Ⅰ 大數據的應用領域有哪些
1.了解和定位客戶
這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。
利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。
滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。
除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。
2.
改善醫療保健和公共衛生
大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!
蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。
大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。
更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。
3.提供個性化服務
大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。
4.
了解和優化業務流程
大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。
人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。
如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。
5.
改善城市和國家建設
大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。
加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。
6.提升科學研究
大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。
7.提升機械設備性能
大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。
8.強化安全和執法能力
大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。
2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。
9.
提高體育運動技能
如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。
還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。
10.金融交易
大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。
更多精彩:14_spark體系之分布式計算課程Spark 集群搭建+S
Ⅱ 大數據對供應鏈管理的影響
大數據對供應鏈管理主要有幾個方面:
1.供應鏈管理理念在大數據的支持下,更加精細化;
早期供應鏈對物流的管理,更多表現如豐田的神話、沃爾瑪的大手筆投入,但在大數據時代,這些為大、中型企業也提供提升自己的機會,原本不易獲得的數據,在大數據時代變得更加易得與廉價,同時專業供應鏈企業不斷涌現,整體對全行業的公司帶來改變。
2.協同效應在加大:
產業協同,一直是產經界廣告泛倡導的,但真正實現還比較困難。大數據時代,產業鏈上流的企業很容易獲得直接消費信息,這樣就會更加優化自己的產能;同樣,位於下游的貿易公司和銷售公司,可以更精準的把握市場,同時利用數據、行業地位等優勢,要求上游放量與讓利。
3.反向定製漸漸推動消費需求
消費端的需求,近年來不斷推動著企業創新。大數據讓反向定製成為可能,團購、眾籌,這些新型交易模式,都是大數據朝代下的新生產物,通過這些企業收集到消費者真實的大數據信息;同時,這些模式也給小微企業低成本擴張,提供的便利;這些都與供應鏈無關嗎?不,供應鏈在其中起到重大的作用。
Ⅲ 大數據對供應鏈將產生哪些影響
大數據對供應鏈將產生哪些影響
大數據對供應鏈將產生哪些影響,大數據時代的到來為供應鏈管理提供了難得的機遇,但同時也會伴隨著一些不好的影響,有利也有弊,能順應時代而變化才是正確的方向,以下是關於大數據對供應鏈將產生哪些影響。
傳統供應鏈管理模式所面臨的挑戰
