導航:首頁 > 網路數據 > 大數據時代思維方式變革的哲學意蘊

大數據時代思維方式變革的哲學意蘊

發布時間:2023-09-08 04:28:07

㈠ 得數據者得天下——淺談大數據思維

「三分技術,七分數據」,今後得數據者得天下。

維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。

書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。

什麼是大數據思維?維克托·邁爾-舍恩伯格認為:

需要全部數據樣本而不是抽樣;

關注效率而不是精確度;

關注相關性而不是因果關系。

阿里巴巴的王堅對於大數據也有一些獨特的見解,比如:

「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」

「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」

「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」

特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。

有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。

大數據在投資者眼裡是金光閃閃的兩個字:資產。比如,Facebook上市時,評估機構評定的有效資產中大部分都是其社交網站上的數據。

如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

㈡ 哲學如何認識大數據時代

哲學如何認識大數據時代

最近幾年,數據問題進入哲學視野。對於哲學家們探索的數據本質特徵,我們可以從以下幾個方面來把握。

數據與大數據

技術進步,主要是計算機、網路和各種類型的感測器以及雲技術、分布式計算與存儲等海量存儲技術的廣泛應用和運算能力極速進步,使得數據概念被大數據概念取代。數據量增加速度之快,大致可以這樣描述:最近兩年生成的數據量,相當於此前一切時代人類所生產的數據量的總和。

大數據指的是所涉及的數據量規模巨大到無法通過人工,在合理時間內達到截取、管理、處理、並整理成為人類所能解讀的信息。大數據的特徵,除了巨大、快速、多樣多變之外,沒有其他。因此,大數據本質上還是數據。

在大數據的上述特徵中,其多樣多變性值得特別關注。它表現為所生成數據格式的多樣,如文字、圖片、視頻等各有多種不同的格式,取決於生成數據的技術與設備,卻反映出數據生產的時代性以及數據處理的能力與條件,也反映出被描摹自然和社會的多姿多彩。另外,隨著技術發展和數據量急劇增長,新的數據格式還會層出不窮,多變和多樣特徵更加突出。

大數據既是一個技術概念,又是一個商業概念,它的出現,有其特定背景,即IT領域的商業和渲染新技術的考量。大數據包攬了人類獲取數據的所有途徑,提示哲學研究一個全新時代的到來,這個時代的先聲,很久遠之前就已經響起,那時,它僅僅被稱作數據。在我們的討論中,主要考慮數據與哲學的關聯。

數據與認識

這里的認識,指的是人的認識,是人對外部世界的認識。

大數據的出現和引起關注,使得一個事實得到確認,這就是,數據覆蓋了人類對於外部世界的感知。感官及其所獲得的經驗退居到顯示屏之後,退居到各種類型的技術裝置之後,這些裝置將自然和外部世界的映像「轉譯」成人類感官可以接受的圖像、聲音甚至觸覺和嗅覺味覺。這既是技術發展的必然,又是始料未及的情況。如果說,此前,哲學還試圖在技術系統生成的數據之外尋找世界的直觀映像,到了大數據時代,這種人類的直接感知即使沒有被完全取代,也失去了其傳統意義上的優勢。一言以蔽之,哲學,需要從數據中尋求對世界的認識,舍此即失去認識的來源。

這似乎是一個驚人的變故,其實不然。在影響人類認識的議題上,大數據帶來的變化,只是數量和范圍上的,並非根本意義上的改變。事實上,回顧歷史,我們發現,我們的對外部世界的感知,從來都是依賴於某些技術裝置的,也就是說,人的認識,其實是通過數據獲得的。

最早的技術裝置,可能是直尺,它用於測量長度,例如田畝;更早的述說技術裝備,也許是繩結,它用來述說一件重要的事件。在我國,從河北泥河灣先民打造石器,到安陽殷墟龜甲上刻畫的文字,都可以看作是某種「數據」,表達著人類對外部世界的某種認知。而面對著所有這些早期的承載數據的技術裝備,人們獲得對外部世界的某種最早的抽象認識。古代人先後發明過算籌、斗和稱、漏刻、渾象儀、量角器等等,無不是用來產生認知外部世界的數據,人們也發明筆、紙張、雕版印刷術,也是用來記錄和生產數據。依託所有這些,數據成為人們認識的依據,思考的源泉,表達的工具

