導航:首頁 > 網路數據 > 對金融大數據看法

對金融大數據看法

發布時間:2023-09-04 19:16:59

A. 什麼是金融大數據分析

金融大數據分析是指使用大數據技術來收集、整理、分析金融數據的過程。這些數據可以來自各種來源,包括市場信息、交易記錄、客戶信息等。金融大數據分析的目的是幫助金融機構更好地理解市場趨勢和客戶需求,提升決策效率並降低風險。

B. 金融行業的大數據前景怎樣

銀行業是抄整體經濟活動的襲中樞,這是毋庸置疑的,銀行有大量數據,這其中:

1.客戶的基本信息,比如姓名,資產量等等,這些數據銀行有很多,但是不好,因為不幹凈,充斥著不真實,不全面的信息。

2.客戶的交易行為信息。這個才是銀行大數據的未來,只有通過客戶的交易信息,才能真真看清楚客戶是什麼樣的人。

而銀行要在大數據有所作為,需要長期的清洗數據,整合系統,研究模型,不太容易,身軀太龐大了,最嚴重的事,缺乏專業的人才,據我了解,目前銀行的大數據分析,還是科技部在兼著做呢。

C. 什麼是大數據金融

就是建立在大規模數據信息上的金融行為。例如網路推出大數據炒股理財。

D. 大數據金融專業就業前景怎麼樣

就目前的市場發展趨勢,和熱度來看,建議你可以學習一下大數據。我們可以從兩個方面來看一下大數據的發展趨勢。

E. 我是做金融的,想問一下大數據對金融行業有什麼價值

當然有數來據支持,可以說所有的行業,自都能夠很大幅度的提高精準率,無論是從成本還是從效果,都是大有裨益的。

要了解大數據優勢有哪,對我這個行業有哪些突出性的優勢。

誰是准確的目標受眾?如何在合適的時間、合適的地點、以合適的方式傳達給消費者正確的信息?隨著數據搜集、存儲、管理、分析、挖掘與應用的技術體系的發展,這些問題的答案已經可以顯現於眼前。

怎麼獲取數據:網民通過C2C的互動,C2B的互動,B2B的互動,實時生產數據。這些數據匯聚在一起,就能夠獲取到網民當下的情緒、行為、關注點和興趣點、歸屬地、移動路徑、社會關系鏈等一系列有價值的信息。原本分散的信息通過分析、挖掘具有了關聯性,了解用戶真實的態度和需求。

利用數據獲客:利用大數據做精準營銷的人群定向投放,根據人群的行為軌跡,再結合其他關聯數據,如社交屬性等數據來對投放人群進行標簽化管理。這樣才能使得廣告投放有千人千面的效果。

對於營銷來說,了解用戶、分析用戶尤為重要,而每年花在數據分析上的人力物力更是數不勝數。對於營銷來說,大數據更多的是支持,可以將更多的人力物力節省下來。

做數據精準獲客營銷,要找對獲客系統運營商大數據,需要了解請留言。

F. 大數據金融前景

一、大數據金融的含義
大數據金融指的是將巨量非結構化數據通過互聯網和雲計算等方式進行挖掘和處理後與傳統金融服務相結合的一種新的金融模式,它是一種相比於傳統金融更加透明、參與度更加廣泛、體驗更好、效率更高的新興金融模式。
廣義的大數據金融包括整個互聯網金融在內的所有需要依靠發掘和處理海量信息的線上金融服務。也就是說,我們所提到的不管是P2P還是眾籌等互聯網金融行為,其核心都是大數據金融,因為互聯網金融如果沒有大數據的支撐,就成了一個單純意義上的平台。而互聯網金融得以在互聯網誕生之日起,到今天人類社會進入「PB(1024TB)」時代,歷年來數據信息的記錄與積累,以及雲計算技術的不斷成熟,使得大數據金融在互聯網誕生數十年後終於可以一展風采。持續高增長的電子交易數量和網路零售服務,使得依賴於商務需求的金融體系能夠在線上尋求到數據支撐。

