導航:首頁 > 網路數據 > 大數據幫助企業的實例

大數據幫助企業的實例

發布時間:2023-09-03 04:59:46

A. 關於大數據應用有什麼例子

大數據應用實例:

1、關能源行業大數據應用

計算居民用電量。

2、職業籃球賽大數據應用

專業籃球隊會通過搜集大量數據來分析賽事情況,然而他們還在為這些數據的整理和實際意義而發愁。通過分析這些數據,找到對手的弱點。

3、保險行業大數據應用

集中處理所有的客戶信息。

B. 大數據對於當前企業的運營有哪些幫助

進入新的歷史時期以來,收集更加豐富的數據是擺在各個企業面前的主要任務,一旦企業不能收集范圍更廣的信息,那麼企業管理決策則極易出現更多的失誤。企業要重視內部數據信息管理工作,保證當前數據管理與大數據時代特點相一致。第一,進入大數據時代以來,由於涌現出數不勝數的數據信息,因此如果傳統數據信息管理技術不能及時改變則極有可能影響大數據的應用,所以要求當前企業必須及時引進先進的軟體與硬體,才能推動大數據的普遍應用。第二,由於數據信息的海量出現,因此企業還需不斷提高數據信息的管理能力,要保證及時處理與加工得到的各種數據信息,要及時掌握當前最新數據。很多企業已經意識到信息數據的重要性,但因為不擁有先進的技術措施,各種數據信息還不能發揮應有的作用。第三,在企業管理決策過程中,雖然大數據發揮著不可替代的作用,但同時也需重視數據碎片的作用,一個企業要想取得成功則必須重視二種數據的應用,才能使二種數據相互協調,保證數據分析具有更高的科學性,進一步簡化分析過程,減輕工作人員的勞動強度。企業還需及時創新內部知識管理,要盡快引入新型知識管理模式。在實際運行中,知識管理其實就是數據的管理。企業在做出管理決策時,知識提取是一個不可缺少的過程,只有大力應用各種知識才能制訂最為合理的決策。當前由於大數據技術的影響,人們日益意識到知識的重要性,很多企業當前將建設現代化的知識管理模式放在重要位置,高度重視知識管理工作。同時企業也不能過分依賴大數據的應用,而忽略了主觀決策的重要性,要保證二者相互協調、相互促進,才能幫助企業做出正確。

C. 大數據技術有在工業領域的成功應用案例嗎

. 深圳市兒童醫院成功部署IBM集成平台與商業智能分析系統
IBM利用其行業領先的大數據與分析技術,支持深圳市兒童醫院搭建信息集成平台,整合原有分散在多系統中的海量數據,實現各部門的信息共享;同時通過商業智能分析對集成數據進行深入挖掘,為醫院各部門人員的科學決策提供全面的輔助,提升醫院的服務水平和管理能力。
2. Informatica幫助紫金農商銀行深挖數據價值
紫金農商銀行ODS數據倉庫項目建設使用Informatica產品完成數據的載入、清洗、轉換工作顯得尤為簡單,圖形化、流程化設計使維護人員能夠快速、順暢的操作,即使數據源結構發生變化,也不會像以前必須修改大量的程序代碼,只需要在PowerCenter中配置一下即可。
3. 華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885 V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
4. IBM攜手漢端科技為飛鶴乳業打造全產業鏈可追溯體系
IBM、漢端科技與中國飛鶴乳業聯合宣布,通過利用IBM業界領先的全面大數據與分析能力,和漢端科技在商業智能領域豐富的行業經驗,飛鶴乳業實現了產品的可追溯與食品安全的數字化管理,完成了系統數字化、透明化、服務化的升級
5. 浪潮大數據平台大大提升了濟南的警務工作能力
浪潮在幫助濟南公安局在搭建雲數據中心的基礎上構建了大數據平台,以開展行為軌跡分析、社會關系分析、生物特徵識別、音視頻識別、銀行電信詐騙行為分析、輿情分析等多種大數據研判手段的應用,為指揮決策、各警種情報分析、研判提供支持,做到圍繞治安焦點能夠快速精確定位、及時全面掌握信息、科學指揮調度警力和社會安保力量迅速解決問題。
6. 英特爾攜杭州誠道科技構建智能交通
面對大數據挑戰,杭州市和杭州誠道科技有限公司緊密合作,部署了基於英特爾大數據解決方案的誠道重點車輛動態監管系統,通過集中的數據中心將全市卡口、電子警察、視頻監控、流量檢測設備、信號機、誘導設備等有效地連接起來,從交通案件偵破能力、交通警察對機動車輛的監管能力到利用關聯車輛的數據分析能力,都得到了極大提升。
7. 步步高集團借Oracle Exadata 大大提高了IT投資回報率
步步高集團採用 Oracle Exadata資料庫雲伺服器搭建信息化平台,憑借Oracle Exadata資料庫雲伺服器的高擴展性、安全性和冗餘性,步步高集團得以在該基礎架構上運行一系列Oracle零售行業以及Oracle的應用軟體。此外,基於Oracle Exadata的步步高IT新架構比傳統架構擁有更好的性價比,最大限度地增加了IT的投資回報率。
8. 華為Anti-DDoS助阿里巴巴檢測DDoS變革
阿里巴巴現網多個數據中心出口都部署了華為的Anti-DDoS解決方案,平均每天防護的DDoS攻擊次數超過100次,每年達數萬次,峰值防護的DDoS攻擊流量超過100Gbps。如今,DDoS攻擊在阿里巴巴安全工程師眼裡已經習以為常,由華為Anti-DDoS方案自動調度進行清洗防護即可。「雙11」期間,華為Anti-DDoS方案一如既往地成功防護了多輪DDoS攻擊事件,有力保障了阿里巴巴網路交易的順暢平穩。
9. 華為大數據方案在福建移動的應用
為進一步提升外呼成功率,從2014年初開始,福建移動聯合華為公司開展基於大數據的精準營銷工作,採用大數據分析的方法選擇外呼目標價值用戶。基於大數據分析方法和傳統外呼方法分別提供20萬目標客戶清單,在前台無感知下進行對比驗證,確保對比效果不受人為因素影響,經過外呼驗證,基於大數據分析方法較傳統方法外呼成功率提升50%以上,有效支撐了福建移動4G用戶發展戰略。
10. 北京市人民政府「12345」便民電話中心選擇Oracle Exadata 實現便攜服務
為了進一步提升部門的調度能力、辦理水平和群眾滿意度,北京市人民政府「12345」便民電話中心選擇Oracle Exadata資料庫雲伺服器,升級成為北京市非緊急救助服務綜合受理調度平台,通過Oracle Exadata Database Machine支撐起新平台的資料庫訪問需求。升級後的平台能夠整合全市的便民呼叫服務,支撐來自群眾的各類訴求、求助、批評和建議,並可為公眾提供方便、快捷的公共信息服務,真正成為全市的輿情中心、信息匯集中心和城市名片。