大數據時代的來臨不僅僅是給我們提供了很大的發展機遇,重要的是傳統供應鏈模式所面臨的挑戰極大的加劇了新生產力條件下企業之間的競爭,正是因為大數據時代的生產力特徵這種新事物與傳統的生產力特徵供應鏈管理模式之間的矛盾
所以傳統的供應鏈管理模式所面臨的挑戰也是非常嚴重的,新事物取代舊事物必然是舊事物自身的轉型升級,適應新事物的發展,供應鏈管理模式也不例外。
1、響應速度較慢
傳統供應鏈管理在技術水平不斷提升的同時,經歷了從最基本的MIS到ERP,再從ERP到當前供應鏈一體化的進化,但是從整體水平上來看,傳統的供應鏈管理仍然存在著以訂貨訂單為驅動的庫存管理,周轉庫存的管理從本質上來看是一種應對傳統供應鏈管理的經營模式,再次種經營模式的管理水平下,周轉庫存構成了晶瑩的基本保障
安全庫存成為訂貨管理的服務水平底線。另一方面,此種模式的出現,也在一定程度上說明了產品生命周期理論的響應速度依靠周轉庫存和安全庫存來保障客戶的服務水平,所以在這種模式下顧客需求的響應速度比較慢。
2、終端消費需求不能有效滿足
傳統供應鏈模式對企業經營的貢獻主要在於企業對市場是一處永的形式滿足部分需求而進行產品的設計,在這種情況下,終端消費者的基本需求能夠得到滿足,但是現有產品不能滿足終端消費者的潛在的深層次需求
這種產品經營的設計和生態註定了終端消費需求和源頭的生產製造脫節的商業邏輯。供給側的生產製造不能夠針對終端用戶的體驗進行個性化設計,只能在短期內以批量的模式提升自己的生產效率。
例如,在互聯網時代出現之前,市場上的衣服大部分是根據設計師對終端用戶體驗的評估進行設計,而沒有針對更多用戶特別是普遍用戶的個性化需求進行定製,而且衣服定製成本非常高、時間比較長,這從根本上制約了終端消費需求的普遍性滿足。
3、庫存周期較長
傳統的供應鏈管理模式以存貨管理構成支撐企業經營的基本條件,庫存成為實現經營的流動資產,大部分行業的庫存檔點是以月為單位進行計算的,因為產品屬性的不同,庫存管理盤點有所差異
從整體的水平看庫存周期大部分在計算倉儲、包裝、搬運裝卸、運輸等時間的條件下基本上在途庫存和周轉庫存周期均在兩個月以上,從資金利用的角度來看,在很大程度上制約了流動資金的利用率。
4、協同效應差
供應鏈管理模式協同效應較差主要體現在,生產製造型企業不能夠快速的實現渠道的建立,銷售渠道未能實現和終端消費者有效的互動,終端消費者的反饋也不能其實的成為生產製造企業進行產品換的升級的依據
從整個供應鏈的管理水平可以看出各個環節都在實現自身利益的最大化,但是未能實現整體效益的最大化,在面臨市場的競爭時存在著互相擠壓,為維護自身環節的利益犧牲整體供應鏈整體效益的情況屢見不鮮。
5、管理成本非常高
傳統供應鏈模式的管理成本由於信息化水平低下,不能將各個環節所設計的的企業進行信息的有效傳遞最終造成了各自企業所付出的固定成本中的攤銷成本非常高,人工成本尤其突出,因為條塊分割的嚴重所造成的管理混亂進而導致的管理成本已經成為供應鏈管理當中佔比較高的部分之一。
供應鏈管理要順應大數據時代發展的歷史潮流
從馬克思主義對經濟學的深入研究理論來看,變革時代正確的研究方法應該從生產力與生產關系的矛盾入手,時間對生產力要素特徵的分析才能對生產關系各個方面進行針對性的改革,這一點是生產力決定生產關系的集中體現,同時也是生產關系必須順應生產力發展的必然要求。
(一)大數據時代生產力的主導因素分析
生產力的三個要素是勞動者、生產工具和勞動對象,大數據時代改變了傳統生產力的三個要素特徵使得科學技術特別是互聯網為核心的人工智慧為代表的數據獲取、處理、分析以及應用的技術成為生產力的核心特徵。這些核心特徵從根本上改變傳統供應鏈管理的生存環境,也就是改變了供應鏈管理的生態特徵。
1、大數據時代的生產力變革決定了供應鏈管理的變革
每個時代的生產力都決定了所在時代的生產關心的管理特徵和管理模式,這個是基於人類文明的發展所確定的,大數據時代也不例外。所以,當大數據時代生產力的三個要素發生了根本的變化之後,隨之而來的供應鏈管理也必須根據實際情況變革,符合生產力發展特徵才能提升競爭力量,實現效率的提升和發展。
2、勞動者發生了決定性變化
大數據時代出現之前,傳統的勞動者是以體力勞動和基本的腦力勞動來對供應鏈進行管理的,這種腦力勞動主要包括基本的信息處理、業務知識的一些規范、與業務相關的數據處理等內容,但是大數據時代出現之後,勞動者需要更多的參與和大數據相關的腦力勞動,例如數據的獲取、對供應鏈數據的分析、與消費者相關的數據研究和預測
