A. 有沒有適合自學數據分析的書推薦
第一大類:理論類。 理論層面的書籍,比如《大數據時代》 、《數據之版巔》 。
第二大類:技權術類。 技術層面的書籍,比如《Hadoop技術內幕》系列。這一類的書籍,主要是指系統技術類,在構建大數據系統時,系統如何運作,各系統組件的設計目標、框架結構、適用場景、工作原理、運作機制、實現功能等等。這類書籍,適合於IT系統部,開發部的技術人員。他們需要明白系統的運作機制,利用系統來實現大數據的應用開發,以及系統運維優化等。
第三大類:應用類。 應用層面的書籍,比如《數據挖掘技術》 、《基於SPSS的數據分析》等等。 這一類的書籍,主要是指應用技術類,告訴你如何應用工具和方法,從海量數據中提取有用的信息,來解決真實的業務問題。這類書籍,適合於業務部門、市場營銷部門及與業務結合比較緊密的人員。他們更關注業務問題的解決,圍繞業務問題來構建分析和解決方案。
B. 有什麼比較好的大數據入門的書推薦
1. 《大數據分析:點「數」成金》
你現在正坐在一座金礦上,這些金子或被埋於備份,或正藏在你眼前的數據集里,他們是提升公司效益、拓展新的商業關系、制定更直觀決策的秘訣所在,足以使你的企業更上一層樓。你將明白如何利用、分析和駕馭數據來獲得豐厚回報。作者Frank Ohlhorst厚積數十年的技術經驗寫了此書。該書介紹了如何將大數據應用於各行各業,你將了解到如何對數據進行挖掘,怎樣從數據中揭示趨勢並轉化為競爭策略及提取價值的方法。這些更有意思也是更有效的方法能夠提升企業的智能化水平,將有助於企業解決實際問題,提升利潤空間,提高生產率並發現更多的商業機會。
2.《大數據時代》
《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托被譽為」大數據商業應用第一人」,擁有再哈佛大學、牛津大學和新加坡國立大學等多個互聯網研究重鎮任教經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。該書主要講了大數據時代的變革、商業變革和管理變革。《大數據時代》認為大數據的核心就是預測。大數據為人類的生活創造了前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。
3.《雲端時代殺手級應用:大數據分析》
《雲端時代殺手級應用:大數據分析》分析了什麼是大數據、大數據大商機、技術與前瞻三個部分。第一個部分介紹大數據分析的概念,以及企業、政府部門可應用的范疇。什麼是大數據分析?與個人與企業有什麼關系?將對全球產業造成什麼樣的沖擊?第二部分完整介紹了大數據在各產業的應用實況,為企業及政府部門提供應用的方向。提供了全球各地的實際應用案例,涵蓋了零售、金融、政府部門、能源、製造、娛樂等各個行業,充分展示了大數據分析產生的效益。第三部分則簡單介紹了大數據分析所需要的技術及未來的發展趨勢,為讀者提供了應用與研究的方向。
4.《大數據》
本書通過講述美國半個多世紀信息開放、技術創新的歷史,以別開生面的經典案例奧巴馬建設」前所未有的開放政府「的雄心、公開財務透明的曲折。《數據質量法》背後隱情,全國醫改法案的波瀾、統一身份證的百年糾結以及雲計算、Facebook和推特等社交媒體等等,為您一一講解數據創新給社會帶來的種種變革和挑戰。
5.《大數據互聯網大規模數據挖掘與分布式處理》。
該書主要講的是海量數集數據挖掘常用的演算法。書中分析了海量數據集數據挖掘常用的演算法,介紹了目前WEB端應用的許多重要話題等。
C. 大數據專業系列教材,大數據專業應該看什麼書
目前,全國高校總數477所「數據科學與大數據技術」專業,累計30所「大數據管理與應用」專業,成功高校總數超過409所。
但由於大數據專業是以軟硬體融合、數據科學和大數據技術為特色的新型復合型專業,許多高校在專業建設和人才培養方面面臨挑戰,教材選用成為許多高校的頭疼問題。
在深入調研以上情況後,清華大學博士、中國大數據應用聯盟人工智慧專家委員會主任、雲創大數據總裁劉鵬教授在業內很早就開始著手策劃,聯合國內多所高校從事一線教育科研任務的專業教師相繼擔任主編,《高級大數據人才培養叢書》
在大數據教學中,本科院校實踐教學注重系統性,偏重新技術的應用,且對工程實踐能力要求較高。
為此,劉鵬教授帶領團隊花了一年的時間編寫了《高級大數據人才培養叢書》( 《雲計算》、《大數據》、《深度學習》、《大資料庫》、《數據挖掘》、0755-0755 )
其中,《Python程序設計》多年來一直處於我國計算機圖書被引量的前列,據網路對微信公眾號( cnkipj ) 《大數據可視化》的評價,2010年至2014年《大數據實驗手冊》
《大數據應用人才培養系列教材》( 《虛擬化與容器》、《雲計算》、《【工學】高被引圖書前三甲,你讀過嗎?》、《雲計算》、《大數據導論》、0755-79055- )
