① 大數據時代的電子商務模式發展分析
大數據時代的電子商務模式發展分析
商務的復雜性和不斷變化發展決定了電子商務沒有一個或幾個固定模式,各種各樣的電子商務模式充分反映了市場變化的需要,贏利空間是判斷電子商務模式好壞的基本依據。
一、電子商務
電子商務是利用微電腦技術和網路通訊技術進行的商務活動;以信息網路技術為手段,以商品交換為中心的商務活動;電子商務分為:ABC、B2B、B2C、C2C、B2M、M2C、B2A(即B2G)、C2A(即C2G)、O2O 等。
廣義的電子商務是指利用各種信息技術所進行的經營管理活動,即利用整個工廠技術對整個商務活動實現電子化。
狹義的電子商務是指利用網際網路開展的交易活動。
電子商務的目的是高效率、高效益、低成本地進行產品生產和服務,提高企業的整體競爭能力。
二、電子商務模式
電子商務模式,就是指在網路環境中基於一定技術基礎的商務運作方式和盈利模式。研究和分析電子商務模式的分類體系,有助於挖掘新的電子商務模式,為電子商務模式創新提供途徑,也有助於企業制定特定的電子商務策略和實施步驟。
電子商務在其發展的過程中,出現了各種各樣的電子商務模式。電子商務模式可以從多個角度建立不同的分類框架,最簡單的分類莫過於BtoB、BtoC、CtoC、OtoO、新型的BOB模式,這樣的分類,但就各模式還可以再次細分。
二、電子商務模式的基本類型
1.企業與消費者之間的電子商務(Business to Consumer,即B2C)。B2C就是企業通過網路銷售產品或服務給個人消費者。這是消費者利用網際網路直接參與經濟活動的形式,類同於商業電子化的零售商務。
2.企業與企業之間的電子商務(Business to Business,即B2B)。企業可以使用Internet或其他網路對每筆交易尋找最佳合作夥伴,完成從定購到結算的全部交易行為。
3.消費者與消費者之間的電子商務(Consumer to Consumer 即C2C)。C2C商務平台就是通過為買賣雙方提供一個在線交易平台,使賣方可以主動提供商品上網拍賣,而買方可以自行選擇商品進行競價。
4.線下商務與互聯網之間的電子商務(Online To Offline即O2O)。這樣線下服務就可以用線上來攬客,消費者可以用線上來篩選服務,還有成交可以在線結算,很快達到規模。這種模式的關鍵是:在網上尋找消費者,然後將他們帶到現實的商店中。
5.所謂BOB 是 Business-Operator-Business的縮寫,意指供應方(Business)與采購方(Business)之間通過運營者(Operator)達成產品或服務交易的一種新型電子商務模式。
四、大數據時代電子商務模式分析
電子商務的發展經歷了用戶數量為王、銷售量為王、數據為王的三大時代,大數據時代給電子商務發展帶來的機遇和挑戰,未來電子商務的競爭是數據的競爭。
(1)數據服務的變革
大數據背景下,把消費者分成很多群體,對每個群體甚至每個人提供針對性的服務。消費行為等數據量的增加為電商提供了精準把握用戶群體和個體消費行為模式的基礎。電商通過大數據應用,可以探索個性化、精準化和智能化廣告推送和推廣服務,創立比現有推廣形式更好的全新商業模式。另外,電商也可以通過運用大數據,尋找更多更好地增加用戶粘性、開發新產品和新服務、降低運營成本的途徑和方法。
(2)數據化運營
電商運營更多地轉變為數據驅動的運營,在企業內部所有環節都利用數據進行分析、評價、利用數據視圖進行管理。以阿里為例,其對旗下的淘寶、天貓、阿里雲、支付寶、萬網等業務平台進行資源整合,形成了強大的電子商務客戶群及消費者行為的全產業鏈信息。可進行運營分析、商品分析、營銷效果分析、買家行為分析、訂單分析、供應鏈分析、行業分析、財務分析和預測分析等。
