導航:首頁 > 網路數據 > 大數據對金融的影響分析報告

大數據對金融的影響分析報告

發布時間:2023-08-26 04:51:03

大數據怎樣影響著金融業

大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。

中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。

首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具


其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。


第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。

一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。

二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。

三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。

應該怎樣將大數據應用於金融企業呢?

盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。

(一)推進金融服務與社交網路的融合

我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。

(二)處理好與數據服務商的競爭、合作關系

當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力

首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。

(四)加大金融創新力度,設立大數據實驗室

可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。

(五)加強風險管控,確保大數據安全。

大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。

② 大數據對互聯網金融的發展有什麼作用

自互聯網金融被廣而告之以後,大家就一直在被灌輸大數據在互聯網金融發展中的作用巨大,甚至最近更有專家說大數據是互聯網金融發展的加速器。但是似乎並沒有一個系統的說法,大數據具體有什麼用,我們只知道互聯網金融確實是其中的獲益者之一,下面且聽聽通金魔方分析師的見解。

我們首先從互聯網金融的含義生對大數據有個簡單的了解。正如互聯網金融之父謝平所言,所謂的互聯網金融,並非是簡單的將互聯網和金融進行疊加。

正確的理解應該是基於互聯網應用的特殊技術,推動了全新的商業模式,產品服務,對金融領域產生的顛覆性變革。在這其中,大數據則充當了很重要的推手。接下來我們來看一下大數據在互聯網金融發展中的作用體現。

精準的用戶分析

大數據的首要作用就是在於它能夠對用戶進行准確的分析,然後幫助互聯網金融找到合適的目標用戶,進而實現精準營銷。

在目前的互聯網金融領域,很多新興的企業,大多以做貸款或者金融衍生產品為主。其主打的賣點主要在於較高的投資收益或者較低的手續費優惠。但是在競爭日益加劇的市場環境下,由於不能保證資金流穩定,或者客戶粘性而倒閉的企業隨處可見。

據相關數據顯示,截止2013年底,中國境內共有450家P2P公司,其中有的甚至在創立幾天內即宣布倒閉。在這樣的基礎之上,實現精準營銷才是這些企業唯一的出路,這也正是大數據的作用所在。

雖然互聯網金融的發展仍然處於起步階段,但是卻已經有了相當豐富的成熟案例。比如通過定向技術查看用戶近期瀏覽過的理財網站,通過關鍵詞,瀏覽數據建立用戶模型,從而實現優化產品的實時推薦頻度,以便最大限度的鎖定有效用戶等。

幫助金融企業風險防控

除了以上的首要作用之外,大數據還能夠幫助金融企業加強風險的可控性。在精細化管理方面助推了互聯網金融,尤其是信貸服務的發展。

比如通過對大量網路交易及行為數據的分析,可以為用戶的信用評估提供可靠的依據。這些信用評估可以幫助金融企業在用戶的還款意願和能力方面做出較為准確的結論,以便決定是否繼續為該用戶提供快速授信或者現金分期等服務。從而最大限度的降低金融企業的業務風險。

當然,我們對於個人用戶或者企業用戶信用好壞的評定取決於諸多因素,但是我們也可以從這諸多因素中找到相應的數據。比如我們要尋找這個用戶的整體收入,固定資產,性格特點甚至是行為習慣等,那麼我們就可以從網上銀行,電商,社交網路,甚至招聘和婚介網站等地方獲取。

大數據的作用在這裡面得以體現的最關鍵的一點就是,這些所謂的數據往往都是以動態變數的形式存在的,而我們要想以此為依據獲得准確的信用評級,則更要倚重於大數據的持續分析功能。

通過上面的分析,我們也不得不承認大數據在互聯網金融發展中作用巨大,只不過在現在這個互聯網金融的起步階段,大數據作用的發掘仍不算完整,我們只能一步一步的在不斷的發展中發現它的好。

③ 大數據技術在金融行業有哪些應用前景

大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到回10年,金答融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。

④ 分析大數據對於金融的影響,論述支付寶「曬賬單」的這個功能可以達到什麼目

分析大數據對於金融的影響,論述支付寶「曬賬單」的這個功能可以達到其一、信用評級。傳統的金融機構會通過內部模型或聘請專業的評級機構對客戶信用作出評級。然而,由於評級資料的限制,評級機構的評級更多是在企業靜態資產和財務數據基礎上作出的,缺乏動態的分析能力,導致評級往往會對投資者產生誤導。美國次貸危機中,評級機構對次級債產品及其衍生品所作出的評級,就廣為詬病。而支付寶賬單這種大數據基礎上的評級,則是在客戶長達十年的交易數據及交易行為中構建信用評級的模型,是一種動態的分析模型,更具有參考意義。
其二、收入增長持續性的分析。通過十年的賬單分析,可以看出客戶十年中用於采購的產品分類、采購頻率、單筆支出金額等重要信息。
三、從理財數據中讀出客戶的金融資產狀況。
支付寶曬賬單,不僅僅是微信中的一種互動娛樂方式,更是展現大數據金融威力的一個案例。如果將這一事件與阿里巴巴集團主導發起設立的浙江網商銀行結合在一起看,不難看出阿里巴巴集團將大數據應用與網路銀行的思路和模式。