近代以來,西方的技術和科學異軍突起,望遠鏡、顯微鏡、六分儀、光譜儀、質譜儀乃至加速器、射電望遠鏡相繼出現,成為人類認識外部世界的有力工具。這些技術裝備產生的數據成為近現代思想的新的依託。到了當代,伴隨著電子計算機的強大數據處理能力的出現,各種延伸和闊展人類感官感知能力的器皿設備層出不窮,終於完全或接近於完全取代人類對外部世界的直接感知,通過把數據呈現給人類,成為人類認識的來源。這就是大數據的時代。

關鍵點在於,我們所知的世界,全部是數據表達的,其中一部分獲得理解和解釋,更多的只是數據,沒有得到解釋甚至沒有得到關注,它只是像自在自然那樣在那裡,等待人們去搜索發現它,解釋它,運用它。

數據與本體

根據上述認識,似乎可以通過觀察數據的形成和生產,來理解哲學與科學的在解釋客觀自然議題上彼此消長。

在近代科學初興時期,它並沒有從傳統哲學中分離出來,它被冠之以自然哲學。與之相並行不悖的,有哲學本體論和形而上學。後兩者都是試圖以某些觀念描述和解釋外部自然,尋求事物的本質,並在哲學領域合法存在。伽利略、牛頓等人推崇的使用先進觀測和實驗手段觀察與調控自然,用數學述說自然過程。當這一切成為風氣之後,哲學本體論逐漸衰退,哲學似乎放棄了對客觀世界的描驀和解釋,讓位於自然科學。

最後一位試圖運用科學數據來解釋自然的哲學家是康德,他研習了牛頓的運動力學和天體力學,提出宇宙演化學說。然而,拉普拉斯在康德基礎上,用物理理論和數學表述了星雲說,在無限時空中的恆星和星系演化學說。拉普拉斯之後,科學之描摹自然優越於傳統哲學得到公認。

一般認為,在經典科學時代,哲學與科學在描摹自然方面的差異,在於是否運用數據和使用數學方法。今天我們發現,這並非全部問題所在。經典時代,直至大數據崛起的今天,自然科學的確在使用各種技術裝備獲得的數據方面占據優勢地位,哲學則固守傳統的概念分析和一般推理方法,這還是指的好的哲學。這與其說是哲學落後於科學,勿寧說人類獲得數據的能力尚有不逮,給傳統哲學留有施展餘地。

大數據的出現,包圍了人類認知世界的所有方面,情況發生變化。在科學界開始討論並實施「計算一切」的時候,同時也給哲學重新回到討論本體打開方便之門。這里發生的變化是,數據成為認知的源泉,思維的質料;我們對世界的解釋轉變為對數據的解讀,舍此無他。大數據的出現,使得我們發現,我們所知的稱作外部世界的東西,是通過數據來呈現的,當我們尋求世界的本質和意義時,我們實際上是在數據中徜徉;當我們覺得有所發現有所體悟時,實際上是自覺找到了一些數據之間的關聯。

數據的物理學氣質

所謂物理學氣質,指的是思考事物的本質,從原理層面上對事物的本質進行探究,揭示出事物的基本規律。當前備受熱議的數據和大數據是否具有揭示事物基本規律的功能,可能還有待於觀察,但是,數據,就其現象而言,似乎已經展示出某種物理學氣質,考察這一特性,既有利於認識數據的本質,也有利於深化對物理學的認識。

這里所說的物理學,主要指的是量子力學。

眾所周知,量子力學無論在理論上還是在應用上都獲得巨大成功,在場論、粒子物理和天體物理學研究上都扮演者基礎角色,在固體物理、半導體物理以及超導物理等應用學科上都有極出色表現。量子力學與哲學的聯系,比其他任何自然科學領域都要來得緊密,其中最重要的就是認識論問題。