11. 民生銀行借IBM BigInsights應對金融業的大數據挑戰
IBM BigInsights大數據解決方案和企業級NoSQL資料庫SequoiaDB合作,為民生銀行搭建低成本、高性能、高可靠且水平擴張的數據平台,幫助民生銀行通過大數據分析應對金融業的大數據挑戰,完善交易流水查詢分析系統,產業鏈金融管理系統,以及私人銀行產品貨架管理系統。
12. 中信銀行信用卡實施EMC Greenplum 數據倉庫解決方案
中信銀行信用卡中心選擇實施EMC Greenplum 數據倉庫解決方案。Greenplum 數據倉庫解決方案為中信銀行信用卡中心提供了統一的客戶視圖,藉助客戶統一視圖,中信銀行信用卡中心可以更清楚地了解其客戶價值體系,從而能夠為客戶提供更有針對性和相關性的營銷活動。基於數據倉庫,中信銀行信用卡中心現在可以從交易、服務、風險、權益等多個層面分析數據。通過提供全面的客戶數據,營銷團隊可以對客戶按照低、中、高價值來進行分類,根據銀行整體經營策略積極地提供相應的個性化服務。
13. 惠普助力雅昌集團掘金大數據
成立於1993年的雅昌集團首創「傳統印刷+IT技術+文化藝術」的商業模式,形成環環相扣的文化產業鏈,為藝術市場提供全面、綜合的一站式服務。基於企業內容數據管理體系,惠普為雅昌搭建了從數據採集、處理、管理到應用的全過程處理流程,使雅昌可以快速利用所需數據,縮短新品上線時間,快速響應市場變化。
14. 德國足球隊採用SAP大數據方案迎戰世界盃
德國足協和SAP公司通過聯合創新引入SAP Match Insights解決方案,該方案基於SAP HANA平台運行處理海量數據,可以為球員和教練提供一個簡明的用戶界面,幫助雙方開展互動性更強的對話,分析球隊訓練、備戰和比賽情況,從而提升球員和球隊的成績。
15. 1號店借Oracle Exadata改善終端客戶體驗
1號店採用Oracle Exadata資料庫雲伺服器成功優化統一整合的數據平台,滿足了不斷增長的業務處理需求,並進一步改善了終端客戶體驗。經過Oracle Exadata整合後的新平台採用混合負載互備架構,將平均處理性能提升7倍,既可以支持目前規劃業務量的業務處理,還能夠隨著業務量的增長進行在線升級、擴容,滿足處理能力和數據量的增長需求。軟、硬體集成設計的Oracle Exadata 協助解決了1號店的I/O瓶頸問題,實現了比傳統架構更高的性能和可擴展性。同時,基於Exadata的1號店IT新架構比傳統架構擁有更好的性價比,最大限度地發揮了IT投資回報率。
16. 大數據在青島銀行:提升銀行交易性能、簡化運營和管理
利用IBM大數據專家PureData,青島銀行能夠高效集成業務數據,簡化運維。PureData for Transactions作為青島銀行重要業務處理系統,能夠在一個系統中整合超過幾十個資料庫,同時提供良好的性能、可用性和可擴展性支持實現廣泛的業務目標,例如地域擴張,突發的業務交易高峰,新櫃面、流程銀行等大規模的業務上線等。
17. Informatica方案幫助南京兒童醫院實現信息互通共享
南京市兒童醫院目前已建成包括HIS、LIS、PACS、電子病歷EMR、醫生工作站、移動護理、病案、財務管理、庫房管理和手術麻醉等幾十個應用系統,這些異構系統間數據調用分散,不能集中統一標准化管理。通過採用Informatica ETL工具構建數據倉庫系統,並基於數據倉庫建設醫院數據調用公共資源中心庫,南京市兒童醫院實現了實時的數據交互和信息共享,干凈、標準的數據為跨應用系統數據關聯分析打下扎實基礎。
18. 東吳大學採用達索系統EXALEAD啟動大數據應用暨產學合作
台灣東吳大學採用達索系統EXALEAD大數據智能應用開發解決方案,全方位地整合校務信息,積極開發校務經營發展的各項應用。此外還將啟動三方產學合作計劃,協助建立校內大數據相關課程、人才培訓和實習機制,使學生自入學就開始不斷提升其未來職場所需的關鍵競爭力,學用合一,實現學校、學生、企業三贏。
19. 網路大腦PK人腦 大數據押高考作文題
為了幫助考生更好地備考,網路高考作文預測通過對過去八年高考作文題及作文範文、海量年度搜索風雲熱詞、歷年新聞熱點等原始數據與實時更新的「活數據」進行深度挖掘分析,以「概率主題模型」模擬人腦思考,反向推導出作文主題及關聯詞彙,為考生預測出2014年高考作文的六大命題方向。