⑤ 互聯網金融與大數據應用論文

在中國龐大的應用市場和人群下,深入觀察變化且復雜的市場,探索以大數據為基礎的解決方案成為了銀行提高自身競爭力的一大重要手段。大數據技術是互聯網金融的一大技術支撐,通過對人們在互聯網上活動信息形成的數據的收集、挖掘、整理、分析和進一步應用,來創新思維、產品、技術、風險管理和營銷。而數據是互聯網金融的核心,未來計算機網路互聯網金融業的競爭力將取決於數據的規模、有效性、真實性以及數據分析應用的能力。

一、我國互聯網金融的概況

互聯網金融作為二十一世紀高新產物,是傳統的金融行業與互聯網時代的有機結合,利用互聯網技術和信息通信技術實現資金融通、支付、投資和信息中介服務的新型金融業務模式。這種新型金融模式具有顛覆式的影響,創新型巨大改革,不僅推動了我國利率市場化的進程,甚至影響整個經濟與社會發展水平。

二、互聯網金融的運作模式

(一)第三方支付模式

第三方支付模式,即某些具有一定實力和信譽保障的第三方獨立機構,與各大銀行簽約後所提供的交易支持平台。

(二)P2P模式

又稱點對點信貸,即一方貸款,一方借款,通過互聯網作為中間平台的新型模式。這個模式對於微型小額的'信貸以及需要緊急周轉資金的創業者是一個很好的選擇。

(三)眾籌模式

眾籌就是大眾籌資,需要籌資的企業或個人通過互聯網這個眾籌平台運用自己獨特的號召力並發揮創意,獲得來自大眾的資金援助。

(四)互聯網金融門戶

互聯網金融門戶的核心就是「搜索比價」的模式,採用垂直比價的方法讓顧客在互聯網上「貨比三家」,選擇自己最滿意的商品。

(五)大數據金融

大數據金融就是從大量數據中提取有利用價值的信息,以雲計算為基礎來進行融資的模式。最具代表性的就是余額寶,用高於銀行的利率吸引消費者融資,不斷推動著金融業的發展與進步。

三、互聯網金融中的大數據應用及意義

(一)反映市場情況:電商和統計部門通過利用大數據對指數的編制來反映市場的基本情況,有效的分析交易數據,識別出市場交易模式,幫助決策者制定高效率的套利戰略。比如國家的統計局與網路、阿里巴巴等電商、電信、互聯網企業簽訂合作協議,共同開發利用大數據。

(二)金融產品定價:金融的核心內容之一就是金融產品定價問題(尤其是金融衍生產品定價),這一直是大家關心的重要領域,其中涉及有計算和數學建模等。以信用違約互換定價為例,除了考慮違約的傳染性和相關性,還要考慮違約過程的建模和估計,通常需要復雜的數學模型並且驗證困難。最近一種基於大數據的解決方法即利用實際交易數據估計違約概率使其簡單方便。因此大數據能為互聯網金融市場提供運營平台,有效的整合互聯網金融資源,,促進資源優化配置。

(三)精確營銷:通過對一些場景類環境數據、朋友關系和用戶經歷的人文數據、位置和購物等的行為數據,建立模型進行分析,進一步細分客戶。之後,可以定向推出產品並投放廣告,實現精確營銷。這也符合STP戰略思想。大數據通過分析社交網路市場的信息, 特別關注搜索引擎中的搜索熱點,從而制定投資策略,使互聯網金融實現了一種新的營銷模式。

(四)監管風險:互聯網金融雖提高了金融效率,但也使風險呈現出許多新形式。因此需要對互聯網金融活動產生的大數據進行分析,及時准確發現風險暴露,採取相應的措施加以規避、防範,提高互聯網金融安全性,促進互聯網金融的創新。

(五)信用:利用大數據,可以在法律和道德所容許的范圍內對評估對象的靜態動態信用行為進行收集、整理、分析挖掘,使人的信用立體化,進而評估個人或群體的信用,建立用戶的增信模型和信用評分,打破了金融機構壟斷用戶信息的狀況。

四、互聯網金融大數據應用中存在的問題

互聯網金融業本就擁有大數據,已成為自然產生大數據的重要領域,因此在互聯網金融大數據應用中體現出了一些問題和挑戰。

1、大數據處理速度滿足不了各方的需求,體量大,雜訊水平、數據來源和其他因素引起的內容和頻率變化快,增加了大數據問題的復雜性。

2、大數據中含有大量的雜訊信息甚至是虛假信息,出現信息過載的問題。

3、部分企業不願公開、上傳數據,造成不公開數據部門佔便宜、公開數據部門吃虧的狀況,形成了數據的公開、共享等方面不盡人意的局面。

4、容易泄露用戶信息,造成濫用法律法規建設及滯後的現象。如商家對客戶交易信息的過度營銷,下載不安全的APP、用戶掃描二維碼支付都可能泄露個人的信息,買賣用戶信息的不法交易等。