量子力學發現,建立在測不準關系基礎上的認識,受到基本物理原理的限制,客觀世界原則上不可能真正被觀察到,我們只能根據物理測量結果認識世界。而測量本身形成對客觀世界的干擾,導致無法真正認清它的本來面目。所以,我們對於世界的認識,唯一來源就是測量的結果,即所謂經驗。

量子力學的這一認識原則引發將近一百年的討論,至今未能平息。

尼爾斯·玻爾認為我們必須接受量子力學給出的認識原則,承認和接受自然作出的安排,量子力學已經很好地描繪了自然;愛因斯坦則不願接受玻爾的「綏靖哲學」,他覺得一定是量子力學本身的不完備造成,人對自然的認識應該是能夠窮盡的,不可能也不應該像量子力學所描繪的那樣。

當我們回顧前述數據與大數據的認識論與本體論含義時,就明白,一直以來有關量子力學問題的爭論,本質上就是對於數據的意義的爭論。顯然,愛因斯坦不願意接受數據給出的結果,以及對於數據的解釋,而玻爾則認為數據揭示的自然正是自然本體,無論我們是不是喜歡它。

有趣的是,人們一直在爭論量子力學的測量問題,此前卻幾乎從來沒有人意識到測量的結果本身就是數據,而數據已經成為事實上的認識來源。離開數據,我們對於世界一無所知。

在這個大數據時代,當我們認識到,數據正是我們認識世界的源泉,所謂世界其實就是數據構成的,我們也會看到數據本身所具有的物理學氣質,正像量子力學所強調的那樣,世界隱藏在經驗表象背後,我們所能談論的,只是經驗本身。

以上是小編為大家分享的關於哲學如何認識大數據時代的相關內容,更多信息可以關注環球青藤分享更多干貨

㈢ 維克托邁爾舍恩伯格《大數據時代》讀後感

當仔細品讀一部作品後,大家一定都收獲不少,是時候寫一篇讀後感好好記錄一下了。千萬不能認為讀後感隨便應付就可以,以下是我幫大家整理的維克托邁爾舍恩伯格《大數據時代》讀後感範文,僅供參考,希望能夠幫助到大家。

維克托邁爾舍恩伯格《大數據時代》讀後感 篇1

對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲,此書有如下特點。

首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。

作者認為大數據時代具有三個顯著特點。

一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。

二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。

三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。

作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。

面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。

維克托邁爾舍恩伯格《大數據時代》讀後感 篇2

如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。

他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。

對於第一個觀點,我不敢苟同。

一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?

我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的.方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

維克托邁爾舍恩伯格《大數據時代》讀後感 篇3

讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。

這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。

其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。

大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!

在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。

在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!

大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。

大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。

大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!

㈣ 大數據時代:生活、工作與思維的大變革的內容簡介

維克托·爾耶·舍恩伯格在《大數據時代:生活、工作與思維的大變革》中前瞻性地指出,大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,並用三個部分講述了大數據時代的思維變革、商業變革和管理變革。維克托最具洞見之處在於,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府與公民關系的方法。維克托認為,大數據的核心就是預測。這個核心代表著我們分析信息時的三個轉變。第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣。第二個改變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度。第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系。書中展示了谷歌、微軟、亞馬遜、IBM、蘋果、facebook、twitter、VISA等大數據先鋒們最具價值的應用案例。