20. IBM助力同仁醫院構築強大的分析體系
同仁醫院通過與IBM合作,同仁醫院建立起了強大的分析能力和體系,包括對臨床、運營、科研、考核等信息的分析,實現智慧的醫院管理與考核;同時也能看到醫療設備的平均故障間隔周期,從而降低了設備的故障率、平均維修時間。這一切都讓工作效率穩步提升,也緩解了病人看病難的問題,提高了患者就醫滿意度。
21. 微軟助上海市浦東新區衛生局更加智能化
作為上海市公共衛生的主導部門,浦東新區衛生局在微軟SQL Server 2012的幫助之下,積極利用大數據,推動衛生醫療信息化走上新的高度:公共衛生部門可通過覆蓋區域的居民健康檔案和電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測和響應程序,快速進行響應。與此同時,得益於非結構化數據的分析能力的日益加強,大數據分析技術也使得臨床決策支持系統更智能。
22. 湖南電信通過分析掌握電信市場動向、針對性定製營銷計劃
利用IBM大數據專家PureData,湖南電信實現了通過分析掌握市場整體經營情況、快速制定市場策略以及加強客戶經理營銷維系的高效執行。PureData for Analytics作為湖南電信本地數據集市建設工程重要組成部分,高效整合了湖南電信旗下各本地網數據,為進一步分析創造先機。
23. 攜程借SQL Server增強了數據採集和掌控
作為國內領先的綜合性旅行服務公司,攜程計算機技術有限公司曾面臨分支機構、服務城市和員工數量的增長所帶來的運營數據分散和數據集成難的 IT 問題。藉助微軟SQL Server 2012 商業智能解決方案,攜程增強了其對所有下屬分支機構的數據採集和掌控,大大減少了計劃性停機時間以及非計劃性停機的時間,靈活的部署選項也可以根據攜程的需要實現從伺服器到雲的擴展。
24. 上海公共研發平台部署Oracle Exadata應對擴展需求
上海公共研發平台部署Oracle Exadata資料庫雲伺服器,以應對其系統和應用的擴展需求。Oracle Exadata融合了一系列同類最佳的預配置的伺服器、網路、存儲和軟體,能為數據倉庫和在線事務處理應用程序提供超強性能。上海公共研發平台運行Oracle Exadata期間相對穩定,CPU佔用率控制在5%以內,極大改善了用戶應用體驗。同時,Exadata平台的可擴展性極好的滿足了上海公共研發平台的系統需求,目前整個公共研發平台的20多個應用系統已經全部遷移到Exadata上,應用部署量增長1倍,且運行十分穩定。
25. 360手機衛士10KB解決iPhone騷擾
360手機衛士通過對海量數據的運算和精準匹配下發,將一組大小僅為10KB的數據即1000個騷擾號碼同步到用戶手機上,打造個性化的騷擾號碼資料庫,此外,每天更新的騷擾號碼庫數據,會依據標記趨勢調整騷擾號碼庫中各類數據比例,即每一位360手機衛士用戶手機中的1000個騷擾號碼都是動態的,隨地域、身份以及騷擾趨勢的變化而變化。
26. 神州數碼助張家港市更「智慧」
在張家港實踐的城市案例中,市民登錄這款「神州數碼」研發的市民公共信息服務平台後,市民只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項「在線預審」服務、130餘項「網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。