狹義上的大數據金融指的是依靠對商家和企業在網路上歷史數據的分析,對其進行線上資金融通和信用評估的行為。我們可以很直觀地看到,最初在互聯網平台上尋求到金融服務的商家和企業,一類是在互聯網平台上留下了一定數量的歷史信用信息的商家或企業,另一類是在相關產業之內積累了相當程度的歷史信用的商家或企業。而從未在線上或實際交易中產生過信息的全新商家和企業在沒有建立足夠的交易基礎之前是不太容易通過單純的信用方式進行這種融資的。無論是廣義還是狹義的定義,大數據金融的核心內容都是對商家和客戶的海量數據進行收集、儲存、發掘和整理歸納,使得互聯網金融機構能夠得到客戶的全方位信息,掌握客戶的消費習慣並准確預測客戶行為。這樣的做法不管是作為評級認定標准,還是作為目標客戶進行營銷宣傳的理由,都能夠使互聯網金融機構對自己的風險進行控制,對自己的發展策略進行更詳盡的規劃。作為大數據的使用者,互聯網金融機構必須為數據的採集和使用付出成本,如果不是同時作為數據的收集方,進行原始數據的採集和整理,那就要向數據來源的第三方支付使用費用。
二、大數據金融的發展機遇
1.互聯網企業自身轉型需要。隨著電商競爭愈演愈烈,最初的零售領域與支付領域的競爭已逐漸延伸到了整個供應鏈的其他環節,包括物流、倉儲,自然也包含了最重要的金融服務。盡快發展自身原有業務引申出來的大數據金融服務,有利於建立用戶黏性。積極地進行專業化、個性化定製金融服務對未來電商領域的全方位競爭有著十分重要的意義。
2.實體產業需要大數據金融的支持。大數據金融通過各種方式給市場帶來了活性,整個產業鏈的效率提升、資源配置優化是有目共睹的,虛擬經濟與實體產業的下一步發展,必定都離不開大數據金融的支持。打通上下游環節,使資金更有效率,無論是對電商的未來發展還是對傳統金融的突破都大有益處。
三、大數據金融面臨的挑戰
大數據使得互聯網金融得到空前的發展,同時也帶來了一系列的問題。原來的互聯網非金融機構從事類金融服務,給傳統的金融體系帶來了一定的沖擊,如何協調和處理好這兩者之間的關系,成了未來大數據金融發展至關重要的環節。未來,大數據金融的發展必將基於傳統金融行業與互聯網大數據技術的進一步融入和整合,這就要求金融服務與互聯網及大數據的關聯程度必須不斷加強。
1.必須推進金融服務與社交網路的進一步融合。使金融業的數據來源能夠脫離早期呆板滯後的提交、審批、盡職調查等來源方式。要使金融信息的獲取渠道能夠直接深入金融服務本身,就要利用互聯網、社交媒體等新的數據來源,從多渠道獲取實時客戶信息和市場信息,充分了解自標客戶的需求和資質情況,建立更高效的客戶關系與更完整的客戶視圖,並利用社交網路對忠實客戶和潛在客戶進行精準營銷和定製化金融服務的方案。

2.傳統金融機構要進行互聯網、大數據金融的轉型,必須要處理好與數據服務商的競爭、合作關系。目(下轉80頁)(上接76頁)前,線上互聯網企業由於占據極大的平台優勢,壟斷從交易發生到交易結算的各個環節以及這其中產生的各項數據信息,使傳統金融企業想要介入十分困難。要想在實際過程中重新組建自己的數據平台,從時間方面來看,已經處於劣勢。因此,傳統金融機構與數據服務商開展戰略合作是比較現實的選擇。
四、大數據金融的發展趨勢
大數據技術還遠未成熟,而大數據金融帶給我們的變化已足以讓人驚訝,大數據金融的未來也是一片光明。未來,隨著大數據技術的不斷成熟,大數據金融的發展也必將進一步改變人們的生活生產方式。
1.大數據金融跨界發展。由於互聯網技術的開放性,信息不對稱將顯著減少,金融在日後也許就不是少數傳統的金融從業者的專屬領域了。從供應鏈要求的技術來看,互聯網企業、軟體企業都紛紛加入大數據金融的開發中,大數據進入跨界發展的趨勢越來越明顯,金融業的競爭也將由於未來力量的沖擊變得更加激烈。這也可能導致將來金融業內部混業經營的進一步發展,銀行金融與非銀行金融的界限、證券公司與非證券公司之間的界限都可能變得非常模糊。