㈤ 大數據時代的變革思維

大數據時代的變革思維
信息時代,數據深刻影響著銀行的未來發展。在全球龐大的人群和應用市場下,探索以大數據為基礎的解決方案,深入洞察復雜且充滿變化的市場成為了企業提高自身競爭力的重要手段。僅憑直觀感受,任何人都能感覺到大數據時代已經來了。
維克托 邁爾舍恩伯格——《大數據時代》一書作者,牛津大學網路學院互聯網研究所治理與監管專業教授,英國新聞周刊《經濟學人》曾經將維克托邁爾-舍恩伯格定義為大數據領域最受人尊敬的權威發言人之一。2010年,維克托 邁爾舍恩伯格就已經開始對該領域進行了系統而深入的研究,並在《經濟學人》上和數據編輯肯尼思庫克耶一起,發表了長達14頁的大數據專題文章,成為最早洞見大數據時代發展趨勢的數據科學家之一。
大數據時代的思維變換
維克托 邁爾舍恩伯格在《大數據時代》中最具洞見之處在於,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
這本書的價值體現在三個方面:第一,關於大數據的思維變換,重在大數據變革時代的價值與觀念變化;第二,關於大數據影響商業變革的三個要素:即數據、技術與創新思維之間的互動;第三,是關於大數據泛化下的治理與隱私。
與中國企業相比,美國企業知道大數據價值並且能挖掘大數據的隱藏價值,從而獲得最大利益,可以說他們已經建立了大數據思維,從而促使他們不斷創新挖掘更好的數據。「美國收集的數據要比我們多得多,他們不光搜集可以理解的數據,他們也收集不能理解的數據,並且會花大量資源來存儲這些數據,讓數據一直有價值。」在維克托邁爾舍恩伯格看來,大多數企業還把大數據作為一種在市場營銷手段,但是大數據還可以幫助人們改變商業模式以及盈利模式,這才是大數據最大的價值所在。「美國與中國相比,最不同一點就在於他們有大數據思維,懂得如何利用大數據的價值,但這並不代表中國無法逾越美國,中國的優勢在於掌握數據量比較大,而在大數據時代『大』也是非常重要的。」
城市的發展需要大數據,沒有數據的輔佐城市就不會得到最優化的發展方案,大數據能幫助政府領導者進行更好的決策,尤其是公共政策的決策。城市需要知道如何建立基礎設施來收集數據,同時要利用大數據開拓思路,讓數據來說話,並且藉助多方力量,即便是大數據方面的專家,但是並不一定有最正確的決定或最有效的方法來利用大數據,所以政府在這方面需要多聽取私人企業或機構的意見,大數據時代合作、溝通、廣泛吸納意見是非常重要的。
維克托 邁爾舍恩伯格以倫敦為例談道:「倫敦政府其實是從一家私人企業買了關於人們交通模式的數據,讓政府驚訝的是人們的行動路線跟他們想像的完全不一樣,所以在這一方面的幫助他們更好的優化交通,包括高速公路、停車場,以減少城市擁堵。」
誰是大數據「贏家」?
大數據所面臨困境並不在技術方面,而是在數據流動方面。大數據時代,一個人的智慧不能幫助我們更好的利用大數據價值,所以要讓數據流動起來,讓不同的部門和不同的公司都參與進來,進而優化數據。
「更多的人會認為大數據只是用在企業營銷方面,但是如果讓他們知道大數據可以幫助孩子更好的學習、更好的生活居住條件,以及能夠解決城市交通、居住等問題,他們慢慢發現大數據的好處,他們就會關心大數據。」維克托邁爾舍恩伯格談道,「一方面,人們要信任大數據,不要害怕大數據暴露隱私,需要建立完善的大數據保護。不信任就導致人們不願意讓其他機構知道數據,如果不能使用這些數據就更談不上大數據的價值。所以只有讓他們信任數據,才能挖掘大數據價值。另一方面,一定要接受大數據使用限制問題,不要賦予大數據過多的意義。」
維克托 邁爾舍恩伯格理解的大數據贏家,並不是指本來就已經很成功而且在大數據時代同樣成功的的公司,「我認為大數據的最大贏家應該是一些默默無聞的公司,因為大數據而發生飛躍性的變化,所以大數據時代最大贏家不可能是那些已經掌握大量數據的大公司,而是新興創業、年輕人來工作的小公司,幫助他們在大數據時代成為非常有競爭力的企業。所以數據好比一座金山,但是數據在那裡放著,這座金山就不會屬於你,我們需要做的是了解並挖掘這些『金子』,成為大數據的贏家。」維克托邁爾 舍恩伯格如是說。
大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生「免疫能力」,適應大數據才能在這場變革中繼續生存下去。