27. IBM助中網組委會構建安全和敏捷的內聯網
IBM專門為中網設計了具有實時大數據分析功能的MatchTracker(賽事追蹤系統),可以為球迷提供數據呈現、計分等功能。 MatchTracker基於IBM SlamTracker分析技術,使球迷能夠利用歷史和實時性數據,洞悉比分之後的態勢和策略。此外,IBM還為中網組委會構建了安全和敏捷的內聯網。
28. Cortana基於微軟Bing大數據預測世界盃
微軟為Cortana增加了世界盃預測的功能,基於微軟Bing大數據,並綜合考慮世界盃各支球隊的過往比賽結果、比賽時間、天氣情況、主場優勢以及其他因素,使用大量的博彩市場公開數據、民意調查、社交媒體以及其它在線數據,利用大數據分析來判斷每場比賽的結果。
29. 中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
30. 華為助農行完成海量數據分布式處理的需求
華為向農行提供了良好的計算平台,基於華為RH2288 V2伺服器的分布式並行計算集群進行測試,以及還提供了快速響應客戶需求的研發能力,以及業界最快捷的售後服務。農行的測試結果表明,華為解決方案完全滿足農行對海量數據進行分布式處理的要求。

D. 有哪些大數據分析案例

如下:

1. 大數據應用案例之:醫療行業

1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。

2)大數據配合喬布斯癌症治療

喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。

2. 大數據應用案例之:能源行業

1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。

通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。

因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。

為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。

3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶

法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。

他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。

這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。

4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略

北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。

結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。

定價團隊的分析圍繞著三個關鍵維度:

1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。

2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。

3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。

透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。

5、大數據應用案例之:網路營銷行業(SEM)

很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。

在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。

企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。

通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。

6、大數據應用案例之:電商行業

意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。

雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。

從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。

7、大數據應用案例之:娛樂行業

微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。

今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。

總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。

E. 8個典型案例看懂零售巨頭的「大數據」戰略

8個典型案例看懂零售巨頭的「大數據」戰略_數據分析師考試

未來的零售分析要求零售商藉助集成式業務流程和信息系統,為客戶洞察提供支持,將客戶洞察發展成一種企業級的戰略能力,並根植於企業結構和企業文化中。在這種形勢下,零售商的所有業務職能部門在制定決策時,將把基於情景的客戶洞察作為一個重要依據。

分析公司 EKN 認為,為了真正實現以客戶為中心,零售商需要具備多項關鍵能力,而這些能力均由業務分析驅動。

全渠道集成。如果缺乏相關客戶洞察支持與客戶的互動,零售商將無法實現跨渠道無縫客戶體驗。零售商與客戶互動的聯絡點能為零售商提供豐富的客戶數據,因此,所有聯絡點也成為了零售商的最佳競爭利器。

個性化互動。與網上零售商相比,實體零售商具有兩大優勢:能與客戶進行個人接觸,以及擁有更豐富的歷史記錄和更多樣的客戶數據。如今,「個性化」購物體驗已成為人們津津樂道的話題,而如何巧妙地結合上述兩大優勢,即在行動中及時交付客戶洞察,將成為零售商打造「個性化」購物體驗的基礎。

持續的卓越運營。客戶洞察的應用並非僅局限於面向客戶的使用案例。事實上,如果零售商已經能夠在各個運營職能部門中更成熟地運用分析功能,那麼集成客戶洞察便是他們不容錯過的增量機會。

零售商用例

銷售

瑞士零售商 Globus 使用大數據內存計算和高級分析來獲取寶貴的銷售績效洞察。目前,他們能夠實時處理海量的產品數據,並在幾分鍾內分析不同時間范圍、店鋪和區域內數千種產品的銷售模式與促銷活動。該零售商還向其管理人員提供了這些洞察的訪問許可權,以便他們能夠更迅速地響應市場狀況。

美國零售商 Guess 使用高級分析向其高管提供暢銷產品和可用庫存的實時視圖。該零售商的分析解決方案基於大型客戶數據集,分析銷售額、細分目標客戶,並策劃促銷活動。