2.大數據金融服務多樣化。大數據金融從電商平台發展出來以後,不斷地整合發展傳統產業,從零售的日用百貨發展到電子產品,再到汽車,甚至是大宗商品交易,未來也會發展到房地產、醫療等方面,日常的金融服務也將不斷地擴展,綜合化、社會化、日常化。
3.大數據金融服務專業化。隨著涉足領域越來越廣泛,大數據金融必將產生專業化趨勢,產生更明確的產業鏈分工,根據不同的環節或者是不同的行業,其服務內容都將產生一系列的變化。同時隨著發展水平的提高,必定會有高要求的定製化服務、個性化服務要求,未來的大數據金融企業必將以客戶為中心,高度精準與定位客戶需求來制定專業的個性化服務。總而言之,大數據金融憑借高度數據化的管理和運作模式,在互聯網發展的今天有著不可替代的地位,將來大數據金融必將是金融業發展的中流砥柱,它將進一步滲透到各行各業的每一個角落,不斷地促進金融生態的發展。在不久的將來,每個人都將能夠切身體會到大數據金融帶來的變化,都能從大數據金融的發展中獲得益處。

G. 大數據技術在金融行業有哪些應用前景

大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到回10年,金答融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。

H. 大數據金融存在的問題

法律主觀:

一、大數據的定義分析:從生產來看,不需要特別的採集過程,因為監管要求、業務邏輯或者技術便利,具有「自生產」特徵,比如搜索數據、交易數據等;從存-儲來看,相對於傳統資料庫的數據規模,量變引起質變,需要新的資料庫技術來支持存-儲和訪問;從使用來看,分析方法從基於概率論的抽樣理論過渡到人工智慧、統計學習等講求高維、高效率分析技術。從行業細分角度,大數據金融業主要有大數據銀行金融和大數據證券金融,分別和銀行業務、證券業務相關。當然,保險業天然就和大數據相關。信用卡自動授信是典型的大數據銀行金融。從銀行角度是否應該對申請者授信、發授多少信用額度,是個重要問題。傳統方式是人工審核申請資料,然後根據大致的檔位發放額度或拒絕申請。但是當銀行積累了足夠多的用卡客戶數據,可以把是否違約,違約概率,有效使用額度等指標作為被評價對象,然後調用與此相關的各種客戶信息建立統計模型,自動計算授信結果。機器人投資是大數據證券金融的代表形式,股票價格波動受各種因素影響,傳統的投資方式一般人工收集信息,手動交易。機器人投資可以建立多因素模型,自動選擇股票或尋找交易時機,在適廳春當的風控模型下建立機器人投資雲交易模式。再如,連接銀行和證券的大數據不良資產評估。2005年,某國有不良資產管理公司開始嘗試在海量數據基礎上進行不良資產評估。原本銀行信貸資產的評估都是基於會計模型,但是不良資產茄爛基本沒扮納耐有會計特徵,很難用傳統方法評估。因此,收集已處置資產和待處置資產樣本進行對比,建立數據挖掘模型,可以方便評估待處置資產的價格。二、大數據金融的定義分析:金融業積累的大數據就是金融大數據,根據銀行金融和證券金融本身的不同,這些數據也分成銀行金融大數據和證券金融大數據。積累數據過程中,產生了數據採集、存-儲、使用的相關工作和企業,這樣就完成了金融大數據的產業鏈,但總體依然是信息技術產業鏈。目前,大數據服務平台的運營模式可以分為以阿-里小額信貸為代表的平台模式和京-東、蘇-寧為代表的供應鏈金融模式。阿-里小貸以「封閉流程+大數據」的方式開展金融服務,憑借電子化系統對貸款人的信用狀況進行核定,發放無抵押的信用貸款及應收賬款抵押貸款,單筆金額在5萬元以內,與銀行的信貸形成了非常好的互補。**金融目前只統計、使用自己的數據,並且會對數據進行真偽性識別、虛假信息判斷。**金融通過其龐大的雲計算能力及數十位優秀建模團隊的多種模型,為**集團的商戶、店主時時計算其信用額度及其應收賬款數量,依託電商平台、支付寶和阿-里雲,實現客戶、資金和信息的封閉運行,一方面有效降低了風險因素,同時真正的做到了一分鍾放貸。京-東商城、蘇-寧的供應鏈金融模式是以電商作為核心企業,以未來收益的現金流作為擔保,獲得銀行授信,為供貨商提供貸款。大數據能夠通過海量數據的核查和評定,增加風險的可控性和管理力度,及時發現並解決可能出現的風險點,對於風險發生的規律性有精準的把握,將推動金融機構對更深入和透徹的數據的分析需求。雖然銀行有很多支付流水數據,但是各部門不交叉,數據無法整合,大數據金融的模式促使銀行開始對沉積的數據進行有效利用。大數據將推動金融機構創新品牌和服務,做到精細化服務,對客戶進行個性定製,利用數據開發新的預測和分析模型,實現對客戶消費模式的分析以提高客戶的轉化率。大數據金融模式廣泛應用於電商平台,以對平台用戶和供應商進行貸款融資,從中獲得貸款利息以及流暢的供應鏈所帶來的企業收益。隨著大數據金融的完善,企業將更加註重用戶個人的體驗,進行個性化金融產品的設計。未來,大數據金融企業之間的競爭將存在於對數據的採集范圍、數據真偽性的鑒別以及數據分析和個性化服務等方面。