㈥ 大數據所帶來的四種思維方式的轉變

隨著近年來大數據技術的快速發展,大數據所創造的價值深刻改變了我們的生活、工作和思維方式。大數據研究專家舍恩伯格指出,大數據時代,人們對待數據的思維方式會發生如下三個變化:

事實上,大數據時代帶給人們的思維方式的深刻轉變遠不止上述三個方面。大數據思維最關鍵的轉變在於從自然思維轉向智能思維,使得大數據像具有生命力一樣,獲得類似於「人腦」的智能,甚至智慧。

以下將介紹大數據技術所帶來的四種思維方式的轉變。

社會科學研究社會現象的總體特徵,以往的采樣方法一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴於采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。

在大數據時代,隨著數據收集、處理、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不採用樣本研究方法,相應地,思維方式也應該從之前的樣本思維轉向總體性思維,從而能夠更加直觀、全面、立體、系統地認識總體狀況。

在大數據時代之前,由於收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會「南轅北轍」的現象,導致數據的准確性大大降低,從而造成分析的結論與實際情況背道而馳,因此,就必須十分注重數據樣本的精確思維。

然而,在大數據時代,得益於大數據技術的突破,大量的結構化、非結構化、異構化的數據能夠得到儲存、處理、計算和分析,這一方面提升了我們從海量數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。

在大數據時代,思維方式要從精確思維轉向容錯性思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。

在大數據世界未出現時,人們往往執著於現象背後的因果關系,試圖通過有限樣本數據來剖析其中的內在關聯關系。數據量小的另一個缺陷就是有限的樣本數據無法反映出事物之間的普遍性的關聯關系。而在大數據時代,人們可以通過大數據挖掘技術挖掘與分析出事物之間隱蔽的關聯關系,獲得更多的認知與洞見,運用這些認知與洞見就可以幫助我們捕捉現在和預測未來,而建立在關聯關系分析基礎上的預測分析正是大數據的核心議題之一。通過關注線性的關聯關系及復雜的非線性關聯關系,可以幫助人們看到很多以前不曾注意的數據之間存在的某些聯系,還可以掌握以前無法理解的復雜技術和社會動態,關聯性關系甚至可以超越因果關系,成為我們了解這個世界的更好視角。

在大數據時代,思維方式要從因果思維轉向相關思維,努力顛覆千百年來人類形成的傳統思維模式和固有偏見,才能更好地分享大數據帶來的深刻洞見。

不斷提高機器的自動化、智能化水平始終是人類社會長期不懈努力的方向。計算機的出現極大地推動了自動控制、人工智慧和機器學習等新技術的發展,「智能機器人」技術研發也取得了突飛猛進的成果並開始一定應用。應該說,自進入到信息社會以來,人類社會的自動化、智能化水平已得到明顯提升,但始終面臨瓶頸而無法取得突破性進展,機器的思維方式仍屬於線性、簡單、物理的自然思維,智能化水平仍不盡如人意。但是,大數據時代的到來,可以為提升機器智能帶來契機,通過機器學習可以從數據中獲取有價值的學習數據,大數據將有效的推進機器思維方式由自然思維轉向智能化思維,這才是大數據思維轉變的關鍵所在、核心內容。

眾所周知,人腦之所以具有智能、智慧,就在於它能夠對周遭的數據信息進行全面收集、邏輯判斷和歸納總結,獲得有關事物或現象的認識與見解。同樣,在大數據時代,隨著物聯網、雲計算、社會計算、可視技術等的突破發展,大數據系統也能夠自動地搜索所有相關的數據信息,並進而類似「人腦」一樣主動、立體、邏輯地分析數據、做出判斷、提供洞見,那麼,無疑也就具有了類似人類的智能思維能力和預測未來的能力。「智能、智慧」是大數據時代的顯著特徵,大數據時代的思維方式也要求從自然思維轉向智能思維,不斷提升機器或系統的社會計算能力和智能化水平,從而獲得具有洞察力和新價值的東西,甚至類似於人類的「智慧」。