(3)數據資產化
大數據背景下,「 數據即資產」成為最核心的產業趨勢。未來企業的競爭,將是規模和活性的競爭,數據的經濟效益和作用將日漸引起企業重視,因而催生出許多關於數據的業務。「 數據成為資產」是互聯網泛在化的一種資本體現,他讓互聯網的作用不僅僅局限於應用和服務本身,而且具有了內在的「 金融」價值。數據的功能不再只是體現於「 使用價值」方面的產品,而成為實實在在的「 價值」。
(4)個性化導購服務
在互聯網普及的時代,為解決消費者信息超載的問題,引導消費者更便捷地購買商品,導購系統便成為眾多電子商務企業提供的一種服務模式。所謂導購系統,就是一種根據消費者的需求、偏好、個人資料及歷史消費行為,為消費者提供決策建議的軟體系統,如推薦他們想要的商品或從哪裡獲得想要的商品。傳統電子商務導購服務,或是基於消費者歷史數據來抽取和推薦他們共同偏好的商品如熱銷商品推薦等,或是根據企業促銷意圖將其主打產品推送給顧客,如新品推薦、特價推薦等,能夠為顧客提供較好的決策支持服務。
(5)數據產品服務
在大數據背景下,數據成為資產,所有電商企業都想獲得並充分了解它們在運營中所獲得的消費者的信息數據,但往往由於技術等原因無法對大數據進行分析、挖掘,因此對於具有平台以及技術等優勢的電商企業可以利用這樣優勢,將獲得的海量數據進行產品化的包裝營銷給需要的企業,從而開辟出一種新的電子商務服務模式。由於大數據背景下企業對數據有更深層次的需求,因此搭建數據構建需要與銷售之間的橋梁,將為產生數據服務型的電子商務新模式。
(6)垂直細分領域服務
目前,淘寶等占據了國內的絕大部分電商市場份額。中小規模電商企業崛起難度很大。因此,在大數據時代下,把握每一個垂直細分領域,然後做得更精更專,這樣才能贏得自己的一席之地。而且行為垂直細分類的電商平台規模較小、成本較低,能更好地挖掘分析消費者的信息數據,從而能更專注於專業特定的客戶群體提供專業的產品和服務,更能了解產業鏈上客戶的需求,也能容易完善自身的服務。
大數據背景下,爆發式的信息資源給電商企業帶來了機遇和挑戰,通過對數據的挖掘、分析運用必將帶來更多的服務模式的革新,給消費者更好的服務體驗。隨著大數據的技術和運作的成熟,必將涌現出更多、更好的新的服務模式,從而促進電子商務的發展。
以上是小編為大家分享的關於大數據時代的電子商務模式發展分析的相關內容,更多信息可以關注環球青藤分享更多干貨
② 大數據對未來電商發展有什麼影響
未來電商的發展將會是個性化,就根據個人的喜好(通過大數據分析得出)定向推送信息,實現資源的有效對接,在這之前我們要用電商只是好好的武裝自己
③ 大數據在電子商務中應用體現在哪些方面
1、通過大數據進行市場營銷
通過大數據進行市場營銷能夠有效的節約企業或是電子商務平台的營銷成本,還能夠通過大數據來實現營銷的精準化,達成精準營銷。
通過分析大數據對消費者的消費偏好進行分析,在消費者輸入關鍵詞之後,提供與消費者消費偏好匹配程度較高的產品,節約了消費者的尋找商品的時間成本,使交易雙方實現快速的對接。
實現電子商務平台或是企業營銷的高效化。
在數據化時代,針對消費者進行針對性的營銷能夠實現精準營銷,提升產品的下單率,提升電子商務 的營銷效率。
2、實現導購服務的個性化
對於電子商務的平台來講,往往都會針對用戶提供一些推薦和導購服務。
通過大數據的分析和挖掘能夠實現導購服務的個性化。
針對消費者的年齡、性別、職業、購買歷史、購買商品種類、查詢歷史等信息,對消費者的消費意向、消費習慣、消費特點進行系統性的分析,根據大數據的分析針對消費者個人制定個性化的推薦和導購服務。
大數據的運用能夠抵消電子商務虛擬性所帶來的影響,提升競爭力,挖掘更多的潛在消費者。