與產品設計有關的產品性能的監測和分析等內容,這樣從根本上改變了勞動者對知識的掌握的需求水平,你改變了勞動者對供應鏈管理的思維模式認知的改變和理念的變革。進而包括人事行政管理,在招聘績效考核等各個方面都改變了原有對供應鏈管理者的要求。
供應鏈管理貼近消費者的前端,需要更多的去對數學的進行收集和消費者行為的描述,這樣的信息處理大大改變了原來依靠調研預測進行管理的模式,從而也改變了對消費端勞動者的要求
這些要求從本質上需要變革原來的管理模式,也是對勞動者創造價值的有效提升,但是這種創造的主體必須是勞動者自身的改變。所以從整體上來看對人力資源的需求是大數據時代生產力變革的第一要務。
3、生產資料中生產工具發生了很大的變化
傳統的供應鏈管理基本上是基於信息的傳遞而進行的傳統互聯網電腦網路的設置,在這種模式下互聯網僅僅是作為一種信息傳輸的工具電腦也是信息採集的輸入埠
大部分的電腦使用者都是用來錄入相關的信息或者使用電腦網路進行傳遞相關的業務數據。大數據時代電腦更多的傾向於採集分析處理相關的數據,更加強調軟體和智能硬體的結合
最終的目標可能會是實現人機一體化,而錄入和傳輸相關的數據成為最基本的`功能,所以從電腦計算機網路的用途來看,功能上已經完全改變了原來的目標。
4、勞動對象發生了很大的變化
大數據時代供應鏈管理的勞動對象逐漸從基於傳統庫存管理的產品生產製造、流通和銷售,逐漸轉化為對於產品生產製造的特徵也就是滿足消費者深度需求的特徵進行設計
數據的利用從原來的事後分析說明解釋逐漸轉化為大數據的相關性應用,這一點幾乎體現在每年大規模的支付信息的統計分析,例如近兩年微信發紅包數量的統計
支付寶對用戶指出每個月賬單的統計分析,跨進電商對消費者購買行為的統計分析,這樣的數據分析最後形成了供應鏈管理中對供給的判斷,也形成了對消費者未來深度需求的判斷和評估。原來的分析和預測逐漸轉變為大數據相關性的應用。
大數據時代生產力特徵
大數據時代的生產力不同於以往技術變革所帶來的生產力要素的變化,可概括的總結為以下幾點。
從整個農業文明到工業文明時代各種變革的整體特徵來看,農業文明時代是以生產工具的變革為主要特徵,其中典型的變革包括青銅器的出現和應用、鐵器工具的出現和大范圍的普及和應用為主要特徵,極大的推動了生產效率的提高,從而推動整個社會效率的提升、物質財富大幅度積累,使封建文明出現前所未有的鼎盛時代。
工業文明主要集中在生產工具能源的變革方面所產生的生產工具動力變革,主要包括經過長期經驗的積累,18世紀蒸汽時代蒸汽機的發明和應用,工業化時代電力和以電力為動力能源的機器應用,極大提升了社會生產力的變革,促使人類文明從封建文明走向資本主義文明和社會主義文明,在政治制度方面發展延續到今天。
隨著時間的推移,20世紀初期部分學者提出了新技術為代表的生產力變革的來臨,這些新技術包括新能源、新材料和計算機技術,經過半個世紀的發展,這些技術的應用也極大的推動了生產效率的提高,改變了生產方式的具體特徵。
主要表現為新經濟學的興起和管理學派的細化。新的商業模式和企業組織方式層出不窮,資本市場以證券市場為代表,成為經濟發展的晴雨表。這些生產力發展現象已經成為人們的共識。
新技術時代網路信息的應用。而大數據時代出現的今天,可以概要的總結為是以信息化時代為基礎、智能化數據信息處理和應用所帶來生產力在生產工具、勞動者即人力資源變革、生產方式等方面革命為主要特徵的生產力的變革。
與上述人類歷史上其他生產力的變革相比較,大數據時代的變革從時間的角度看來的更加突然,對社會生產生活方式的影響更大,傳播速度更快,拉近了供應鏈的生產段和消費終端,依靠現代智能硬體和軟體相結合,極大的提升了兩端信息獲取的能力,供需充分結合高度統一起來,並加速了產品生命周期的周轉速度。
大數據時代變革所帶來的機遇
隨著大數據時代生產力的變革,企業組織在供應鏈管理方面機遇難得,主要體現在以下幾個方面:
1、供應鏈管理理念精準化
管理理念隨著生產的進步技術的發展越來越成為先進生產管理方式的核心和精髓。大數據時代的變革使得供應鏈管理理念能夠實現深層次精準化的發展,包括供應鏈消費終端需求信息的收集以及用戶體驗反饋到生產端,對產品進行再次設計製造和生產,滿足終端消費者的深層次更精準的需求。
在供應渠道方面,信息通過網路的精準傳遞有利於渠道的多樣化,通過精準的營銷廣告的投放實現渠道的快速銷售能力。
在庫存方面主要意義消費需求拉動的庫存管理為主,時間庫存訂貨批量的同時安全庫存大大降低零庫存的概念已經能夠完全實現周轉庫存。水平大大降低所以從庫存成本的角度來看供應鏈管理裡面的精準化。
最終整體上。不僅滿足了消費者的終端需求深層次需求同時也滿足了生產者降低成本一嘯訂單公民及時用戶體驗完美的高層次目標。
2、協同效應作用加大