I. 雲計算和大數據對互聯網金融產生什麼影響

21世紀是一個信息時代,互聯網得到高度普及,互聯網與金融的融合孕育了互聯網金融,而大數據時代的到來又給互聯網金融帶來了質的變化。

互聯網金融不是互聯網和金融的簡單疊加,更深層次的變化是改變了金融服務模式,給金融體系帶來了變革,融入了更多互聯網特有技術,大數據技術就是其中的典型代表,它也被視為推動互聯網金融發展的重要驅動力之一,使金融業形成了一種新的業態。

(9)對金融大數據看法擴展閱讀:

大數據的主要特點為:大量、高速、多樣、價值。大數據最核心的價值就是在於對於海量數據進行存儲和分析。相比起現有的其他技術而言,大數據的「廉價、迅速、優化」這三方面的綜合成本是最優的。

互聯網金融的核心就是數據,數據的規模、真實性、有效性、數據分析應用的能力將決定未來互聯網金融業的競爭力,而大數據技術正是互聯網金融的重要技術支撐。

J. 大數據在金融行業的應用與挑戰

大數據在金融行業的應用與挑戰
A 具有四大基本特徵
金融業基本是全世界各個行業中最依賴於數據的,而且最容易實現數據的變現。全球最大的金融數據公司Bloomberg在1981年成立時「大數據」概念還沒有出現。Bloomberg的最初產品是投資市場系統(IMS),主要向各類投資者提供實時數據、財務分析等。
隨著信息時代降臨,1983年估值僅1億美元的Bloomberg以30%股份的代價換取美林3000萬美元投資,先後推出Bloomberg Terminal、News、Radio、TV等各類產品。1996年Bloomberg身價已達20億美元,並以2億美元從美林回購了10%的股份。2004年Bloomberg在紐約曼哈頓中心建成246米摩天高樓。到2008年次貸危機,美林面臨崩盤,其剩餘20%的Bloomberg股份成為救命稻草。Bloomberg趁美林之危贖回所有股份,估值躍升至225億美元。2016年Bloomberg全球布局192個辦公室,擁有1.5萬名員工,年收入約100億美元,估值約1000億美元,超過同年市值為650億美元的華爾街標桿高盛。
大數據概念形成於2000年前後,最初被定義為海量數據的集合。2011年,美國麥肯錫公司在《大數據的下一個前沿:創新、競爭和生產力》報告中最早提出:大數據指大小超出典型資料庫軟體工具收集、存儲、管理和分析能力的數據集。
具體來說,大數據具有四大基本特徵:
一是數據體量大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量。
二是數據類別大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據。
三是處理速度快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是數據的真實性高,隨著社交數據、企業內容、交易與應用數據等新數據源的興起,傳統數據源的局限被打破,信息的真實性和安全性顯得極其重要。
而相比其他行業,金融數據邏輯關系緊密,安全性、穩定性和實時性要求更高,通常包含以下關鍵技術:數據分析,包括數據挖掘、機器學習、人工智慧等,主要用於客戶信用、聚類、特徵、營銷、產品關聯分析等;數據管理,包括關系型和非關系型數據、融合集成、數據抽取、數據清洗和轉換等;數據使用,包括分布式計算、內存計算、雲計算、流處理、任務配置等;數據展示,包括可視化、歷史流及空間信息流展示等,主要應用於對金融產品健康度、產品發展趨勢、客戶價值變化、反洗錢反欺詐等監控和預警。
