數據分析再怎麼說也是一個專業的領域,沒有數學、統計學、資料庫這些知識的支撐,對於我們這些市場、業務的人員來說,難度真的不是一點點。從國外一線大牌到國內宣傳造勢強大的品牌,我們基本試用了一個遍,總結一句話「人人都是數據分析師」這個坑實在太大,所有的數據分析工具無論宣傳怎樣,都有一定的學習成本,尤其是要深入業務實際。今天就我們用過的幾款工具簡單總結一下,與大家分享。
1、Tableau
這個號稱敏捷BI的扛把子,魔力象限常年位於領導者象限,界面清爽、功能確實很強大,實至名歸。將數據拖入相關區域,自動出圖,圖形展示豐富,交互性較好。圖形自定義功能強大,各種圖形參數配置、自定義設置可以靈活設置,具備較強的數據處理和計算能力,可視化分析、互動式分析體驗良好。確實是一款功能強大、全面的數據可視化分析工具。新版本也集成了很多高級分析功能,分析更強大。但是基於圖表、儀錶板、故事報告的邏輯,完成一個復雜的業務匯報,大量的圖表、儀錶板組合很費事。給領導匯報的PPT需要先一個個截圖,然後再放到PPT裡面。作為一個數據分析工具是合格的,但是在企業級這種應用匯報中有點局限。
2、PowerBI
PowerBI是蓋茨大佬推出的工具,我們也興奮的開始試用,確實完全不同於Tableau的操作邏輯,更符合我們普通數據分析小白的需求,操作和Excel、PPT類似,功能模塊劃分清晰,上手真的超級快,圖形豐富度和靈活性也是很不錯。但是說實話,畢竟剛推出,系統BUG很多,可視化分析的功能也比較簡單。雖然有很多復雜的數據處理功能,但是那是需要有對Excel函數深入理解應用的基礎的,所以要支持復雜的業務分析還需要一定基礎。不過版本更新倒是很快,可以等等新版本。
3、Qlik
和Tableau齊名的數據可視化分析工具,QlikView在業界也享有很高的聲譽。不過Qlik Seanse產品系列才在大陸市場有比較大的推廣和應用。真的是一股清流,界面簡潔、流程清晰、操作簡單,交互性較好,真的是一款簡單易用的BI工具。但是不支持深度的數據分析,圖形計算和深度計算功能缺失,不能滿足復雜的業務分析需求。
最後將視線聚焦國內,目前搜索排名和市場宣傳比較好的也很多,永洪BI、帆軟BI、BDP等。不過經過個人感覺整體宣傳大於實際。
4、永洪BI
永洪BI功能方面應該是相對比較完善的,也是拖拽出圖,有點類似Tableau的邏輯,不過功能與Tableau相比還是差的不是一點半點,但是操作難度居然比Tableau還難。預定義的分析功能比較豐富,圖表功能和靈活性較大,但是操作的友好性不足。宣傳擁有高級分析的數據挖掘功能,後來發現就集成了開源的幾個演算法,功能非常簡單。而操作過程中大量的彈出框、難以理解含義的配置項,真的讓人很暈。一個簡單的堆積柱圖,就研究了好久,看幫助、看視頻才搞定。哎,只感嘆功能藏得太深,不想給人用啊。
5、帆軟BI
再說號稱FBI的帆軟BI,帆軟報表很多國人都很熟悉,功能確實很不錯,但是BI工具就真的一般般了。只能簡單出圖,配合報表工具使用,能讓頁面更好看,但是比起其他的可視化分析、BI工具,功能還是比較簡單,分析的能力不足,功能還是比較簡單。帆軟名氣確實很大,號稱行業第一,但是主要在報表層面,而數據可視化分析方面就比較欠缺了。
6、Tempo
另一款工具,全名叫「Tempo大數據分析平台」,宣傳比較少,2017年Gartner報告發布後無意中看到的。是一款BS的工具,申請試用也是費盡了波折啊,永洪是不想讓人用,他直接不想賣的節奏。
第一次試用也是一臉懵逼,不知道該點那!不過抱著破罐子破摔的心態稍微點了幾下之後,操作居然越來越流暢。也是拖拽式操作,數據可視化效果比較豐富,支持很多便捷計算,能滿足常用的業務分析。最最驚喜的是它還支持可視化報告導出PPT,徹底解決了分析結果輸出的問題。深入了解後,才發現他們的核心居然是「數據挖掘」,演算法十分豐富,也是拖拽式操作,我一個文科的分析小白,居然跟著指導和說明做出了一個數據預測的挖掘流,簡直不要太驚喜。掌握了Tempo的基本操作邏輯後,居然發現他的易用性真的很不錯,功能完整性和豐富性也很好。不過沒有宣傳也是有原因的,系統整體配套的介紹、操作說明的完善性上還有待提升。
② 中國有哪些公司在做大數據
大數據近幾年來可謂蓬勃發展,它不僅是企業趨勢,也是一個改變了人類生活的技術創新。大數據對行業用戶的重要性也日益突出。掌握數據資產,進行智能化決策,已成為企業脫穎而出的關鍵。因此,越來越多的企業開始重視大數據戰略布局,並重新定義自己的核心競爭力。本文整理了在中國境內活躍的大數據領域最具影響力的企業,它們有的是計算機或者互聯網領域的巨頭,有的則是剛剛創辦不久的初創企業。但它們有一個共同點,那就是它們都看到了大數據帶來的大機會,並毫不猶豫地挺進了這個領域。
在當前的互聯網領域,大數據的應用已經十分廣泛,尤其以企業為主,企業成為大數據應用的主體。大數據真能改變企業的運作方式嗎?答案毋庸置疑是肯定的。隨著企業開始利用大數據,我們每天都會看到大數據新的奇妙的應用,幫助人們真正從中獲益。大數據的應用已廣泛深入我們生活的方方面面,涵蓋醫療、交通、金融、教育、體育、零售等各行各業。
