導航:首頁 > 網路數據 > 大數據中的問題研究

大數據中的問題研究

發布時間:2023-09-02 02:24:49

Ⅰ 騰訊與清華大學牽手大數據科研,大數據研究的難題有哪些

據媒體報道,2021年5月18日騰訊與清華大學簽署衛生健康大數據科研,並表示未來將緊密合作從理論、技術、政策等多維度展開創新性研究。此消息在社交平台上引起了網民們的廣泛關注與討論。

部分網民們認為,當前我們已經步入了風險社會,所謂風險社會即是預知以及不可預知的風險交織在我們的社會之中,而未來通過大數據來介入公共衛生治理定有大成效;也有部分網民認為當前的全民健康管理以及重大公共衛生挑戰需要有大數據的幫助。而筆者以下想講一下大數據研究的難題有哪些?並想針對此講講自己的看法。

一、信息收集:物聯網與基礎設施建設之間的悖論

而在信息生態方面,當前為應對在公共衛生方面的種種挑戰,各部門已經正在試圖建構公共衛生分析系統以預防未來的公共衛生挑戰。但是其中的一個問題是如何通過大數據研究來建設一個完整且閉合的大數據信息生態。

Ⅱ 大數據分析會遇到哪些問題

1.很難獲得用戶操作行為完整日誌


現階段數據剖析以統計為主,如用戶量、使用時間點時長和使用頻率等。一是需求辨認用戶,二是記錄行為簡單引起程序運轉速度,三是開發本錢較高。


2.產品缺少中心方針


這需求剖析人員滿足的了解產品。產品有了中心方針,拆分用戶操作使命和目的,剖析才會有目的,不然拿到一堆數據不知如何下手。比方講輸入法的中心方針設為每分鍾輸入頻率,順著這個方針能夠剖析出哪些因素正向影響(如按鍵簡單點擊)和反向影響(如模糊音、誤點擊和點擊退格鍵的次數)中心方針。


3.短期內或許難以發揮作用


數據剖析需求不斷的試錯,很難在短期內證明方法的有效性,或許難以獲得其他人物的支撐。


4.將剖析轉化為有指導意義的結論或許設計


看過某使用的近四十個設置項的使用比例,修改皮膚使用率較高,而單個選項使用率不到0.1%,依次數據能夠調整設置項的層級聯系,重要的選項放置到一級著重顯現,低於5%的能夠放置二三級。


5.清晰用戶操作目的


功能關於用戶而言,使用率不是越高越好。添加達到的方針的途徑,用戶考慮本錢添加,操作次數會添加,比方查找。在使用中使用查找或許闡明用戶沒有通過瀏覽找到想要的內容,假如用戶查找熱門內容,闡明使用展示信息的方法出現問題。


6.考慮到運營需求


之前做過的工具型使用,設計的中心方針是進步操作效率,削減點擊次數、等待時間和手指位移等,最快的時間完成操作。而一些瀏覽型產品用戶的目的並不清晰,大致有瀏覽、查詢、對比和確認方針等四類用戶行為,需求兼容用戶方針不清晰情況下操作,引導用戶選擇的一起還要在過程中展示更多的內容,刺激用戶點擊。


關於大數據分析會遇到哪些問題,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅲ 大數據下會計前沿問題研究的目的

提升管理會計的管理思維和戰略視野。
大數據的出現,有力打破了管理會計對市場了解的時空限制,從側重本企業內部財務數據分析擴展到洞察各企業及本行業領域市場行情動態、業務技術從單一結構數據處理向多類型結構數據方向進步。
拓展了行業信息縱向和橫向寬度,極大地提升了管理會計的管理思維和戰略視野,使其能夠高效、全面地發揮作用。