市場營銷

沃爾瑪的 Global.com 部門充分利用「快速的大數據」和社交分析,快速識別不斷變化的客戶喜好。該零售商的社交意識(Social Sense)項目能通過社交媒體確定商品的暢銷程度,並幫助顧客發掘潛在需求和感興趣的新產品。同時,藉助 ShoppyCat 工具,他們可根據 Facebook 用戶的愛好和興趣,為這些用戶推薦適合的產品。此外,Global.com 還使用社交基因組(Social Genome)技術,來幫助客戶為朋友挑選禮物。

塔吉特(Target)百貨公司利用預測分析程序,來推斷個體消費者是否具備成為該公司特定營銷活動優質客戶的特質。他們給每位顧客分配了一個獨一無二的客戶識別號碼。該號碼將客戶個人信息、購物行為和喜好整合到一個可跟蹤的實體內。塔吉特還專門成立了一個客戶營銷分析部門,致力於全面了解客戶,超越其他競爭對手,從而獲得競爭優勢。藉助動態數據倉庫(Active Data Warehouse),塔吉特可在整個企業的混合工作負載環境下,基於海量數據管理復雜的用戶查詢。

全渠道

英國零售商巴寶莉(Burberry)集成了旗下所有渠道,包括實體店、網上商店、移動終端以及各大社交網站。他們採用了創新技術和數據分析,用於分析來自所有數據源的數據,旨在實時識別個人客戶並建立客戶檔案。相比過去,巴寶莉的分析速度提高了 14,000 倍,以前需要 5 個小時的請求,現在 1 秒就能完成。不論店員處於什麼位置,他們都能在客戶踏入店內時立即識別客戶信息,了解他們過去的購買記錄,並提供個性化建議。

韓國零售商 NS Shopping 將移動渠道和社交渠道集成到零售環境中,並利用大數據分析,實時、集中地獲取所有渠道的客戶和產品數據。而公司的電子商務團隊和市場營銷團隊將利用這些數據,向顧客提供個性化的產品建議。

供應鏈

美國網上零售商亞馬遜基於非平穩隨機模型,構建了全新的供應鏈流程和系統。該方法能為訂單履行、尋源、產能和庫存決策提供鼎力支持。亞馬遜不僅開發了聯合和協調補貨的新演算法,還基於歷史需求、活動記錄和計劃、各履行中心的預測結果、庫存計劃、采購周期以及采購訂單,在 SKU 級別實施了全新的國家預測方案。

英國零售商樂購(Tesco)採用先進的建模工具,基於歷史銷售數據模擬配送倉庫的運作,從而達到優化庫存的目的。該零售商還組建了一個內部分析團隊,該團隊主要負責通過回歸測試掌握各要素之間的關聯,如天氣數據、特價優惠,及銷售模式等等。

以上是小編為大家分享的關於8個典型案例看懂零售巨頭的「大數據」戰略的相關內容,更多信息可以關注環球青藤分享更多干貨

F. 大數據利用的六大現實商業案例

大數據利用的六大現實商業案例_數據分析師考試

大數據正在改變市場的競爭格局。而那些能夠充分利用大數據分析的企業往往能夠更快地向市場提供產品和服務,更好地保持與顧客需求和慾望的一致性。2014年,調研公司Gartner的調查發現,73%的受訪企業在大數據方面進行了投資,或者計劃在接下來的24個月內投資大數據項目;而2013年的這一數據比例則為64%。改善客戶體驗和流程效率被受訪者排在最高的優先順序。

客戶體驗的改善不管是在線上或線下都在發生著的,數據從智能手機、移動應用程序、POS系統和電子商務網站等等渠道進行收集。隨著企業比以往任何時候都能夠收集和分析更多的、且類型豐富的數據信息,企業現如今所進行哪些相關工作,以及為什麼要進行都需要進行數據量化。而且,那是最靈活的調整自己的經營策略,以提高或維持市場份額的手段。在執行過程中,客戶體驗的改善有助於提高客戶的忠誠度和企業營收的增長。另一方面,如果公司選擇無視相關的數據,他們很可能會失去客戶和交易,而將其拱手讓給那些對於數據分析反應更敏捷,更精明的競爭對手。

企業流程的改進繼續專注於提高效率,節約成本,以及提高產品或服務的質量。大數據可以提供比傳統系統更深入的見解,因為其有更多的數據點和數據來源分析作為支撐。

無論企業的目標是為了促進營收增長、或是加快產品服務的上市速度、優化勞動力,或是實現其他操作方面的改進,其核心都在與變得更加積極主動,減少被動反應,這就意味著需要使用預測分析,以縮短學習曲線。

有許多使用大數據來提升和改善企業運營的方法,下面將為大家介紹六個典型的案例。

縮短上市時間

推出新的產品或服務涉及多個生命周期階段,其中一些比另一些更容易加速。在過去的幾十年中,葯品製造商已經使用臨床試驗模擬學習速度,降低成本,並減少了參與試驗患者的不必要的負擔。藉助雲計算和大數據,臨床試驗的模擬可以變得更加有利於製造商和患者。