5、並非互聯網金融的所有參與者都具備大數據分析的能力,數據分析挖掘能力不平衡。

五、結論

通過對互聯網金融大數據的運行模式以及應用初步探究,我們發現還有很多問題等待我們去解決,嚴峻的考驗只會讓我們的路走得更穩固,金融業近些年的巨大發展和變革讓我們更加堅定的去深思時代產物與新型科技的碰撞帶來的豐碩成果,不斷更新互聯網金融時代,帶領我們進入更美好的時代。

⑥ 當傳統金融模式遇到了大數據後會有哪些轉變

  1. 大數據對金融最重要的影響,在於其能使一部分長尾需求得到滿足。

  2. 金融行業是很有專互聯網機會的行業,屬更是很有大數據潛力的行業。

  3. 大數據時代,互聯網創新、平等、普惠的精神,將慢慢融入金融。這種二八定律會慢慢改變。

  4. 二八定律:在當前利率非完全市場化與小微企業抵押擔保品欠缺的情況下,採用傳統信貸技術從事小微金融,需付出的邊際成本與服務大企業相差不大,在信貸供給資源仍顯稀缺的情形之下,銀行具有提高授信門檻以迫使高風險客戶退出信貸市場的動機,銀行服務 80% 低端客戶所帶來的利潤微乎其微,還不如將這部分客戶趕出市場,全力支持 20% 的高端客戶。

  5. 大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。

⑦ 大數據金融的發展現狀及前景

金融科技Fintech一詞最早是花旗銀行在1993年提出的,由Finance(金融)+Technology(科技)合成而來。根據金融穩定理事會的定義,金融科技是指技術帶來的金融創新,能夠產生新的商業模式、應用、流程或產品,從而對金融服務的提供方式產生重大影響。

我國央行也參考了上述定義,指出「金融科技是技術驅動的金融創新,旨在運用現代科技成果改造或創新金融產品、經營模式、業務流程等,推動金融發展提質增效」。

金融科技的實質就是金融服務與底層技術的結合,應用人工智慧、大數據、雲計算以及區塊鏈等,打造金融支付、融資、投資、保險以及基礎設施等領域的新服務模式。



——更多數據參考前瞻產業研究院發布的《中國科技金融服務深度調研與投資戰略規劃分析報告》。

⑧ 大數據如何推動金融業的商業變革

大數據如何推動金融業的商業變革
商業無論是接受還是拒絕,中國金融業的大數據時代正在呼嘯而至。據調查,經過多年的發展與積累,目前很多國內金融機構的數據量級已經達到100TB以上。而且,非結構化數據量正在以更快的速度增長。在高數據強度的金融行業,這一發展激起了巨大的想像空間。然而,要抓住這一機遇並非易事。
我們系統梳理了大數據在全球金融行業的發展現狀、潛在應用、關鍵瓶頸及應對方案,旨在協助金融機構從價值的角度更好地理解大數據,並在大數據迅速滲入金融業務各個層面的當下抓住發展機遇。大數據引領金融機構變革主要體現在哪些方面?成就大數據的不僅是傳統定義中的「三個V」,即數量(Volume)、速度(Velocity)和種類(Variety)。對金融機構而言,更重要的是第四個V,即價值(Value)。大數據的價值不僅體現在對金融機構財務相關指標的直接影響上,也體現在對商業模式變革的推動能力上,即不斷引發傳統金融機構的內嵌式變革。大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。大數據推動銀行的變革主要體現在價值層面上數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了大數據。海量的數據為銀行的發展提升了價值另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource Planning)和CRM(Customer Relationship Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這些都還不是構成「大量數據」的主體。「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。大數據運作如何推動金融業變革?多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。大數據延長了金融機構的生命周期大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

⑨ 大數據給銀行業、保險業、證券業、徵信業分別帶來了哪些大變革

去給銀行業保險也掙錢也真心也分別帶來了非常大的變化這些業務都根據咱數據來發展他不來的。

閱讀全文

與大數據對金融的影響分析報告相關的資料

熱點內容
原子貸app最新版本 瀏覽:633
壓縮的文件怎麼打開 瀏覽:658
高唐哪裡能學編程 瀏覽:893
集成電路封裝控製程序 瀏覽:304
打開word加密文檔 瀏覽:412
微信聊天文件如何轉為筆記 瀏覽:962
圖片編程軟體有哪些 瀏覽:384
西部數據移動硬碟加密碼 瀏覽:166
蘋果wifi設置dns更快 瀏覽:182
qq紅包設置尾數金額 瀏覽:310
wdmypassport忘記密碼 瀏覽:8
imac網路游戲 瀏覽:593
微信轉賬晚上多久到賬 瀏覽:532
最好的u盤分區合並工具 瀏覽:247
辦證需要的文件材料哪裡下載 瀏覽:404
數控車床所用編程語言有哪些 瀏覽:681
電信版iphone保修期 瀏覽:231
聲音文件什麼格式占的最小rm 瀏覽:237
win7隱藏的文件怎麼顯示 瀏覽:533
超編和XP編程器哪個好 瀏覽:379

友情鏈接