Ⅳ 大數據背景下的信息安全問題探討

大數據背景下的信息安全問題探討
大數據具有體量巨大、類型繁雜、處理速度快、價值密度低四大特點,因此,對於個人來說,難以處理極其龐大的數據,只有國家和大型企業等組織或集團才有可能獲取到各種敏感信息;大數據所搜集提取的個人信息可能連本人都不完全知曉,比如個人的行為特徵、語言風格、愛好興趣等。在大數據時代如何保護個人敏感信息或隱私,必將成為高難度的世界課題。
2013年6月,美國前中情局雇員斯諾登曝光了始於2007年小布希時期美國國家安全局和聯邦調查局啟動的代號為「棱鏡」的秘密項目。美國國家安全局通過接入雅虎、谷歌、微軟、蘋果等9家美國互聯網公司中心伺服器,對郵件、圖片、視頻、電話等10類數據進行監控,以搜集情報,監視民眾的網路活動。「棱鏡」項目緣於2004年美國政府的「星風」監視計劃。但是,當時小布希政府由於法律程序等敏感問題而做出讓步,美國本土的監聽項目有所縮減。為了「星風」計劃的繼續進行,小布希政府通過司法程序將「星風」監視計劃分拆成由國家安全局執行的4個監視計劃,包括「棱鏡」、「主幹道」、「碼頭」和「核子」,均交由美國家安全局執掌。「棱鏡」項目用於監視互聯網個人信息。「主幹道」和「碼頭」項目負責存儲和分析通信和互聯網上數以億兆計的「元數據」。元數據主要指通話或通信的時間、地點、使用設備、參與者等,不包括電話或郵件等的內容。「核子」項目負責內容信息的獲取,截獲電話通話者對話內容及關鍵詞,通過攔截通話以及通話者所提及的地點,來實現日常的監控。由此可見,斯諾登不僅揭露了美國的大規模竊聽計劃,更揭示了大數據時代國家信息安全保護問題。大數據的分析與使用,無論對個人(如跟蹤健康狀況防範疾病)、對企業(如了解市場偏好以有效安排產品設計生產營銷)乃至對國家(如防範疫情或恐怖主義)顯然都有巨大的好處,從商業用途來說,谷歌、微軟、雅虎等互聯網公司,完全可以通過它們掌握到的數以百萬計、千萬計甚至億萬計的數據,經由「超級計算」,准確推斷消費者的愛好及習慣、商品的銷售額、疾病疫情的發展趨勢。商業如此,在政治、經濟、軍事等方面亦存在諸多的用途和潛在利益。像「棱鏡」計劃里涉及的谷歌、雅虎、蘋果、微軟等大網站,人們每天由於各種業務需要,會把大量個人信息輸入其中,但常常並不被事先告知數據的用途。而這些數據會被企業或政府用來進行一些特殊的計算或分析,如通過對大數據的分析預測來對人們尚未實施的行為進行懲罰。比如「大數據之父」舍恩伯格曾披露過一個例子:在美國有一個計劃名為「預測式配警」,通過對大數據分析來預測美國某個城市的某條街道的某個時段是犯罪高峰時段,然後在那個位置部署更多的警力。從此該地區居民將長時間被監控,這是一種變相的侵犯或懲罰。他們不是因為做錯事,而是因為某個計算機的演算法預測他們可能做錯事而被懲罰了,顯然這是不公平的。美國國安局擁有的正是類似的一套基於「大數據」的新型情報收集系統,這套名為「無界爆料」的系統,以30天為周期,從全球網路系統中接收到970億條訊息,再通過比對信用卡或者通訊記錄等方式,能幾近真實地還原個人的實時狀況。當然,像谷歌這樣的商業組織也有可能掌握同樣量級的信息而進行商業預測分析。因此,必須建立一套規則予以規范和約束對大數據的收集和使用。第一,雖然這些信息儲存在不同的伺服器上,但這些數據是用戶的資產,擁有權屬於用戶自己而不是這些公司,這是必須明確的,就像財產所有權一樣,個人隱私數據也應該有所有權。第二,利用大數據、雲計算技術給用戶提供信息服務的公司或企業,需要把收集到的用戶數據進行安全存儲和傳輸,這是企業的責任和義務。第三,如果企業或政府要使用用戶的信息,一定要讓用戶有知情權和選擇權,泄露用戶數據甚至牟利,不僅要被視作不道德的行為,而且是非法行為。大數據時代的數據存儲和應用方式是跨地域甚至是跨國界的。作為國家層面要將大數據上升為國家戰略,奧巴馬政府在2012年3月將「大數據戰略」上升為最高國策,像陸權、海權、空權一樣,將對數據的佔有和控製作為重要的國家核心能力。我國也應從國家高度重視大數據,在對其進行安全保護、政策制定需要重視三個方面:一是要正視數據霸權,要清醒認識到我國在網路控制權、關鍵技術和高端設備等方面,還受制於西方。二是要明確主權,數據作為一種重要的戰略資源,無論是個人擁有還是國家擁有,都要納入到主權范圍裡面來考慮。三是要有治權,因為有主權不一定能夠管治。比如:數據存到國外,雲計算跨越國境,可能不在你的主權范圍之內。要區別對待不同的數據,對確需保護的數據,必須有切實可靠的手段進行有效管理。如果做不到對數據的有效管理,大數據就必然面臨失控的危險。政策界定安全責任問題。大數據的安全問題涉及政府、相關企業、網路運營商、服務提供者,以及數據產生者、使用者等方方面面,必須對各自的安全責任有明晰的政策界定。信息安全風險存在於數據的全生命周期之中,從技術思路、產品開發、用戶使用、服務管理,各個環節均要分擔相應的安全責任。監管保障基礎設施安全問題。大數據的發展離不開電信網路甚至工控系統等關鍵基礎設施,其安全可靠同樣依賴於這些基礎設施,受供應鏈全球化、產業私有化的影響,網路與關鍵基礎設施間的安全日趨復雜,一國的大數據可能存放在別國的網路中,一國的基礎設施可能同時服務於多個國家,高度的全球相互依賴性,挑戰著原有的國家主權觀念。所以,關鍵基礎設施的安全監管體系十分重要,我國需要盡快確立對供應鏈的實質性國家安全審查和對基礎網路的常態化安全監管。
網路空間沖突管理問題。大數據的資源價值越來越高,圍繞大數據的爭奪和沖突就越來越激烈。大數據的生成、處理和利用方式,將極大改變各種沖突的表現方式和破壞烈度。通過立法與國際合作應對包括知識產權的保護、網路犯罪的處置、網路破壞活動特別是網路恐怖主義的打擊以及網路戰爭的威脅。