針對消費者的消費偏好,進行適宜的廣告推廣,提升產品的廣告轉化率,同時提供個性化的導購服務。
對於一些大型的電子商務平台來講,產品種類繁多,想要提升消費者的消費量,提升消費者的下單率就要通過分析消費者的消費偏好,主動進行商品的推送。
這種通過大數據進行分析的方式不僅僅能提升產品的瀏覽量,還能針對消費者的消費需求提供商品的推送,提升消費者的用戶體驗,進而提升消費者的忠誠度。
3、為商家提供數據服務
大數據的分析不僅僅能夠幫助電子商務平台提升下單率和銷售額,還能將大數據的分析作為產品和服務向中小型的電子商務商家進行銷售。
這樣不僅僅能夠提昇平台的收益,還能幫助商家了解消費者的消費偏好、消費者對於該類 產品的喜好等信息,來幫助商家及時針對大部分消費者的消費偏好以及市場的動態,針對產品的性能等進行研發和調整。
大數據的應用:
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。
根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
④ 大數據時代商業智能的發展趨勢_大數據時代的商業變革
大數據時代商業智能的發展趨勢
信息技術的高速發展帶來了企業利用信息技術提高自身競爭力的巨大空間,人們愈發重視通過更加高級的分析來解答更加深入的問題,以及為管控自助商業智能而生的全新方法便是這些趨勢之一。創新的潛能遠未耗竭。那麼商業智能將會朝著什麼發向發展呢?
數據挖掘將成為基本的應用程序功能
數據挖掘融入到現代商務智能應用程序的方法將會更智慧,並提供巨大的價值。
數據容量和種類持汪行續增長
大數據時代的到來,由於獲取數據更加便利,收集的數據種類也更加復雜。大部分數據都很鬆散,復雜,需要創新的方式實現存儲、集成、分析和讓中報告。
便捷人類生活
商務智能的發展勢必給人類生活帶來極大的便利:商務智能監測交通,運用於臨床醫學,智能可穿戴設備等等。商務智能已經開始進去我們的生活並影響我們的決定。
人人都能數據分析
隨著數據的不斷更新,膨脹。傳統的報表工具等分析已經不能滿足日常企業、用戶的需求,他們希望獲得更深入有效多樣化的恩熙體驗。
可視化分析成為通用語言
隨著移動互聯網的發展日趨成熟,人們交流方式無不因數據而改變。人們通過將數據可視化來探討問題、揭示困滑嘩洞見,隨著數據使用量的增長,可視化已是大勢所趨。
經過多年的發展,綜合了數據倉庫、聯機分析處理工具和數據挖掘等技術的商業智能系統,已經成為影響企業發展的重要工具,在不遠的將來,勢必顛覆我們的生活。
⑤ 大數據時代下我國電子商務的發展機遇與挑戰
大數據時代下我國電子商務的發展機遇與挑戰_數據分析師考試
大數據時代已經到來,認同這一判斷的人越來越多。隨著物聯網、雲計算、移動互聯網等新技術的發展,手機、平板電腦、PC以及遍布地球各個角落的感測器,將成為大數據來源和承載方式。據預測,全球互聯網上的數據量每兩年會翻一番,到2013年互聯網上的數據量將達到667EB(1EB=109GB)。這些數據絕大多數是「非結構化數據」,通常不能為傳統的資料庫所用,但隨著自然語言處理、模式識別和機器學習等人工智慧技術的發展,這些龐大的數據「寶藏」將成為未來世界的新「石油」。
大數據正在促生新的藍海,催生新的經濟增長點,正在成為政府和企業競爭的新焦點。2012年,瑞士達沃斯論壇發布《大數據,大影響》報告,稱「數據已經成為一種新的經濟資產類別,就像貨幣或黃金一樣」。2012年,美國政府啟動「大數據研究和發展計劃」,將「大數據」上升到了國家戰略層面。對於企業來說,數據正在取代人才成為企業的核心競爭力。總之,大數據所能帶來的巨大商業價值,被認為將引領一場足以與20世紀計算機革命匹敵的巨大變革。