B 重塑金融行業競爭新格局
「互聯網+」之後,隨著世界正快速興起「大數據+」,金融行業悄然出現以下變化:
大數據特徵從傳統數據的「3個V」增加到「5個V」。在數量(Volume)、速度(Velocity)、種類(Variety)基礎上,進一步完善了價值(Value)和真實性(Veracity),真實性包括數據的可信性、來源和信譽、有效性和可審計性等。
金融業按經營產品分類變為按運營模式分類。傳統金融業按經營產品劃分為銀行、證券、期貨、保險、基金五類,隨著大數據產業興起和混業經營的發展,現代金融業按運營模式劃分為存貸款類、投資類、保險類三大類別。
大數據市場從壟斷演變為充分市場競爭。全球大數據市場企業數量迅速增多,產品和服務的差異增大,技術門檻逐步降低,市場競爭日益激烈。行業解決方案、計算分析服務、存儲服務、資料庫服務和大數據應用成為市場份額排名最靠前的五大細分市場。
大數據形成新的經濟增長點。Wikibon數據顯示,2016年,全球大數據硬體、軟體和服務整體市場增長22%達到281億美元,預計到2027年,全球在大數據硬體、軟體和服務上的整體開支的復合年增長率為12%,將達到大約970億美元。
數據和IT技術替代「重復性」業務崗位。數據服務公司Eurekahedge通過追蹤23家對沖基金,發現5位對沖基金經理薪金總額為10億美元甚至更高。過去10年,靠數學模型分析金融市場的物理學家和數學家「寬客」一直是對沖基金的寵兒,其實大數據+人工智慧更精於此道。高盛的紐約股票現金交易部門2000年有600名交易員而如今只剩兩人,其任務全由機器包辦,專家稱10年後高盛員工肯定比今天還要少。
美國大數據發展走在全球前列。美國政府宣稱:「數據是一項有價值的國家資本,應對公眾開放,而不是將其禁錮在政府體制內。」作為大數據的策源地和創新引領者,美國大數據發展一直走在全球最前列。自20世紀以來,美國先後出台系列法規,對數據的收集、發布、使用和管理等做出具體的規定。2009年,美國政府推出Data.gov政府數據開放平台,方便應用領域的開發者利用平台開發應用程序,滿足公共需求或創新創業。2010年,美國國會通過更新法案,進一步提高了數據採集精度和上報頻度。2012年3月,奧巴馬政府推出《大數據研究與開發計劃》,大數據迎來新一輪高速發展。
英國是歐洲金融中心,大數據成為其領先科技之一。2013年,英國投資1.89億英鎊發展大數據。2015年,新增7300萬英鎊,創建了「英國數據銀行」data.gov.uk網站。2016年,倫敦舉辦了超過22000場科技活動,同年,英國數字科技投資逾68億英鎊,而收入則超過1700億英鎊。另外,英國統計局利用政府資源開展「虛擬人口普查」,僅此一項每年節省5億英鎊經費。
C 打造高效金融監管體系
大數據用已發生的總體行為模式和關聯邏輯預測未來,決策未來,作為現代數字科技的核心,其靈魂就是——預測。
偵測、打擊逃稅、洗錢與金融詐騙
全球每年因欺詐造成的經濟損失約3.7萬億美元,企業因欺詐受損通常為年營收額的5%。全球最大軟體公司之一美國SAS公司與稅務、海關等政府部門和全球各國銀行、保險、醫療保健等機構合作,有效應對日益復雜化的金融犯罪行為。如在發放許可之前,通過預先的數據分析檢測客戶是否有過行受賄、欺詐等前科,再確定是否發放借貸或海關通關。SAS開發的系統已被國際公認為統計分析的標准軟體,在各領域廣泛應用。英國政府利用大數據檢測行為模式檢索出200億英鎊的逃稅與詐騙,追回了數十億美元損失。被福布斯評為美國最佳銀行的德克薩斯資本銀行(TCBank),不斷投資大數據技術,反金融犯罪系統與銀行發展同步,近3年資產從90億美元增至210億美元。荷蘭第三大人壽保險公司CZ依靠大數據對騙保和虛假索賠行為進行偵測,在支付賠償金之前先期阻斷,有效減少了欺詐發生後的司法補救。