大數據開啟了一個重大的時代轉型。大數據技術正在改變我們傳統的生活以及理解世界的方式,成為新發明和新服務的源泉,而更多的改變正蓄勢待發。大數據時代將帶來深刻的思維轉變,大數據不僅將改變每個人的日常生活和工作方式,改變商業組織和社會組織的運行方式,而且將從根本上奠定國家和社會治理的基礎數據,徹底改變長期以來國家與社會諸多領域存在的「不可治理」狀況,使得國家和社會治理更加透明、有效和智慧。

㈦ 大數據時代催生思維變革

大數據時代催生思維變革

英國教授維克托·邁爾—舍恩伯格的《大數據時代:生活、工作與思維的大變革》一書的問世,讓大數據引發全球熱議。當許多人還沒徹底弄明白IT是什麼的時候,DT時代已經來了。「DT時代」方興未艾,各行各業都在往這塊寶藏進軍,卻沒有一個有力的組織,沒有規范行為的游戲規則,因「大數據」理論引發的激辯和質疑也不絕絡繹:數據交易規則如何制定、數據安全如何保障、數據倫理底線在哪兒?產業發展離不開理論支撐,當別人還在思索「大數據是什麼」,貴陽已經在探索「大數據怎麼做」。對於大數據時代的貴陽探索,互聯網行業的大佬們有自己的看法。阿里巴巴集團董事局主席馬雲表示,雲計算、大數據現在已成為科技發展的代名詞,數據是驅動商業向前發展的核心。在數據戰略重點實驗室主任連玉明教授看來,貴陽首家大數據戰略重點實驗室的建立對於大數據產業發展意義重大。「很多地方都在談數據經濟、雲計算產業,但貴州下如此大的決心,跟阿里巴巴集團一起干、堅持干、務實干,一起探索未來的勇氣和魄力值得敬佩。」馬雲說。馬雲認為,數據是驅動商業向前發展的核心,更是人類社會的未來。以控制為出發點的IT時代正在走向以激活生產力為目的的DT(數據技術)時代已經成為一種趨勢。從組織內部角度來看,DT會改變一個組織的溝通、生產、消費方式,驅動它的架構、文化的變革;從跨組織角度來看,由於DT時代的「利他」思維取代IT時代的「利我」思維,組織與組織的合作將遠大於競爭,跨組織的協同會頻繁發生,而且將變得越來越敏捷,越來越高效。這不僅僅是技術的升級,更是思想意識的巨大變革。阿里巴巴集團於2014年4月17日與貴州省政府簽訂全面戰略合作協議,項目之一「雲上貴州」已取得一些成績,成為政府運營雲計算和大數據的最佳實踐。政府作為一個組織,生來就是一個極為重要的數據生產和交換平台。數據本身並不能創造價值,只有讓更多的人對其進行分析和運用,才能成倍地創造價值。受摩爾定律驅動的信息技術不斷廉價化、互聯網的普及以及其延伸所帶來的信息技術無處不在的應用,催生大數據時代到來,進而使信息化進入以數據廣泛關聯、跨域融合和深度應用為特徵的智慧化階段。在當前的大數據熱潮中,相關書籍、文章可謂車載斗量,共識與爭鳴共存。《塊數據——大數據時代真正到來的標志》一書卻從塊數據這個新穎的視角來看待大數據及其未來的發展,頗有創意,發人思考。梅宏認為,「條數據」和「塊數據」的劃分,師法自然,抓住了數據的本質。從其定義和靜態角度看,「條」是一個領域或行業內縱深數據的集合,可以反映本領域或行業的規律,無疑具有很大價值。「塊」是一個物理區域或行政區劃內眾多「條數據」的集合,更能反映現實世界和社會的極度復雜性,其綜合應用無疑會帶來數據價值的顯著提升。從動態的視角看,重視「塊數據」是為了避免僅僅關注「條數據」而可能帶來的新的數據孤島現象,更是體現了一種對信息化建設的發展性思維。