③ 永洪BI 和 SmartBI各自的優勢是什麼
SmartBI主要定位於「數據分析」產品層面,結合自身產品的優勢與上下游廠商內合作,構成完整的生態容。產品為個人用戶提供免費版本並且可不限期的使用。十多年的發展歷史,綜合的BI工具,包含查詢、報表、自助分析、儀表盤、移動應用、分析報告、數據挖掘等模塊,並發展為多個產品線。
永洪BI是支持自服務的數據准備、探索式分析、深度分析和企業級管控的一站式平台,產品特點包括:簡單交付、輕松上手、移動跨屏、大數據處理能力。
永洪BI主要分為三大系列產品:敏捷BI、MPP數據集市和深度分析
SmartBI的產品體系主要電子表格版、自助分析版、數據挖掘版和企業套件四個面向不同的目標用戶的產品分支組成。
永洪優勢:
優勢:
1、數據建模和連接的易用性強、學習成本低、更易用戶快速操作上手;
2、支持可視化建立跨庫和跨數據源的表關聯關系,真正地拖拽式建模;
3、表與表之間的關聯關系在可視化界面上一目瞭然;
4、系統封裝自帶了許多數據預處理的方式,操作便捷。
④ 國內大數據分析服務商哪一家比較好
找系統分析方案嗎?
社會信息採集系統
⑤ 北京永洪科技BI分析工具處理大數據性能如何
北京永洪科技在大數據、分布式計算、數據分析等領域具備核心競爭力、自主創新並擁有多項發明專利。研發團隊推出的商業智能平台Z-Suite,是由一系列基於MPP架構的商業智能產品組成。
Z-Suite是發現型的商業智能產品,她具備豐富的數據分析能力。當用戶訪問數據應用的時候,如果看到商業活動的異常或者變化時,除了數據展現,我們更需要的是能夠通過即席的、深入的分析以獲取現象背後的深層次原因。基於Z-Suite,用戶可以不斷地與數據對話(Talk),深入分析信息(Analyze),直到得到滿意的答案。
主要通過以下核心技術來支撐PB級的大數據:
跨粒度計算(In-Database Computing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP Computing)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -1 0倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。
⑥ 現在做大數據分析普遍都在用什麼軟體平台呢
奧 威 推 出的跨平台大來數據可視化源分析平台(OurwayBI)
OurwayBI採用Node.js。Node.js是一個Javascript運行環境(runtime),它實際上是對GoogleV8引擎進行了封裝。V8引擎執行Javascript的速度非常快,利用基於時間序列的內存計算技術,減少與資料庫的交互,可大大提升效率。操作指引更易上手:OurwayBI為了讓用戶不進行任何培訓即可掌握常用操作,設置了操作指引,智能引導用戶逐步掌握基本操作及各項技巧。整個產品的UI進行了大量細節優化,以增加使用者的美觀要求與使用體驗等。
⑦ 永洪敏捷BI跟傳統BI有什麼本質區別呢
永洪敏捷BI的設計理念是:快速交付、持續迭代。BI系統交付之後,如果要增加一個BI應用,傳統BI產品可能需要一兩個月的時間才能交付,而Yonghong BI應該可以在三天之內交付。
⑧ 國內真正的大數據分析產品有哪些
國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層——數據報表層——數據分析層——數據展現層
第二維度:用戶級——部門級——企業級——BI級
1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。
Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。
2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。
Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份——商業智能,所以在大數據處理方面的能力更勝一籌。
3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完成大部分SPSS統計分析功能
4、表現層
表現層也叫數據可視化,以上每種工具都幾乎提供了一點展現功能。FineBI和Tableau的可視化功能上文有提過。其實,近年來Excel的可視化越來越棒,配上一些插件,使用感更佳。
PPT:辦公常用,用來寫數據分析報告;
Xmind&網路腦圖:梳理流程,幫助思考分析,展現數據分析的層次;
Xcelsius軟體:Dashboard製作和數據可視化報表工具,可以直接讀取資料庫,在Excel里建模,互聯網展現,最大特色還是可以在PPT中實現動態報表