導航:首頁 > 網路數據 > 大數據的特徵多樣性

大數據的特徵多樣性

發布時間:2023-09-07 10:49:26

A. 大數據的特徵是

一,大容量
據馬海祥了解,天文學和基因學是最早產生大數據變革的領域,2000年,斯隆數字巡天項目啟動時,位於新墨西哥州的望遠鏡,在短短幾周內搜集到的數據已經比天文學歷史上總共搜集的數據還要多;在智利的大型視場全景巡天望遠鏡一旦於2016年投入使用,其在5天之內搜集到的信息量將相當於前者10年的信息檔案。
二,多樣性
隨著感測器、智能設備以及社交協作技術的飛速發展,組織中的數據也變得更加復雜,因為它不僅包含傳統的關系型數據,還包含來自網頁、互聯網日誌文件(包括點擊流數據)、搜索索引、社交媒體論壇、電子郵件、文檔、主動和被動系統的感測器數據等原始、半結構化和非結構化數據。


四,真實性
1.數據的重要性就在於對決策的支持,數據的規模並不能決定其能否為決策提供幫助,數據的真實性和質量才是獲得真知和思路最重要的因素,是制定成功決策最堅實的基礎。
2.大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。

B. 大數據的特徵有哪些

大數據的特徵主要包括以下四個方面:

大量性:大數據通常具有海量的數據量,甚至可能超過幾百TB或者幾PB。因此,大數據的處理需要採用分布式存儲和計算技術。

多樣性:大數據的來源多種多樣,包括結構化數據、半結構化數據和非結構化數據等。這些數據形式不同,處理方法也不同,因此需要採用多種處理技術。

高速性:大數據的處理和分析需要快速完成,以滿足實時數據告返薯分析的需要。例如,在金融交易、互聯網廣告、社交媒體等領域,需要在短時間內進行數據分析。

價值性:襪者大數據具有較高的價值,可以用於預測和分析趨勢、提高生產效率和決策效率等。通過對大數據的分析和挖掘,可以發現商業模式的漏洞,找到新的商業機會。

同時,隨著技術的不斷發展,大世首數據的特徵也在不斷演變和擴展,例如可視化分析、深度學習、自然語言處理等。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校獲取資料,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

北大青鳥學生課堂實錄

C. 大數據的四個基本特徵包括

大數據的四個基本特徵是:數據量大,要求快速響應,數據多樣性,價值密度低。

大數據的四個基本特徵介紹:

1、數據量大

TB,PB,乃至EB等數據量的數據需要進行數據分析處理。

2、要求快速響應

市場變化快,要求能及時快速的響應變化,那對數據分析也要快速,在性能上有更高要求,所以數據量顯得對速度要求有些「大」。

大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。

D. 大數據的特徵包括哪些

1、規模性


隨著信息化技術的高速發展,數據開始爆發性增長。大數據中的數據不再以幾個GB或幾個TB為單位來衡量,而是以PB(1千個T)、EB(1百萬個T)或ZB(10億個T)為計量單位。


2、多樣性


多樣性主要體現在數據來源多、數據類型多和數據之間關聯性強這三個方面。


數據來源多,企業所面對的傳統數據主要是交易數據,而互聯網和物聯網的發展,帶來了諸如社交網站、感測器等多種來源的數據。


而由於數據來源於不同的應用系統和不同的設備,決定了大數據形式的多樣性。大體可以分為三類:一是結構化數據,如財務系統數據、信息管理系統數據、醫療系統數據等,其特點是數據間因果關系強;二是非結構化的數據,如視頻、圖片、音頻等,其特點是數據間沒有因果關系;三是半結構化數據,如HTML文檔、郵件、網頁等,其特點是數據間的因果關系弱。


數據類型多,並且以非結構化數據為主。傳統的企業中,數據都是以表格的形式保存。而大數據中有70%-85%的數據是如圖片、音頻、視頻、網路日誌、鏈接信息等非結構化和半結構化的數據。


數據之間關聯性強,頻繁交互,如遊客在旅遊途中上傳的照片和日誌,就與遊客的位置、行程等信息有很強的關聯性。


3、高速性


這是大數據區分於傳統數據挖掘最顯著的特徵。大數據與海量數據的重要區別在兩方面:一方面,大數據的數據規模更大;另一方面,大數據對處理數據的響應速度有更嚴格的要求。實時分析而非批量分析,數據輸入、處理與丟棄立刻見效,幾乎無延遲。數據的增長速度和處理速度是大數據高速性的重要體現。


4、價值性


盡管企業擁有大量數據,但是發揮價值的僅是其中非常小的部分。大數據背後潛藏的價值巨大。由於大數據中有價值的數據所佔比例很小,而大數據真正的價值體現在從大量不相關的各種類型的數據中。挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,並運用於農業、金融、醫療等各個領域,以期創造更大的價值。

E. 大數據的特點是什麼

選擇答案D,完整的題目D選項是價值密度高。所以選擇答案D,因為大數據的數據價值密度不是很高,可以用低來形容。

大數據是無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

(5)大數據的特徵多樣性擴展閱讀:

大數據的特徵:

1、數據的大小決定所考慮的數據的價值和潛在的信息、數據類型的多樣性。

2、指獲得數據的速度、妨礙了處理和有效地管理數據的過程。

3、數據的質量、數據量巨大,來源多渠道。

4、合理運用大數據,以低成本創造高價值。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

參考資料來源:網路-大數據

F. 大數據的四大特點,分別是

大數據的4V特徵:
Volume(規模性)、
Velocity(高速性)、
Variety(多樣性)、
Value(價值性)。
---維克托邁爾-舍恩伯格和肯尼斯克耶編寫的《大數據時代》

閱讀全文

與大數據的特徵多樣性相關的資料

熱點內容
線下活動數據分析有哪些 瀏覽:314
助聽器插片式編程線如何連接 瀏覽:293
怎麼刪除系統休眠文件 瀏覽:914
搜索文件內容中包含的文字並替換 瀏覽:542
微信相冊程序圖標 瀏覽:714
win8怎麼顯示文件格式 瀏覽:547
文件伺服器中毒 瀏覽:721
如何修改網站訪問次數 瀏覽:518
mdfldf是什麼文件 瀏覽:569
文件在桌面怎麼刪除干凈 瀏覽:439
馬蘭士67cd機版本 瀏覽:542
javaweb爬蟲程序 瀏覽:537
word中千位分隔符 瀏覽:392
迷你編程七天任務的地圖怎麼過 瀏覽:844
word2003格式不對 瀏覽:86
百度雲怎麼編輯文件在哪裡 瀏覽:304
起名app數據哪裡來的 瀏覽:888
微信怎麼去泡妞 瀏覽:52
百度廣告html代碼 瀏覽:244
qq瀏覽器轉換完成後的文件在哪裡 瀏覽:623

友情鏈接