Ⅳ 大數據存在的安全問題有哪些

【導讀】互聯網時代,數據已成為公司的重要資產,許多公司會使用大數據等現代技術來收集和處理數據。大數據的應用,有助於公司改善業務運營並預測行業趨勢。那麼,大數據存在的安全問題有哪些呢?今天就跟隨小編一起來了解下吧!

一、分布式系統

大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。

二.數據存取

大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。

三.數據不正確

網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。

四.侵犯隱私

大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。

五、雲安全性不足

大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。

以上就是小編今天給大家整理分享關於「大數據存在的安全問題有哪些?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。

Ⅵ 我國發展大數據存在哪些問題

您好,一是信息孤島普遍存在。跨部門、跨行業的數據共享仍不順暢,有價值的公共信息資源和商業數據開放程度低,基本處於死鎖狀態,無法順暢流動。
二是對大數據產業發展規律認識不足。全社會尚未形成對大數據產業發展規律的客觀、科學的認識,一些地方誤將數據中心建設視為大數據產業發展重點,盲目追逐硬體設施投資,輕視了數據資源匯聚、積累、處理與應用能力建設,未能主動推進大數據產業發展與應用需求間的對接。
三是技術創新與支撐能力不足。大數據需要從底層晶元到基礎軟體再到應用分析軟體等信息產業全產業鏈的支撐,無論是新型計算平台、分布式計算架構,還是大數據處理、分析和呈現方面與國外均存在較大差距,難以滿足各行各業大數據應用需求。
四是數據資源建設和應用水平低。用戶普遍不重視數據資源的建設,即使有數據意識的機構也大多隻重視數據的簡單存儲,很少針對後續應用需求進行加工整理。數據資源普遍存在質量差,標准規范缺乏,管理能力弱,數據價值難以被有效挖掘利用的問題。
五是信息安全和數據管理體系尚未建立。數據所有權、隱私權等相關法律法規和信息安全、開放共享等標准規范缺乏,技術安全防範和管理能力不夠,尚未建立起兼顧安全與發展的數據開放、管理和信息安全保障體系,制約了大數據發展。
六是人才隊伍建設亟須加強。綜合掌握數學、統計學、計算機等相關學科及應用領域知識的綜合性數據科學人才缺乏,遠不能滿足發展需要,尤其是缺乏既熟悉行業業務需求,又掌握大數據技術與管理的綜合型人才。