大數據風控建立客戶信用評分、監測對照體系
美國注冊舞弊審核師協會(ACFE)統計發現,缺乏反欺詐控制的企業會遭受高額損失。美國主流個人信用評分工具FICO能自動將借款人的歷史資料與資料庫中全體借款人總體信用習慣相比較,預測借款人行為趨勢,評估其與各類不良借款人之間的相似度。美國SAS公司則通過集中瀏覽和分析評估客戶銀行賬戶的基本信息、歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎(如搜索到該客戶從新出現的國家為特有用戶轉賬,或在新位置在線交易等),進行實時反欺詐分析。
美國一家互聯網信用評估機構通過分析客戶在Facebook、Twitter等社交平台留下的信息,對銀行的信貸和投保申請客戶進行風險評估,並將結果出售給銀行、保險公司等,成為多家金融機構的合作夥伴。
D 數據整合困難
應用經濟指標預測系統分析市場走勢
IBM使用大數據信息技術成功開發了「經濟指標預測系統」,該系統基於單體數據進行提煉整合,通過搜索、統計、分析新聞中出現的「新訂單」等與股價指標有關的單詞來預測走勢,然後結合其他相關經濟數據、歷史數據分析其與股價的關系,從而得出行情預測結果。
追蹤社交媒體上的海量信息評估行情變化
當今搜索引擎、社交網路和智能手機上的微博、微信、論壇、新聞評論、電商平台等每天生成幾百億甚至千億條文本、音像、視頻、數據等,涵蓋廠商動態、個人情緒、行業資訊、產品體驗、商品瀏覽和成交記錄、價格走勢等,蘊含巨大財富價值。
2011年5月,規模為4000萬美元的英國對沖基金DC Markets,通過大數據分析Twitter的信息內容來感知市場情緒指導投資,首月盈利並以1.85%的收益率一舉戰勝其他對沖基金僅0.76%的平均收益率。
美國佩斯大學一位博士則利用大數據追蹤星巴克、可口可樂和耐克公司在社交媒體的圍觀程度對比其股價,證明Facebook、Twitter和 Youtube上的粉絲數與股價密切相關。
提供廣泛的投資選擇和交易切換
日本個人投資理財產品Money Design在應用程序Theo中使用演算法+人工智慧,最低門檻924美元,用戶只需回答風險承受水平、退休計劃等9個問題,就可使用35種不同貨幣對65個國家的1.19萬只股票進行交易和切換,年度管理費僅1%。Money Design還能根據用戶投資目標自動平衡其賬戶金額,預計2020年將超過2萬億美元投資該類產品。
利用雲端資料庫為客戶提供記賬服務
日本財富管理工具商Money Forward提供雲基礎記賬服務,可管理工資、收付款、寄送發票賬單、針對性推送理財新項目等,其軟體系統連接並整合了2580家各類金融機構的各類型帳戶,運用大數據分析的智能儀表盤顯示用戶當前財富狀況,還能分析用戶以往的數據以預測未來的金融軌跡。目前其已擁有50萬商家和350萬個體用戶,並與市值2.5萬億美元的山口金融集團聯合開發新一款APP。
為客戶定製差異化產品和營銷方案
金融機構迫切需要掌握更多用戶信息,繼而構建用戶360度立體畫像,從而對細分客戶進行精準營銷、實時營銷、智慧營銷。