未來,大數據時代將會撼動人類社會的方方面面,從商業科技到醫療、政府、教育等各個領域。但現在,電子商務無疑已成為其中發展最快、應用最廣泛、也最成功的領域之一。
大數據時代下我國電子商務的發展機遇
當前,我國電子商務正處於快速發展期。以阿里巴巴為例,從2010年到2012年,淘寶和天貓雙十一單日成交額分別為9億、33億、191億;而2011年全年,淘寶和天貓成交量之和為3600億,2012年這個數據超過一萬億。根據國家統計局數據,2012年全國各省社會消費品零售總額為20.17萬億,一萬億相當於其總量的4.8%。我國電子商務井噴式發展的背後是消費者數據的幾何級增長。電子商務龍頭企業也正是看到了相關機遇,積極部署、探索和挖掘大數據相關應用。
一是,電商企業通過大數據應用創新商業模式
大數據的重要趨勢就是數據服務的變革,把人分成很多群體,對每個群體甚至每個人提供針對性的服務。消費數據量的增加為電商企業提供了精確把握用戶群體和個體網路行為模式的基礎。電商企業通過大數據應用,可以探索個人化、個性化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
實際上,國外傳統零售巨頭早已開始大數據的應用和實踐。Tesco是全球利潤第二大零售商,其從會員卡的用戶購買記錄中,充分了解用戶的行為,並基於此進行一系列的業務活動,例如通過郵件或信件寄給用戶的促銷可以變得更個性化,店內的商家商品及促銷也可以根據周圍人群的喜好、消費時段來更加有針對性,從而提高貨品的流通。這樣的做法為Tesco獲得了豐厚的回報,僅在市場宣傳一項,就能幫助其每年節省3.5億英鎊的費用。顯然,電商企業對比傳統零售企業在這方面會更有優勢,因為電商企業本身就是通過數據平台為用戶提供零售服務的。
從國內來看,我國電商企業均積極在大數據領域進行布局和深耕,已逐步認識到大數據應用對於電商發展的重要性。以我國著名B2C龍頭企業凡客誠品為例。經過近幾年的高速發展,凡客每年的銷售量成倍增長,庫存問題逐漸成為制約其發展的主要因素。2011年,凡客成立了數據中心,針對企業經營數據,包括庫存、進貨周期、周轉、訂單等,研究分析新產品的上架與新用戶增長的關系,每上線一個新產品與它能夠帶來的用戶二次購買的關系等,開展大數據應用實踐。據報道,凡客的高庫存問題目前已得到了緩解,庫存周轉速度由100天下降為50天-30天,有效降低了運營成本。
二是,電商企業通過大數據應用推動差異化競爭
當前,我國電子商務發展面臨的兩大突出問題是成本和同質化競爭。而大數據時代的到來將為其發展和競爭提供新的出路,包括具體產品和服務形式,通過個性化創新提升企業競爭力。
還是以阿里巴巴為例。阿里巴巴通過對旗下的淘寶、天貓、阿里雲、支付寶、萬網等業務平台進行資源整合,形成了強大的電子商務客戶群及消費者行為的全產業鏈信息,造就了獨一無二的數據處理能力,這是目前其他電子商務公司無法模仿與跟隨的。同時,也將電子商務的競爭從簡單的價格戰上升了一個層次,形成了差異化競爭。目前,淘寶已形成的數據平台產品,包括數據魔方、量子恆道、超級分析、金牌統計、雲鏡數據等100餘款,功能包括店鋪基礎經營分析、商品分析、營銷效果分析、買家分析、訂單分析、供應鏈分析、行業分析、財務分析和預測分析等。
此外,電商企業通過大數據應用積極開拓發展新藍海——互聯網金融業務。目前阿里、京東、蘇寧三大主流電商企業已相繼試水。除「阿里小貸」模式比較成功之外,京東模式也漸出效果。2012年,京東通過與中國銀行合作,推出「供應鏈金融服務」,供應商憑借其在京東的訂單、入庫單等向京東提出融資申請,核准後遞交銀行,再由銀行給予放款。據報道,此服務可以幫助京東供應商大幅度縮短賬期,資金回報率由原來的60%左右提高到226%。