Ⅶ 大數據目前存在什麼問題

數據存儲問題:隨著技術不斷發展,數據量從TB上升至PB,EB量級,如果還用傳統的數據存儲方式,必將給大數據分析造成諸多不便,這就需要藉助數據的動態處理技術,即隨著數據的規律性變更和顯示需求,對數據進行非定期的處理。同時,數量極大的數據不能直接使用傳統的結構化資料庫進行存儲,人們需要探索一種適合大數據的數據儲存模式,也是當下應該著力解決的一大難題。

分析資源調度問題:大數據產生的時間點,數據量都是很難計算的,這就是大數據的一大特點,不確定性。所以我們需要確立一種動態響應機制,對有限的計算、存儲資源進行合理的配置及調度。另外,如何以最小的成本獲得最理想的分析結果也是一個需要考慮的問題。

專業的分析工具:在發展數據分析技術的同時,傳統的軟體工具不再適用。目前人類科技尚不成熟,距離開發出能夠滿足大數據分析需求的通用軟體還有一定距離。如若不能對這些問題做出處理,在不久的將來大數據的發展就會進入瓶頸,甚至有可能出現一段時間的滯留期,難以持續起到促進經濟發展的作用。

關於大數據分析目前存在哪些問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅷ 大數據安全問題及應對思路研究

大數據安全問題及應對思路研究

隨著互聯網、物聯網、雲計算等技術的快速發展,全球數據量出現爆炸式增長。與此同時,雲計算為這些海量的多樣化數據提供了存儲和運算平台,分布式計算等數據挖掘技術又使得大數據分析規律、研判趨勢的能力大大增強。在大數據不斷向各個行業滲透、深刻影響國家的政治、經濟、民生和國防的同時,其安全問題也將對個人隱私、社會穩定和國家安全帶來巨大的潛在威脅,如何應對面臨巨大挑戰。

一、大數據安全關鍵問題

隨著數字化進程不斷深入,大數據逐步滲透至金融、汽車、製造、醫療等各個傳統行業,甚至到社會生活的每個角落,大數據安全問題影響也日益增大。

(一)國家數據資源大量流失。互聯網海量數據的跨境流動,加劇了大數據作為國家戰略資源的大量流失,全世界的各類海量數據正在不斷匯總到美國,短期內還看不到轉變的跡象。隨著未來大數據的廣泛應用,涉及國家安全的政府和公用事業領域的大量數據資源也將進一步開放,但目前由於相關配套法律法規和監管機制尚不健全,極有可能造成國家關鍵數據資源的流失。

(二)大數據環境下用戶隱私安全威脅嚴重。隨著大數據挖掘分析技術的不斷發展,個人隱私保護和數據安全變得非常緊迫。一是大數據環境下人們對個人信息的控制權明顯下降,導致個人數據能夠被廣泛、詳實的收集和分析。二是大數據被應用於攻擊手段,黑客可最大限度地收集更多有用信息,為發起攻擊做准備,大數據分析讓黑客的攻擊更精準。三是隨著大數據技術發展,更多信息可以用於個人身份識別,個人身份識別信息的范圍界定困難,隱私保護的數據范圍變得模糊。四是以往建立在「目的明確、事先同意、使用限制」等原則之上的個人信息保護制度,在大數據場景下變得越來越難以操作。

(三)基於大數據挖掘技術的國家安全威脅日益嚴重。大數據時代美國情報機構已搶佔先機,美國通過遍布在全球的國安局監聽機構如地面衛星站、國內監聽站、海外監聽站等採集各種信息,對採集到的海量數據進行快速預處理、解密還原、分析比對、深度挖掘,並生成相關情報,供上層決策。2013年6月底,美中情局前雇員斯諾登爆料,美國情報機關通過思科路由器對中國內地移動運營商、中國教育和科研計算機網等骨幹網路實施長達4年之久的長期監控,以獲取網內海量簡訊數據和流量數據。

(四)基礎設施安全防護能力不足引發數據資產失控。一是基礎通信網路關鍵產品缺乏自主可控,成為大數據安全缺口。我國運營企業網路中,國外廠商設備的現網存量很大,國外產品存在原生性後門等隱患,一旦被遠程利用,大量數據信息存在被竊取的安全風險。二是我國大數據安全保障體系不健全,防禦手段能力建設處於起步階段,尚未建立起針對境外網路數據和流量的監測分析機制,對棱鏡監聽等深層次、復雜、高隱蔽性的安全威脅難以有效防禦、發現和處置。