百時美施貴寶公司(bristol-myers squibb) 通過將其內部託管網格環境擴展到AWS雲,減少了98%的臨床試驗模擬時間。該公司還進一步優化了劑量水平,使得葯物產品更安全,並只需要較少的臨床試驗患者的血液樣本。

由於臨床試驗對於數據是高度敏感的,百時美施貴寶公司建立了一個專門的,加密的VPN隧道鏈接亞馬遜網關,並配置了虛擬私有雲,以便使得其運行環境能夠與公眾客戶進行隔離。

在遷入雲中之前,科學家們使用一個共享的內部環境,所以運行大約數百個項目需要花費60小時。現在,每個科學家都有一個專門的環境,2000個項目大約在1.2小時內就能夠處理完畢,而且不會引起影響到團隊的其他成員。

遷移到AWS雲之後,百時美施貴寶公司得以能夠減少兒科研究臨床試驗受試者的人數,從60減少到40人,同時還縮短了一年多的學習研究時間。

優化勞動力

一些企業的人力資源部門正在使用人才分析和大數據來降低成本,進而有效管理人力資源相關的問題。大數據幫助他們能夠有效的選擇能夠更好的適應企業的新員工,降低員工離職率,了解技能和現有市場勞動力的輸出狀況,並確定公司前向發展所需要的人才。

施樂公司使用大數據將其呼叫中心的人員流失率降低了20%。要做到這一點,就必須了解是什麼原因導致了員工的離職,並確定如何改善員工的敬業度。

改善財務績效

企業的財務部門已經不僅僅只是進行定期的報告和BI工作了,他們已經在開始利用大數據來降低風險和成本,尋找機會提高預測的准確性。具體地說,他們使用的數據來識別高風險客戶和供應商,以阻止欺詐,找准收入泄漏,並發掘新的或更有效的商業模式。

最近,天氣預測公司The Weather Company與IBM之間的合作將使企業用戶得以更好地管理天氣狀況對於企業績效的影響。據The Weather Company介紹,每年,僅在美國天氣因素就會造成價值五千億美元的經濟影響。

這些氣象數據是來自超過10萬台的氣象感測器和飛機,以及數以百萬計的智能手機、建築和路上奔跑的車輛。這些數據與其他22億個獨特的預測點的數據來源相結合,平均每天進行100多億次的實時天氣預報。例如,零售商可以使用這些數據信息來調整人員配置和供應鏈策略。而能源公司將能夠藉助這些天氣數據信息改善供應和預測需求。保險公司將能夠向其投保人警告惡劣天氣條件,這樣他們就可以減少在冰雹災害天氣發生汽車損壞的可能性。

智能化的銷售

稍微修改一下企業的銷售和營銷策略就可能會對您企業的銷售業績產生深遠的影響,特別是當通過大數據分析之後進行的有規劃的修改。

想像一下,一個為期六周的直郵營銷活動票面收益率的超過了70%。而根據直銷協會的介紹,平均直郵回報率僅為3.7%。而雜貨連鎖店Kroger公司是如何做到的呢?一方面,他們根據客戶個人的購物歷史記錄採用個性化的直接郵寄方式。

Kroger公司的客戶會員卡計劃,被食品行業評為第一。超過90%的客戶使用會員卡購買產品。雖然也有其他因素的共同作用,使得Kroger公司的財務績效如此驕人,但其連續45個季度的持續增長至少部分要歸因於其客戶忠誠計劃。

最大限度地減少設備和資產故障

企業希望避免不必要的業務中斷干擾和客戶的焦慮。現在,感測器已經被嵌入到一切設備,企業可以使用這些數據信息,以確定何時需要對飛機,火車,汽車,及其它電器設備進行維修。理想情況下,當問題已經出現的時候,企業要了解這個問題是什麼原因造成的,以及其如何能得到解決,最好有一個專業的維修隊伍。

Pratt &Whitney公司是美國聯合技術公司(United Technologies Corp.)下屬的一個單位,該公司試圖減少意外的飛機發動機維修。據Airinsight.com介紹,今天的發動機能夠在飛機飛行過程中從多個快照收集約100個參數。相比之下,新一代的引擎能夠收集關於連續飛行的5000個參數。這一過程中產生約2千兆位元組的數據。使用這些數據信息,Pratt &Whitney公司及其合作夥伴IBM得以進行主動的維修。

利用客戶的終身價值

如今的授權客戶比以往任何時候都更加苛刻和善變。企業為了保持或增加市場份額,需要盡可能多地了解自己的客戶,不斷改善自己的產品和服務,並願意調整自己的商業模式,以反映其客戶的實際需求。

美國汽車租賃公司AvisBudget就一直致力於這方面。他們通過實施整合戰略增加了市場份額,並取得了數億美元的額外收入。主動參與確定客戶價值細分,提供分層激勵,提高客戶的忠誠度。該公司的IT合作夥伴CSC公司採用模型預測AvisBudget客戶資料庫的終身價值,並驗證了其使用多通道的營銷活動和相應的分析。