大數據時代下我國電子商務面臨的挑戰
雖然電子商務企業已經走在大數據時代的前列,但在開始規劃大數據美好藍圖的同時也要警惕其面臨的挑戰和風險。
一是企業信息化投資將規模化發展。電商企業內部的經營交易信息,包括商品、物流信息,以及用戶的社交信息、位置信息等等將構成企業大數據的主要來源。其信息量遠遠超越了現有企業IT架構和基礎設施的承載能力,其實時性要求大大超越現有的計算能力。此外,電商企業還將面臨數據孤島、數據質量、數據格局等數據治理問題。要想依靠大數據獲益,我國電商企業必將進行新一輪的信息化投資和建設。
二是相關管理政策尚不明確。大數據時代下,雲計算必將成為電商企業選擇的業務模式,其本質是數據處理技術。數據是資產,雲為數據資產提供了保管、訪問的場所和渠道。雲計算所提供的服務,既包括軟體服務和應用平台服務,又包括基礎設施服務,但目前我國針對雲計算服務的管理政策和技術標准尚未明確。
三是數據安全與隱私問題突出。一方面,大量的數據匯集,包括大量的企業運營數據、客戶信息、個人的隱私和各種行為的細節記錄,面臨的數據泄露風險將會增大。電商企業既要防止數據在雲上丟掉,也要防止數據在端上被竊取和篡改。另一方面,一些敏感數據的所有權和使用權還沒有明確的界定,很多基於大數據的分析都未考慮到其中涉及到的個體的隱私問題。
以上是小編為大家分享的關於大數據時代下我國電子商務的發展機遇與挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨
⑥ 如何用大數據分析創造商業價值
大數據分析是研究大量且多樣的數據集(即大數據)的過程,從而揭示隱藏的模式,未知的相關性,市場趨勢,客戶偏好和其他有用信息,這些信息可幫助公司做出更明智的商業決策。通過專業的分析系統和軟體,大數據分析可以指明商業收益的方向,比如新的機遇,有效的營銷,更好的客戶服務,提高運營效率以及競爭優勢等等。
以下是通過大數據分析將大大受益的十大行業:
1. 銀行和證券
通過網路活動監控和自然語言處理程序,監控金融市場,從而減少欺詐性交易。交易委員會正在使用大數據分析監控股票市場,避免非法交易的發生。
2. 通訊和媒體
同時在多個平台(移動,網路和電視)上實時報道世界各地的事件。媒體的一部分,音樂行業使用大數據關注最新的趨勢,並通過自動調諧軟體創作出流行的曲調。
3. 體育
了解特定地區針對不同活動的收視率模式,並通過分析來監測個人球員和球隊的表現。像板球世界盃,FIFA世界盃和溫布爾頓國際網球錦標賽的體育賽事均有使用大數據分析。
4. 醫療保健
收集公共衛生數據,從而更快地應對個人健康問題,並掌握新病毒株(如埃博拉病毒)在全球傳播的狀態。不同國家衛生部門合並使用大數據分析工具,以便在人口普查後進行數據收集。
5. 教育
針對目前快速發展的各種領域,更新和升級相關文獻。世界各地的大學均使用大數據來檢測和追蹤學生和教師的情況,並通過不同科目的出席率分析學生的興趣喜好。
6. 製造業
通過大數據提高供應鏈管理,提高生產率。製造企業使用這些分析工具,確保以最佳方式分配生產資源,從而獲得最大效益。
7. 保險
通過預測分析處理各種業務,從開發新產品到應對索賠。保險公司使用大數據了解需求最大的政策計劃,並產生更多收益。
8. 消費者貿易
預測和管理人員編制以及庫存需求。消費者貿易公司通過會員制度,記錄會員情況從而發展貿易。
9. 交通運輸
制定更好的路線規劃,交通監控和物流管理。主要是政府為了避免交通堵塞而設立的。
10. 能源
通過智能電表減少電氣泄漏,並幫助用戶管理能源使用情況。負荷調度中心使用大數據分析來監測負荷模式,並根據不同的參數分析能源消耗趨勢之間的差異,並節約能源。