通過智能硬體和軟體技術的數據化處理,在供應鏈各個環節的信息處理收集分析和應用方面,均能及時有效地實現最優化,不但實現每個環節執行層面的學術性和敏捷性而且可以實現整體各個環節的協同作用,例如在當代電子商務的供應鏈管理中最典型的是以京東商城為代表的自營物流體系和平台的協同結合
不僅實現了訂單的快速處理,而且是京東商城的自營物流體系實現了庫存管理的最優化,更使商城的賣家能夠一大數據為基礎進行產品的選擇,營銷策略的制定,采購渠道的優化,從而最終實現了供應鏈一體化的最大協同效應。
除了電子商務企業這種行業的典型代表之外,在中國的汽車後市場特別是針對汽車配件供應鏈大數據的實現准確的進行分類包裝挑選等物流服務,有效地實現產品多品類、同一個產品多參數的復雜產品特性的供應鏈管理
為中國汽車後市場中小企業特別是最近消費者的終端企業實踐成功的用戶體驗奠定了堅實的基礎,與傳統的汽車修理廠門店相比,這種利用數據進行供應鏈管理的中小企業在競爭力方面特別是用戶體驗方面具有巨大的明顯優勢。
3、消費需求定製化驅動
大數據的應用對供應鏈管理中消費者精準需求實現了有效地滿足,不僅能夠對交易的分析和消費者購買行為的分析以及消費者對未來預期的分析而且可以根據這種分析實現生產定製化,把供給側問題存在的批量生產轉變為以個性化需求為滿足特徵的定製化生產。
例如,對衣服的生產,在傳統模式下幾乎都是設計者進行設計引導消費者進行購買,定製化需求在市場競爭中處於弱勢地位,沒有能夠實現消費者個人需求的滿足,而且衣服的定製化成本非常高,廣大消費者不能夠承擔這種定製化的成本,從而造成的定製化的發展緩慢。
近幾年以來一紅外技術對人體描繪使得軟體和硬體相結合,不僅能夠實現了消費者身體特徵的描述而且能夠根據不同的消費者對衣服的偏好進行設計,能夠快速的讓消費者根據自己的意願進行設計,在購買和交易的階段也能夠通過智能試衣鏡對現有的衣服進行挑選
在此過程中以數據收集和消費者之間的交互等環節實現了數據的分析與處理,對未來衣服的消費趨勢進行描述,而且能夠最終消費者為消費者提供深層次的長期的服務,這樣僅能從交易中獲得利潤而且能夠從的單一消費者的長期服務中,實現消費者粘性的提高,有利於廣大中小企業利用數據實現精益經營。
4、供給側結構管理優化
供給側改革是我國十三五期間的主導政策,大數據時代為供給側改革提供了有利的條件。當前,我國大部分行業在傳統模式,以投資需求和外貿為拉動的主要發展模式下普遍發生了產能過剩,解決產能過剩的問題主要從兩個方面入手,一方面有提高攻擊測產品生產製造的質量
實現產業的轉型升級,優化結構,提高生產製造的效率特別是注重保護環境等可持續發展策略;另一方面要針對終端消費者的消費需求,實現適銷對路、真正滿足消費者需求的競爭性產品。大數據時代為供給側改革提供了難得的機遇。
對供給側結構的優化管理以能源的利用為典型,隨著環境問題日益嚴重,我國對新能源代替傳統的化石能源必須採取非常有效地管理措施,其中主要體現在以數據為核心的管理處理新能源逐步代替傳統化石能源從而改善環境提高能源的利用率,2010年政府下達力度關閉了近百個火力發電廠同事計劃增加十三五期間核電站開發100所。
實現東部沿海地區和能源利用交大地區的清潔能源代替工程,必須利用大數據對能源的有效利用進行強力管控,對污染環境的傳統化石能源進行逐步改善,最終實現我國經濟的可持續發展。
5、中小企業大數據應用提升競爭力
在傳統的生產力條件下,中小企業面臨市場激烈的競爭,資源方面的不足創造力的不足效率利用地下等各個方面造成了大企業對中小企業的生存空間的擠壓,大數據出現之後,中小企業雖然在資源方面以及創新能力方面不如大企業強,但是中小企業利用戰略上的靈活性,充分發揮瞄準立即市場進行發力的敏捷。
利用大數據對市場進行再次細分,鎖定目標細分市場,對客戶進行深度挖掘,對產品進行二次創新,實現了市場競爭中的不對稱性,在微創新方面不斷滿足消費者的需求,提升自身產品和服務的競爭能力。
有效的完善了自身的不足,最終提升了生存競爭力,在國家大力倡導大眾創新萬眾創業的宏觀環境下中小企業使用大數據技術,在信息溝通、營銷競爭、戰略再投資等方面緊緊地把握住了細分市場目標客戶的有效需求,不但滿足了針對性的深度需求而且提升了掌控用戶體驗、滿足細分市場目標客戶潛在需求的工具和方法,在創造和實現顧客價值的同時,也創造了大量的就業崗位,從此品牌競爭深入人心。
從國家申請專利的數量來看,除了在市場競爭中佔主導地位的大型客機企業對研發投入比例大,而產生了大量的專利之外,廣大中小企業在滿足細分市場目標需求的同時,利用自身條件而進行重新申請專利的數量大幅度增長,競爭力提升的同時實現了價值重塑品牌塑造。