&T利用全球領先的數據分析平台、應用和服務供應商Teradata天睿公司的大數據解決方案,開始了向信息運營商的轉變。

在培育新型業績增長點的過程中,AT&T決定和星巴克開展合作,利用大數據技術收集、分析用戶的位置信息,通過客戶在星巴克門店附近通話或者其他通信行為,預判消費者的購物行為。為此,AT&T挑選高忠誠度客戶,讓其了解AT&T與星巴克之間的這項業務,並簽署協議,將客戶隱私的管理權交給客戶自己。在獲得允許情況下,AT&T將這些信息服務以一定金額交付給星巴克。星巴克通過對這些數據的挖掘,可以預估消費者登門消費的大概時間段,並且預測個人用戶行為,並做出個性化的推薦。此外,在iPhone上市伊始,為了解iPhone的市場反響,AT&T還選擇與Facebook結成戰略聯盟,通過對Facebook的非結構化數據進行分析,發現用戶對價格、移動功能、服務感知等產品指標的體驗情況,從而推出更加准確的電信捆綁服務。

2. NTT:創新醫療行業的社會化整合

NTT是日本最大電信服務提供商,創立於1976年。它旗下的NTTDOCOMO是日本最大的移動通訊運營商,也是全球最大的移動通訊運營商之一,擁有超過6千萬的簽約用戶。

自2010年,NTTDOCOMO利用大數據解決方案,實現了醫療資源的社會化創新,培育了醫療信息服務增長點。面對日本社會的老齡化趨勢,NTTDOCOMO想到了通過搭建信息服務平台,滿足用戶的個性化醫療需求。因此,NTTDOCOMO和Teradata天睿公司進行充分合作,利用其大數據解決方案,建立自己的資料庫。通過開設MedicalBrain和MD+平台,聚合大量的醫療專業信息,網聚了大批醫療行業專業人士。這使用戶和各種專業醫療和保健服務提供商共同擁有了符合標準的、安全可靠的生命參數採集和分發平台。在這個平台上,NTTDOCOMO能夠根據用戶的以往行為洞察其個性化需求,再將這些需求反饋至對應的醫療人員,幫助用戶獲得高價值的信息反饋。

3. Verizon:數據倉庫促進精準營銷

Verizon是美國最大的本地電話公司、最大的無線通信公司之一,也是全世界最大的印刷黃頁和在線黃頁信息提供商。它在美國、歐洲、亞洲、太平洋等全球45個國家經營電信及無線業務。

隨著年輕一代用戶成為電信消費主力人群,通過多媒體、社交媒體等渠道了解他們的消費行為成為Verizon的營銷重點。因此,Verizon成立精準營銷部門(PrecisionMarketingDivision),利用Teradata天睿公司的企業級數據倉庫,對用戶產生的結構化、非結構化數據進行挖掘、探索和分析。在大數據解決方案的幫助下,Verizon實現了對消費者的精準營銷洞察,並且向他們提供商業數據分析服務,同時在獲得允許情況下,將用戶數據直接向第三方交易。此外,這些對用戶購買行為的洞察也為Verizon的廣告投放提供支撐,實現精準營銷。憑借著獲取的消費者行為的洞察力,Verizon還決定進軍移動電子商務,形成自己全新的業績增長點。

4. 德國電信:智能網路培育新增長點

德國電信是歐洲最大的電信運營商,全球第五大電信運營商。旗下T-Systems是全球領先的ICT解決方案和服務供應商。

正是T-Systems將德國電信帶上了大數據的發展快車道。基於擁有全球12萬平方米數據中心的優勢,T-Systems提出了「智能網路」的概念。通過實時獲得汽車、醫療以及能源企業的數據,T-Systems先後開發了車載互聯網導航系統、交通意外自動呼叫系統以及聲控電郵系統,以及能源網開發解決方案,實現電量的供需平衡。此外,它還通過設計安全的傳輸方式和便捷的解決方案,將醫生和患者對接,提供整合的醫療解決方案。

5. Telefónica:大數據支撐用戶體驗優化

Telefónica創立於1924年,是西班牙的一家大型跨國電信公司,主要在西班牙本國和拉丁美洲運營,它也是全球最大的固定線路和移動電信公司之一。

Telefónica一直將用戶體驗視為企業發展重點。Telefónica啟動一個針對移動寬頻網路的端到端用戶體驗管理項目,並建立了一個包含60多個用戶體驗指標的系統,支持無線網路控制器(RNC)、域名系統(DNS)、在線計費系統(OCS)、GPRS業務支撐節點(SGSN)、探針等各種網路節點的信息採集。所有採集來的信息經過整合後存儲到資料庫中,為後續的用戶體驗測量提供數據支撐。

6. Vodafone:動態數據倉庫支持商業決策

沃達豐是跨國性的行動電話運營商,現為全球最大的流動通訊網路公司之一。

Vodafone在大數據應用方面取得了豐碩成果。早在2009年,旗下SmarTone-Vodafone就委託Teradata天睿公司為其完成動態數據倉庫的部署,使企業所有管理人員可以根據信息輕松制定最佳決策。它主要通過開放API,向數據挖掘公司等合作方提供部分用戶匿名地理位置數據,以掌握人群出行規律,有效地與一些LBS應用服務對接。這些大數據解決方案極大提高了SmarTone-Vodafone的市場領導力。

