① 大數據分析的具體內容有哪些
隨著互聯網的不斷發展,大數據技術在各個領域都有不同程度的應用
1、採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
2、導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3、統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4、挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
② 大數據工程師日常工作內容有哪些
當前隨著雲計算、大數據平台逐漸開始落地應用,大數據開發工程師(行業領域)的崗位需求正在不斷增加,目前也有不少程序員(Java方向)也會轉向大數據開發崗位,這些崗位的崗位附加值還是比較高的。這些開發崗位的日常工作基本上就是完成代碼的編寫,只不過需要與大數據平台進行交互,需要調用大數據平台的各種服務來完成功能實現,總體上的難度並不算大,但是需要具有一定的行業經驗。
當前大數據平台開發崗位的附加值還是比較高的,大數據平台開發崗位往往集中在大型互聯網企業,隨著雲計算逐漸從IaaS向PaaS過渡,大數據平台開發也會基於行業特點來開發針對性比較強的PaaS平台,這是整合行業資源並搭建技術生態的一個關鍵。搭建PaaS平台不僅需要掌握大數據知識,同時還需要掌握雲計算知識,實際上大數據和雲計算本身就有比較緊密的聯系,二者在技術體系結構上都是以分布式存儲和分布式計算為基礎,只不過關注點不同而已。
大數據運維工程師以搭建大數據平台為主,雖然這部分崗位的門檻相對比較低,但是需要學習的內容還是比較多的,而且內容也比較雜,網路知識、資料庫管理知識、操作系統(Linux)知識、大數據平台(含開源和商用平台)知識都需要掌握一些,對於實踐操作的要求會比較高。
最後,當前大數據工程師往往並不包含專業的數據分析崗位,一般數據分析崗位都會單獨列出來,這部分崗位涉及到演算法崗、開發崗(實現)和數據呈現崗等,數據分析崗位對於從業者的數學基礎要求比較高,同時還需要掌握大量的數據分析工具,當然也離不開Python、Sql等知識。
關於大數據工程師日常工作內容有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
③ 什麼是大數據測試
測試大數據應用程序更多的是驗證其數據處理,而不是測試軟體產品的個別功能版。當涉及到大權數據測試時,性能和功能測試是關鍵。在大數據測試中,QA工程師使用集群和其他組件來驗證對TB級數據的成功處理。因為處理非常快,所以它需要高水平的測試技能。
大數據應用程序的測試更多的是去驗證其數據處理而不是驗證其單一的功能特色。當然在大數據測試時,功能測試和性能測試是同樣很關鍵的。對於大數據測試工程師而言,如何高效正確的驗證經過大數據工具/框架成功處理過的至少百萬兆位元組的數據將會是一個巨大的挑戰。因為大數據高效的處理測試速度,它要求測軟體工程師具備高水平的測試技術才能應對大數據測試。