一些海外銀行圍繞客戶「人生大事」,分析推算出大致生活節點,有效激發其對高價值金融產品的購買意願。如一家澳大利亞銀行通過大數據分析發現,家中即將誕生嬰兒的客戶對壽險產品的潛在需求最大,於是通過銀行卡數據監控准媽媽開始購買保胎葯品和嬰兒相關產品等現象,識別出即將添丁的家庭,精準推出定製化金融產品套餐,受到了客戶的積極響應,相比傳統的簡訊群發模式大幅提高了成功率。
催生並支撐人工智慧交易
「量化投資之王」西蒙斯被公認為是最能賺錢的基金經理人,自1988年創立文藝復興科技公司的旗艦產品——大獎章基金以來,其憑借不斷更新完善的大數據分析系統,20年中創造出35%的年均凈回報率,比索羅斯同期高10%,比股神巴菲特同期高18%,成為有史以來最成功的對沖基金,並於1993年基金規模達2.7億美元時停止接受新投資。在美國《Alpha》雜志每年公布的對沖基金經理排行榜上,西蒙斯2005年、2006年分別以15億美元、17億美元凈收入穩居全球之冠,2007年以13億美元位列第五,2008年再以25億美元重返榜首。
推動金融產品和服務創新
E 面臨三大挑戰
目前,全球各行業數據量的增長速度驚人,在我國尤其集中在金融、交通、電信、製造業等重點行業,信息化的不斷深入正在進一步催生更多新的海量數據。
據統計,2015年中國的數據總量達到1700EB以上,同比增長90%,預計到2020年這一數值將超過8000EB。以銀行業為例,每創收100萬元,銀行業平均產生130GB的數據,數據強度高踞各行業之首。但在金融企業內部數據處於割裂狀態,業務條線、職能部門、渠道部門、風險部門等各個分支機構往往是數據的真正擁有者,缺乏順暢的共享機制,導致海量數據往往處於分散和「睡眠」狀態,雖然金融行業擁有的數據量「富可敵國」,但真正利用時卻「捉襟見肘」。
數據安全暗藏隱患
大數據本質是開放與共享,但如何界定、保護個人隱私權卻成為法律難題。大數據存儲、處理、傳輸、共享過程中也存在多種風險,不僅需要技術手段保護,還需相關法律法規規范和金融機構自律。多項實際案例表明,即使無害的數據大量囤積也會滋生各種隱患。安全保護對象不僅包括大數據自身,也包含通過大數據分析得出的知識和結論。在線市場平台英國Handshake.uk.com就嘗試允許用戶協商個人數據被品牌分享所得的報酬。
人才梯隊建設任重道遠
人才是大數據之本。與信息技術其他細分領域人才相比,大數據發展對人才的復合型能力要求更高,需要掌握計算機軟體技術,並具備數學、統計學等方面知識以及應用領域的專業知識。

閱讀全文

與對金融大數據看法相關的資料

熱點內容
angularjsclass定義 瀏覽:157
ug數控編程怎麼導出程序 瀏覽:466
cmdb文件 瀏覽:710
鵯文件夾 瀏覽:763
網路輿情應對的基本理念是什麼 瀏覽:433
word2007層次結構 瀏覽:456
去掉文件名的數字 瀏覽:713
word公司 瀏覽:710
淘寶店數據包怎麼上傳 瀏覽:341
pbt文件 瀏覽:204
HX基礎編程怎麼改變字體 瀏覽:876
怎麼開網路教學 瀏覽:915
630升級工程武器 瀏覽:936
用換機助手接收的軟體文件在哪找 瀏覽:282
閱達app一教一輔五年級有哪些 瀏覽:7
win10系統用f2調節音量 瀏覽:19
壓縮文件密碼器 瀏覽:840
線下活動數據分析有哪些 瀏覽:314
助聽器插片式編程線如何連接 瀏覽:293
怎麼刪除系統休眠文件 瀏覽:914

友情鏈接