現在的客戶評估數據結合了其他數據,包括客戶的租賃歷史,服務問題,服務地區的人口統計,企業隸屬關系和客戶反饋等等。Avis Budget也收集和分析社交媒體數據。該公司有一個社交媒體專家團隊專門進行品牌營銷。該公司最近還更新了網站,以進一步改善客戶體驗,並且他們正在使用大數據預測區域性的車隊配售和定價服務需求。

以上是小編為大家分享的關於大數據利用的六大現實商業案例的相關內容,更多信息可以關注環球青藤分享更多干貨

G. 大數據洞察有哪些特色,大數據營銷案例,大數據企業

特色案例分析:
1、浪潮GS助力廣安集團一豬一ID強化食品安全
作為輻射全國的農牧企業集團,多年來廣安集團一直企業信息化進程與企業發展需求不匹配的問題。2013年,廣安集團引入浪潮GS,採用單件管理系統,通過一豬一ID對其成長周期進行全過程監控,促使食品安全可追溯,實現飼養流程精細化、集約化管理,使每年飼料節約了2成左右,為廣安的智慧企業養成之路奠定了基礎。
2、華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
3、神州數碼助張家港市更」智慧」
在張家港實踐的城市案例中,市民登錄由」神州數碼」研發的市民公共信息服務平台後,只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項」在線預審」服務、130餘項」網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。
4、中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
5、中國電信基於物聯網的智能公交解決方案
中國電信提出了基於物聯網的智能公交應用整體解決方案。該方案緊密結合公交行業特點,涵蓋了全球眼視頻監控系統、GPS定位調度系統、無線數據採集系統等技術,是基於物聯網技術的公交行業車輛監控調度管理綜合性解決方案。中國電信智能交通系統利用物聯網技術,提高了公交系統中的人(乘客、司乘人員、管理人員)、公交設施(道路、場站等)和公交車輛等之間的有機聯系,從而最佳地利用了交通系統的時空資源,通過信息資源的合理開發、利用和整合,提高了公交行業運行效率,改善了服務質量,為應對重大突發事件提供了必要的手段,在公交公司的科學運營管理、安全監控等方面發揮了重要的作用,物聯網的應用已成為公交業務發展的必然趨勢。
6、明略數據為稅務部門構建的可視化涉稅分析平台
稅務系統的數據在很長時間內大量來自於納稅人的申報行為數據和報表數據,面向稅務工作人員的是割裂的不同業務系統,信息本身被業務消解為固定的邏輯和處理形式。明略數據為稅務部門構建的可視化涉稅分析平台定位為面向稅務部門的數據服務產品。產品充分利用明略底層大數據平台相關技術,數據挖掘建模技術及明略稅務行業研究專家對稅源管理專業化,風險控制精細化,決策分析智能化的理解,搭建以分析預測為核心的數據應用平台,以幫助稅務部門征管工作更有效、更全面、更精細化的展開。
7、悠易互通汽車行業大數據經驗助奧迪品薦二手車
2015年,奧迪品薦二手車項目通過悠易互通程序化購買平台進行為期5個月的推廣活動,傳播受眾主要以男性以及已有奧迪車主為主,悠易互通規劃的投放策略是,首先,通過人群標簽及關鍵詞,對精準受眾人群進行全網競價;其次,對以上競價成功人群進行優化召回,分析以提高下一輪競價成功率;根據悠易互通汽車行業大數據經驗,消費者的行為路徑為」興趣-認知考慮-轉化」,程序化購買可以通過人群召回的方式將流失人群引導到下一環節,從而促進轉化可能。最終投放結果顯示,悠易互通通過以上策略高效達成客戶KPI,曝光量超過預估13%,點擊量超過KPI 26%,注冊量高達163%。
8、東風風神大數據」動」悉全系目標受眾,打破傳統促銷方式
派擇科技應用底層行為數據管理平台Action DMP支招東風風神全系營銷推廣活動, Action DMP實現全網用戶行為元數據、應用元數據、場景元數據的實時無損解析,精準捕獲各車型目標受眾;通過分析用戶行為場景,了解他們的觸媒習慣,展開品牌與用戶定製化溝通,其中也包括個性化創意載體與溝通渠道組合。項目最終CPL成本較目標降低40%。
9、智子雲大數據挖掘助蘇寧易購訪客」回心轉意」之路
蘇寧易購期望通過智子雲的VRM模型對到站/進APP的流失訪客進行精細劃分,並藉助DSP精準定向能力跨屏鎖定目標人群,找迴流失訪客。首先,建立數據倉庫;其次智子雲個性化推薦引擎Rec-Engine;智子雲智能動態出價引擎Delta-Engine;智子雲全網跨屏LBS定向引擎Loc-Engine不但支持多屏、跨屏投放,還能從訪客轉化率、媒體、地理位置、時段、設備類型、設備號等多個維度建立訪客轉化率預測模型和商品推薦模型;最後,重定向投放,針對每一個到訪訪客計算廣告點擊率和到站轉化率,然後通過自動聚類演算法將訪客人群分檔打分,對不同分值的人群,在綜合媒體環境、競價成功率等因素後,進行實時差異化出價。最終,本次活動找回蘇寧易購的流失訪客9,572,163次,並促成36,748個直接有效訂單;最終投資回報率>3。
10、 「優衣·幸運·穿回家」優衣庫2016春節場景營銷OxO
2016年,優衣庫中國推出了」優衣·幸運·穿回家」的春節主題活動,融入」LifeWear服適人生」品牌理念。結合大數據分析規模化的消費者共性,合適的移動媒介精準傳播,藉助自媒體傳播,連接到店體驗。制定優質的移動媒介策略,結合自媒體、網路廣告、社交媒體平台、零售店和微信支付,精準覆蓋受眾,,一系列線上活動讓優衣庫品牌和冬春裝產品形象直達人心,有效地將線下用戶帶到線上參與互動並積極分享,實現OxO導流,收獲了比較理想的品牌營銷和銷售增長效果。