7. 中國移動:客戶投訴智能識別系統降低投訴率

中國移動通信集團公司是中國規模最大的移動通信運營商,也是全球用戶規模最大的移動運營商。

在中國移動近實現客戶數量迅猛增長的同時,相應也帶來了客戶投訴量的增長。

為了辨別客戶投訴的真實原因、發現問題、改進產品、提升服務體驗,中國移動和Teradata天睿公司進行了密切合作。Teradata為其配置了基於CCR模型的客戶投訴智能識別系統,以投訴內容為源頭,通過智能文本分析,實現了從發現問題到分析問題,再到解決問題以及跟蹤評估的閉環管理。經過一段時間使用,僅中國移動某省級公司,就實現全網投訴內容的智能識別:769個投訴原因被識別,配合業務部門提出37個產品優化建議,協助優化11個產品;優化不滿意點58個,消除368,295客戶的潛在不滿隱患,每年節約成本達540萬。

8. 法國電信:數據分析改善服務水平

法國電信是法國最大的企業,也是全球第四大電信運營商,擁有全球最大的3G網路Orange。

為了優化用戶體驗,法國電信旗下企業Orange採用Teradata天睿公司大數據解決方案,開展了針對用戶消費數據的分析評估。Orange通過分析掉話率數據,找出了超負荷運轉的網路並及時進行擴容,從而有效完善了網路布局,給客戶提供了更好的服務體驗,獲得了更多的客戶以及業務增長。同時,Orange承建了一個法國高速公路數據監測項目。面對每天產生500萬條記錄,Orange深入挖掘和分析,為行駛於高速公路上的車輛提供准確及時的信息,有效提高道路通暢率。

9. 義大利電信:數據驅動的個性化業務

義大利電信是歐洲最大的移動運營商之一,同時也是基於單一網路提供GSM系列服務的領先歐洲運營商。

面對固網業務的下滑,義大利電信構建了面向全業務運營的客戶數據倉庫,以適應市場、銷售、客戶服務等領域的業務規則和需要。通過對客戶數據的洞察,有效地預測收入狀況與客戶行為的關聯性,推出了諸多個性化產品滿足客戶需求。義大利電信推出的NapsterMobile音樂業務就提供包括手機鈴聲、藝術家肖像牆紙以及接入NapsterMobile歌曲目錄等個性化服務,直接拉動了企業業績。

10. KDDI:數據管理服務是核心

KDDI是日本知名的電信運營商,在世界多個國家設有子公司。

通過大數據資產,提供數據管理服務是KDDI的核心業務之一。KDDI利用自身優勢,以數據中心為核心,向企業提供包括雲計算服務在內的信息通訊綜合服務。KDDI於2000年開始在中國開展為日系及當地企業提供數據管理服務,業務發展迅猛。2012年,KDDI在北京經濟技術開發區建設了當地最大規模數據中心,佔地2.5萬平米,試圖實現2015年海外營業額為2010年2倍的目標。

以4G為代表的移動互聯網時代,令信息、互聯網行為數據、話單數據、WAP日誌/WEB日誌、互聯網網頁、投訴文本、簡訊文本等結構化數據以及非結構數據呈現幾何式增長。面對新型海量數據,傳統電信運營商正面臨越來越大的挑戰:

客戶與內容服務提供商聯系更加緊密,但對電信企業的忠誠度反而下降;企業無法通過流量內容服務提供商業價值,盈利能力持續下降;「管道化」嚴重弱化對承載信息的掌控,喪失創新產品、業務發展的基礎。

電信運營商需要憑借數據分析來競爭,實現數據價值貨幣化。同時,利用大數據實現企業從電信網路運營商到信息運營商的轉型。通過對數據的分析,了解客戶流量業務的消費習慣,識別客戶消費的地理位置,洞察客戶接觸不同信息的渠道等等,電信運營商將獲得深度商業洞察力,打造基於大數據的租售數據模式、租售信息模式、數字媒體模式、數據使能模式、數據空間運營模式、大數據技術提供商等全新商業模式。

以上是小編為大家分享的關於看看全球十大電信巨頭的大數據玩法的相關內容,更多信息可以關注環球青藤分享更多干貨

7. 大數據是什麼概念

世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從政府到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。

所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?

七:最後北京開運聯合給您總結一下

不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。

1、從大數據的價值鏈條來分析,存在三種模式:

1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。

2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。

3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。

2、未來在大數據領域最具有價值的是兩種事物:

1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;

2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。

大 數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不
斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於
數據的應用需求和應用水平進入新的階段。

8. 4G網路的含義是什麼

閱讀全文

與docomo大數據相關的資料

熱點內容
qq空間說說點不進去 瀏覽:772
nodejscms系統 瀏覽:822
追星數據組是什麼東西 瀏覽:3
文件的格式怎麼建立 瀏覽:529
免費yoosee蘋果下載 瀏覽:447
網路大國與大數據 瀏覽:770
怎麼學plc的編程 瀏覽:643
javadnf輔助源碼 瀏覽:973
什麼app可以畫二維圖像 瀏覽:125
手機如何設置副路由器設置密碼 瀏覽:592
如何讓已經壓縮的文件恢復 瀏覽:344
網路atm取款支出是什麼意思 瀏覽:942
ios查看wifi密碼插件 瀏覽:742
win10因藍屏 瀏覽:322
app病毒是如何植入的 瀏覽:384
hadoop文件系統查看 瀏覽:317
熱門app免流都有哪些 瀏覽:619
cad怎麼轉換mpgis文件 瀏覽:631
win10照片不能用了 瀏覽:878
iphone5s導出圖片 瀏覽:984

友情鏈接