「摩爾定律是指數社會的基因,大數據是指數社會的蛋白質。」對於這句話,吳甘沙認為,基因決定生命特徵,是初始點,而蛋白質是生命的物質基礎,是生命活動的主要承擔者。而大數據就像生命體質中的蛋白質一樣,是當前社會生命活動的主要承擔者。對於數據開放,吳甘沙認為,不涉及個體的公共數據和科研數據都可以開放。涉及個體的數據要明確數據權屬、隱私界定,獲得擁有者授權,採用技術匿名化,而後再考慮開放。而目前英美開放的主要特點是原始數據(而非提煉數據)。在吳甘沙眼裡,貴陽全城Wifi覆蓋採集數據的優點就是有數據發生所在地點的信息,而這是語境的一個重要因素。他同時指出,在為用戶提交免費Wifi服務時,需要明確獲得用戶對數據授權。對於大數據、雲計算、移動互聯網、物聯網,吳甘沙認為,這些都是不可獨立分割的。正如金融數據跟電商數據碰撞在一起,就產生了像小微貸款那樣的互聯網金融;電信數據跟政府數據碰在一起,可以產生人口統計學方面的價值,幫助城市規劃人們居住、工作、娛樂的場所;物流數據和電商數據湊一塊,可以了解各個經濟子領域的運行情況;物流數據跟金融數據放在一起,就產生了供應鏈金融等等。連玉明認為,發展大數據是人類文明發展和全球化進程的必然趨勢,也是貴陽堅守發展和生態「兩條底線」,探索「雙贏之路」的戰略選擇,為西部欠發達地區實現後發趕超找到一條新路徑,這是認識、適應和引領新常態的思維變革。面對新機遇、新挑戰、新任務,貴陽發展大數據需要洞察先機,搶占制高點,更需要研究先行和戰略引領。在這樣的背景下,大數據戰略重點實驗室的出現是必要的。連玉明指出,大數據戰略重點實驗室是一個跨學科、專業性、國際化、開放型的研究平台。實驗室將聚集國內外大數據相關專業研究者、管理者和決策者,立足全球大數據發展趨勢和中國大數據發展實踐,以大數據發展的重大理論和現實問題為主攻方向,加強大數據發展全局性、戰略性、前瞻性研究和咨詢。連玉明表示,大數據戰略重點實驗室未來的研究方向是通過對大數據發展進行全局性、戰略性、前瞻性的研究和咨詢,主要包括大數據發展趨勢研究、構建「塊數據」理論模型和應用模型、建立DT空間、研究編制和發布「大數據指數」和籌建一個「中國DT產業50人論壇」五項重點工作。數據孤島是大數據行業發展面臨的最大問題。一方面,各行業、企業和政府都在竭盡所能地採集數據、佔有數據和利用數據。另一方面,大部分數據被各個行業、企業、機構和政府封鎖起來,形成一個個「數據孤島」,無法自由流通,數據之間缺少連接。「而塊數據理論對於打通『數據孤島』意義重大。」傅志華認為,塊數據的提出,最大意義在於有了一個完整的數據源,能夠全方位地了解用戶。「如同炒菜一樣,對於廚師而言,如果菜的料不夠豐富,通過搭配不同的原料來做出好的菜品是有挑戰的。」談到數據開放,傅志華認為,數據開放與「數據孤島」是息息相關的。為解決「數據孤島」必須促進數據開放,數據開放能夠最大程度地促進數據行業的發展。「數據開放很多時候並不是技術問題,從國家層面推動數據開放意義重大。目前我國的政策法規不完善,大數據挖掘缺乏相應的立法,無法既保證共享又防止濫用,數據開放與隱私如何平衡是亟待解決的問題,要在推動數據全面開放、應用和共享的同時有效地保護公民、企業的隱私。

以上是小編為大家分享的關於大數據時代催生思維變革的相關內容,更多信息可以關注環球青藤分享更多干貨

㈧ 大數據對人們思維模式的影響有哪些

大數據對人們思維模式的影響內容包括:

總之,大數據對人們思維模式的影響包括但不限於上述幾點,它需要人們具備更強的數學和統計學知識、編程能力、資料庫知識、可視化能力、統計思維、模型思維、數據挖掘能力和協同思維等。

㈨ 什麼是大數據時代的思維

面對數據處理,數據分析,有人覺得很難、很亂,其實我們首先要做的是對數據處理的正確認識,也就是數據分析思路。
1、分析需求
分析需求,首先要收集需求,需求可以從訪談、走訪、市場調研的方式獲得。對於手機來的需求也許很雜很亂,目標不同意,可以使用思維導圖分析數據,5W2H分析法還有人貨場分析法。確定好的需求一定要經過合適明確。
2、收集數據
在收集過程中不斷要問:數據來源是否可靠?我收集的數據方法是否有瑕疵?我收集的數據是否有缺失?
3、整理數據
有人會問,為什麼會有整理數據這一步?整理數據是對收集到的數據進行預處理,使之變成可供進一步分析的標准格式的過程。數據整理的好與壞直接決定分析的結果!對於數據的處理如果用EXCEL處理,有分類,排序,做表,預分析等等,利用刪除重復項,透視表, 圖表,函數等功能進行輔助整理;
然而,很多企業的數據量很大,需要用專門的ETL工具清洗,或者用集成了ETL、數據處理、可視化的工具FineBI。
4、分析數據
分析數據的思路可以按照點-線-面的三維分析法,點是某個節點的一個指標值。線是包含這個點的縱向發展趨勢或者包含這個點的橫向對比趨勢。面是包含這個點的上一級或者對象的指標值。
5、數據可視化
將分析結果用簡單而且視覺效果好的方式展示出來,一般運用文字、表格、圖表和信息圖等方式進行展示。數據可視化是數據分析的「表達」,好的數據可視化可以錦上添花,相反會前功盡棄。
數據圖表主要作用是傳遞信息,不要用他們來炫技,不要捨本逐末過分追求圖表的漂亮程度。
也不要試圖在一張圖表中表達所有的信息,可以選擇dashboard這樣的圖表分析方式。
6、應用模板開發
對於那些標准化程度比較高的數據以及使用頻率比較高的分析文件,可以開發成一種固定的模板格式,好處標准化,程序化,大大節約時間。
對於數據量大的模板,或者需要共享/共同開發的模板,可以使用FineReport這種專門的報表工具來處理。
7、分析報告
分析報告是數據分析的最終製成品,可以用word,excel,ppt作為報告的載體,承載的是圖片還是網頁,以及如何美化在這就不算重點,也不詳解了。寫分析報告之前,切記要弄清楚你是給誰匯報和分析報告,對象不同,關注點自然不一樣。

閱讀全文

與大數據時代思維方式變革的哲學意蘊相關的資料

熱點內容
網路大國與大數據 瀏覽:770
怎麼學plc的編程 瀏覽:643
javadnf輔助源碼 瀏覽:973
什麼app可以畫二維圖像 瀏覽:125
手機如何設置副路由器設置密碼 瀏覽:592
如何讓已經壓縮的文件恢復 瀏覽:344
網路atm取款支出是什麼意思 瀏覽:942
ios查看wifi密碼插件 瀏覽:742
win10因藍屏 瀏覽:322
app病毒是如何植入的 瀏覽:384
hadoop文件系統查看 瀏覽:317
熱門app免流都有哪些 瀏覽:619
cad怎麼轉換mpgis文件 瀏覽:631
win10照片不能用了 瀏覽:878
iphone5s導出圖片 瀏覽:984
如何確定c盤的文件可以刪掉 瀏覽:956
如何將對應的表格分配到文件夾中 瀏覽:85
win10系統文件夾圖片列表 瀏覽:962
淘寶店鋪導航背景顏色代碼 瀏覽:182
路虎攬勝漆膜儀數據多少 瀏覽:438

友情鏈接