1. 大數據的核心技術是什麼
大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等。
1、數據採集與預處理:FlumeNG實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據;Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。
2、數據存儲:Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。
3、數據清洗:MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算。
4、數據查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供HQL(HiveSQL)查詢功能。Spark啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。
5、數據可視化:對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。
2. 大數據的核心是什麼
大數據的核心有哪些.中琛魔方大數據分析平台表示大數據的兩個核心技術是雲技術和BI,離開雲技術大數據沒有根基和落地可能,離開BI和價值,大數據又變化為捨本逐末,丟棄關鍵目標。簡單的總結是:大數據的目標驅動是BI,大數據實施落地是雲技術。
3. 大數據時代的核心是什麼
大數據時代的核心是分析。
最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,大數據在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據作為雲計算、互聯網之後又IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪彎肆問的場所和渠道,而數據才是真正有價值的資產。企業內部的經營信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也基老將大大超越現有的計算能力。如何盤活這些數據資產,使其為國家治理、企埋鋒轎業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。
4. 大數據的核心技術是什麼怎麼學大數據比較合理
大數據是非常重要的。
大數據對於科技的發展有著重要的支撐作用。
5. 大數據技術的核心是什麼
數據挖掘,無論是銀行的大數據、證券的大數據、互聯網的大數據、還是你在央視上看到的春運大數據,都是用過數據挖掘來產生價值的
6. 大數據技術有哪些 核心技術是什麼
這個只能說主流技術吧,不能說核心技術;現在國內很多公司大數據方面的主回要答使用時Hadoop生態圈內的技術,比如Hadoop、yarn、zookeeper、kafka、flume、spark 、hive、Hbase ,這些事使用比較多的,並不是說就只有這些技術,而且只是應用技術方便的,還有數據分析方向的等等。所以你這個問題首先就有問題,大數據是一個方向領域,就好比你問飲食是什麼,飲食有哪些方面一樣。
7. 大數據的核心是雲技術和BI
大數據的核心是雲技術和BI
關於大數據和雲計算的關系人們通常會有誤解。而且也會把它們混起來說,分別做一句話直白解釋就是:雲計算就是硬體資源的虛擬化;大數據就是海量數據的高效處理。如果做一個更形象的解釋,雲計算相當於我們的計算機和操作系統,將大量的硬體資源虛擬化之後再進行分配使用;大數據則相當於海量數據的「資料庫」。
整體來看,未來的趨勢是,雲計算作為計算資源的底層,支撐著上層的大數據處理,而大數據的發展趨勢是,實時互動式的查詢效率和分析能力,當前的大數據處理一直在向著近似於傳統資料庫體驗的方向發展。
大數據的4V特性,即類型復雜,海量,快速和價值,其總體架構包括三層,數據存儲,數據處理和數據分析。類型復雜和海量由數據存儲層解決,快速和時效性要求由數據處理層解決,價值由數據分析層解決。數據先要通過存儲層存儲下來,然後根據數據需求和目標來建立相應的數據模型和數據分析指標體系對數據進行分析產生價值。而中間的時效性又通過中間數據處理層提供的強大的並行計算和分布式計算能力來完成。三層相互配合,讓大數據最終產生價值。
數據存儲層
數據有很多分法,有結構化,半結構化,非結構化;也有元數據,主數據,業務數據;還可以分為GIS,視頻,文件,語音,業務交易類各種數據。傳統的結構化資料庫已經無法滿足數據多樣性的存儲要求,因此在RDBMS基礎上增加了兩種類型,一種是hdfs可以直接應用於非結構化文件存儲,一種是nosql類資料庫,可以應用於結構化和半結構化數據存儲。
從存儲層的搭建來說,關系型資料庫,NoSQL資料庫和hdfs分布式文件系統三種存儲方式都需要。業務應用根據實際的情況選擇不同的存儲模式,但是為了業務的存儲和讀取方便性,我們可以對存儲層進一步的封裝,形成一個統一的共享存儲服務層,簡化這種操作。從用戶來講並不關心底層存儲細節,只關心數據的存儲和讀取的方便性,通過共享數據存儲層可以實現在存儲上的應用和存儲基礎設置的徹底解耦。
數據處理層
數據處理層核心解決問題在於數據存儲出現分布式後帶來的數據處理上的復雜度,海量存儲後帶來了數據處理上的時效性要求,這些都是數據處理層要解決的問題。
在傳統的雲相關技術架構上,可以將hive,pig和hadoop-maprece框架相關的技術內容全部劃入到數據處理層的能力。原來我思考的是將hive劃入到數據分析層能力不合適,因為hive重點還是在真正處理下的復雜查詢的拆分,查詢結果的重新聚合,而maprece本身又實現真正的分布式處理能力。
maprece只是實現了一個分布式計算的框架和邏輯,而真正的分析需求的拆分,分析結果的匯總和合並還是需要hive層的能力整合。最終的目的很簡單,即支持分布式架構下的時效性要求。
數據分析層
最後回到分析層,分析層重點是真正挖掘大數據的價值所在,而價值的挖掘核心又在於數據分析和挖掘。那麼數據分析層核心仍然在於傳統的BI分析的內容。包括數據的維度分析,數據的切片,數據的上鑽和下鑽,cube等。
數據分析我只關注兩個內容,一個就是傳統數據倉庫下的數據建模,在該數據模型下需要支持上面各種分析方法和分析策略;其次是根據業務目標和業務需求建立的KPI指標體系,對應指標體系的分析模型和分析方法。解決這兩個問題基本解決數據分析的問題。
傳統的BI分析通過大量的ETL數據抽取和集中化,形成一個完整的數據倉庫,而基於大數據的BI分析,可能並沒有一個集中化的數據倉庫,或者將數據倉庫本身也是分布式的了,BI分析的基本方法和思路並沒有變化,但是落地到執行的數據存儲和數據處理方法卻發生了大變化。
談了這么多,核心還是想說明大數據兩大核心為雲技術和BI,離開雲技術大數據沒有根基和落地可能,離開BI和價值,大數據又變化為捨本逐末,丟棄關鍵目標。簡單總結就是大數據目標驅動是BI,大數據實施落地式雲技術。
8. 大數據的核心能力是什麼
品牌型號:華為MateBook D14
大數據的核心技術有四方面,分別是:大數據採集、大數據預處理、大數據存儲、大數據分析。
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。