H. 大數據應用案例有哪些

案例如下:

1、交通大數據暢通出行

交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。

2、教育大數據因材施教

在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。

3、環保大數據對抗PM2.5

在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。


大數據特點

1、大容量

例如,IDC最近的報告預測到2020年,世界數據量將擴大50倍.目前,大數據的規模仍然是不斷變化的指標,單一數據集的規模範圍從數十TB到數PB不同.簡單來說,存儲1PB數據需要2萬台配備50GB硬碟的PC.此外,各種意想不到的來源可以產生數據。

2、多樣性

數據多樣性的增加主要是由於網路日誌、社交媒體、網路檢索、手機通話記錄、感測器網路等數據類型。

3、高速

高速描述的是數據創建和移動的速度.在高速網路時代,通過實現軟體性能優化的高速計算機處理器和伺服器,創建實時數據流已成為流行趨勢.企業不僅要知道如何快速創建數據,還要知道如何快速處理、分析和返回用戶,以滿足他們的實時需求。

I. 目前大數據在哪些行業有案例或者說應用

大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。

大數據應用案例之:醫療行業

SetonHealthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

大數據應用案例之:能源行業

智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些大稿數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。

大數據應用案例之:通信行業

XOCommunications通過使用IBMSPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。

電信業者透過數以千萬計的禪者客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。

中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。

NTTdocomo把手機位置信息和互聯網上的信息結合起來,為顧滾襲孝客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。

大數據應用案例之:零售業

"我們的某個客戶,是一家領先的專業時裝零售商,通過當地的百貨商店、網路及其郵購目錄業務為客戶提供服務。公司希望向客戶提供差異化服務,如何定位公司的差異化,他們通過從Twitter和Facebook上收集社交信息,更深入的理解化妝品的營銷模式,隨後他們認識到必須保留兩類有價值的客戶:高消費者和高影響者。希望通過接受免費化妝服務,讓用戶進行口碑宣傳,這是交易數據與交互數據的完美結合,為業務挑戰提供了解決方案。"Informatica的技術幫助這家零售商用社交平台上的數據充實了客戶主數據,使他的業務服務更具有目標性。

零售企業也監控客戶的店內走動情況以及與商品的互動。它們將這些數據與交易記錄相結合來展開分析,從而在銷售哪些商品、如何擺放貨品以及何時調整售價上給出意見,此類方法已經幫助某領先零售企業減少了17%的存貨,同時在保持市場份額的前提下,增加了高利潤率自有品牌商品的比例。

閱讀全文

與大數據幫助企業的實例相關的資料

熱點內容
java中變數的存儲 瀏覽:795
linux搭建bugfree 瀏覽:652
win10專業版小功能介紹 瀏覽:16
學數控編程如何學 瀏覽:14
win10直接刪除文件 瀏覽:349
少兒編程和奧數哪個大 瀏覽:956
學校網站查成績怎麼辦 瀏覽:657
javaweb面試 瀏覽:4
qq空間說說點不進去 瀏覽:772
nodejscms系統 瀏覽:822
追星數據組是什麼東西 瀏覽:3
文件的格式怎麼建立 瀏覽:529
免費yoosee蘋果下載 瀏覽:447
網路大國與大數據 瀏覽:770
怎麼學plc的編程 瀏覽:643
javadnf輔助源碼 瀏覽:973
什麼app可以畫二維圖像 瀏覽:125
手機如何設置副路由器設置密碼 瀏覽:592
如何讓已經壓縮的文件恢復 瀏覽:344
網路atm取款支出是什麼意思 瀏覽:942

友情鏈接