二、國外大數據安全相關舉措及我國應對思路

目前世界各國均通過出台國家戰略、促進數據融合與開放、加大資金投入等推動大數據應用。相比之下,各國在涉及大數據安全方面的保障舉措則起剛剛起步,主要集中在通過立法加強對隱私數據的保護。德國在2009年對《聯邦數據保護法》進行修改並生效,約束范圍包括互聯網等電子通信領域,旨在防止因個人信息泄露導致的侵犯隱私行為;印度在2012年批准國家數據共享和開放政策的同時,通過擬定非共享數據清單以保護涉及國家安全、公民隱私、商業秘密和知識產權等數據信息;美國在2014年5月發布《大數據:把握機遇,守護價值》白皮書表示,在大數據發揮正面價值的同時,應該警惕大數據應用對隱私、公平等長遠價值帶來的負面影響,建議推進消費者隱私法案、通過全國數據泄露立法、修訂電子通信隱私法案等。

我國在布局、鼓勵和推動大數據發展應用的同時,也應提早謀劃、積極應對大數據帶來的安全挑戰,從戰略制定、法律法規、基礎設施防護等方面應對大數據安全問題。

(一)將大數據資源保護上升為國家戰略,建立分級分類安全管理機制。一是把數據資源視為國家戰略資源,將大數據資源保護納入到國家網路空間安全戰略框架中,構建大數據環境下的信息安全體系,提高應急處置能力和安全防範能力,提升服務能力和運作效率。二是通過國家層面的戰略布局,明確大數據資源保護的整體規劃和近遠期重點工作。三是對國內大數據資源按實施分級分類安全保護思路,保障數據安全、可靠,積極開展大數據安全風險評估工作,針對不同級別大數據特點加強安全防範。五是盡快制定不同級別的大數據採集、存儲、備份、遷移、處理和發布等關鍵環節的安全規范和標准,配套完善相應的監管措施。

(二)完善法律法規,加大個人信息保護監管力度。一是積極推動個人信息保護法律的立法工作,探索通過技術標准、行業自律等手段解決法律出台前的個人信息保護問題。加快《網路安全法》的出台,在《網路安全法》中對電信和互聯網行業用戶信息保護作出明確法律界定,為相關工作開展提供法律依據。二是加強對個人隱私保護的行政監管,同時要加大對侵害個人隱私行為的打擊力度,建立對個人隱私保護的測評機制,推動大數據行業的自律和監督。

(三)加強國家信息基礎設施保護,提升大數據安全保障與防範能力。一是促進技術研究和創新,通過加大財政支持力度,激勵關系國家安全和穩定的政府和國有企事業單位採用安全可控的產品,提升我國基礎設施關鍵設備的安全可控水平。二是加強大數據信息安全系統建設,針對大數據的收集、處理、分析、挖掘等過程設計與配置相應的安全產品,並組成統一的、可管控的安全系統,推動建立國家級、企業級的網路個人信息保護態勢感知、監控預警、測評認證平台。三是充分利用大數據技術應對網路攻擊,通過大數據處理技術實現對網路異常行為的識別和分析,基於大數據分析的智能驅動型安全模型,把被動的事後分析變成主動的事前防禦;基於大數據的網路攻擊追蹤,實現對網路攻擊行為的溯源。

以上是小編為大家分享的關於大數據安全問題及應對思路研究的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與大數據中的問題研究相關的資料

熱點內容
javascript改變值 瀏覽:622
vasp贗勢文件下載 瀏覽:414
vscode文件讀取時絕對路徑 瀏覽:277
qq聊天記錄徹底刪除pc 瀏覽:11
無線網路列印機怎麼連接電腦 瀏覽:983
健美租車app怎麼用 瀏覽:298
怎麼查看c盤所有文件內容 瀏覽:591
web伺服器資料庫 瀏覽:194
阿里雲資料庫怎麼連接 瀏覽:160
使用ug編程配什麼顯卡 瀏覽:115
ipad百度雲文件找不到 瀏覽:581
java中變數的存儲 瀏覽:795
linux搭建bugfree 瀏覽:652
win10專業版小功能介紹 瀏覽:16
學數控編程如何學 瀏覽:14
win10直接刪除文件 瀏覽:349
少兒編程和奧數哪個大 瀏覽:956
學校網站查成績怎麼辦 瀏覽:657
javaweb面試 瀏覽:4
qq空間說說點不進去 瀏覽:772

友情鏈接