內容從簡單到復雜,既遵循理論到實踐的學習過程,也遵循系統而廣的原則。
清華大學出版社王編輯說:「劉鵬教授的這個教材選題很獨特,考慮到未來高職高專大數據人才的就業需求,他選擇了一個非常有特色的選題。
」
從業內高校的大數據教材來看,理論知識過於復雜高深,與教學實際不契合,或者實踐部分過於簡略,學生學完往往也會感到一頭霧水。
《高級大數據人才培養叢書》和《大數據應用人才培養系列教材》大相徑庭,符合教師教育實際和學生實踐實驗,一經推出,就受到高校的廣泛關注和採用。
師生們普遍對它給予了很高彎梁的評價。 ——不僅與教學實際相符,理論部分和實踐部分比例分配合理,大量實驗提高了學生動手能力,大數據學習不再是「紙上談兵」。
大數據教育特別注重實踐,除了兩套教材外,針對目前大數據教育實踐教學中師資力量不足、實驗環境薄弱、實驗數據缺乏等問題,劉鵬教授帶領雲創大數據技術團隊,與備受高中老師好評的教師教育和教材進行了配套
師資培訓
三年來,雲創大數據(工信部教育與考試中心授權的「工業和信息化人才培養工程訓練基地」)連續舉辦了幾十期大數據/人工智慧實戰培訓班,培訓班全部採用實習方式,大大提高了參訓老師的實戰能力,各期訓練有求必應
全國2000多所虧棗高校的5000多名老師能夠參加並接受培訓,老師們普遍反饋,對未來的教育和人才培養方面有很大啟發,雲創舉辦的大數據實戰培訓班也在教育領域引起了強烈反響。
此外,雲創大數據優秀講師和技術人員還將定期或不定期赴合作高校開展包括教育、實驗人員教育指導在內的培訓服務。
2016年12月-2017年1月,多次舉辦高中(高職)大數據教師免費培訓班
2017年1月,百所高中老師齊聚二期高中(高職)大數據教師免埋空運費培訓班
2017年4月,全國千所高校大數據教師免費講習班在南京舉行
2018年5月,2018信息技術新工科產學研聯盟大數據技術師資培訓班舉辦
2018年9-10月,第二屆全國高校大數據人工智慧教師實戰免費培訓班舉辦三期
2019年1月,2019年全國高校大數據人工智慧師資培訓實戰免費培訓班連續舉辦兩期
2019年3月,2019大數據人工智慧師資培訓班在南京舉辦
2019年6月,2019雲計算免費培訓班在南京舉辦
2019年7月,2019年全國高校大數據人工智慧師資培訓實戰免費培訓班(第三期)舉辦
雲創大數據持續的大數據實戰訓練,一方面為高中老師提供了與專家討論、同事交流、向實戰經驗豐富的講師學習的機會,另一方面也一步步突破了Hadoop、Spark、Python語言、Scala等多個大數據實驗
大數據實驗室
大數據實驗室建設方案基於雲提供的大數據實驗一體化計算機和大數據實驗平台建設,採用Docker容器技術,為用戶提供大數據實驗服務,實現大量用戶同時在線實驗避免相互干擾,同時提供實驗手冊、課程資源、教學視頻、考試系統等,方便高校師生在平台上開展大數據教學和實驗。
今年5月,大數據實驗平台再次迎來更新,改版用戶界面,優化系統資源使用,增加實驗內容,豐富實驗形式,擴充題庫,完善教材與實驗內容的映射,增錄實驗操作視頻集成了商業智能實踐教學子系統,基礎鏡像速度也得到了極大優化,一鍵營造環境只需十幾秒鍾。
目前,大數據實驗平台已更新為400個大數據實驗。
操作簡便,實戰效果顯著,大數據實驗平台依託貴州大學、西北工業大學、山東理工大學、鄭州大學、河南農業大學、成都理工大學、西南大學、重慶師范大學、重慶工商大學、陝西師范大學、寧夏大學、南京財經大學、金陵科技學院、天津農學院、鄭州升達經貿管理學院
值得一提的是,鄭州升達經貿管理學院作為民辦三大高校,自天驕數據實驗平台落地以來,在課堂教學、實驗拓展、課程體系建設等諸多方面屢創新成果。
目前,大數據實驗室是該校利用率最高的實驗室,一直排到周日。
這所學校信息工程學院的計算機科學和軟體工程兩個專業分別有250名學生和學院其他專業的800多名學生在這個平台上接受了嚴格的訓練。
使用該平台畢業的學生工資水平遠遠超過普通專業大學畢業生,直接帶動了學生就業率和學校影響力的同步提高。
無論是教材體系、師資培訓,還是大數據實驗室建設,雲創大數據都在教育領域穩步發展,擁有雄厚的技術優勢和優質資源。
熱忱歡迎廣大高校、教育機構及各企事業單位與雲創業開展多方面交流合作,共同探討大數據建設相關領域,培養越來越多大數據優秀人才,為行業發展作出貢獻。
要獲取《高級大數據人才培養叢書》、《大數據應用人才培養系列教材》配套PPT、人工智慧人才培養方案大數據、人工智慧實驗室建設方案大數據、雲創大數據合作工作手冊等資源,可通過以下方式之一獲取
2 .關注「雲創大數據( cStor_cn )」,在微信後台回復「PPT」,獲取網盤全套資源下載鏈接
自考/成考有疑問、不知道自考/成考考點內容、不清楚當地自考/成考政策,點擊底部咨詢官網老師,免費領取復習資料:https://www.87dh.com/xl/
D. 大數據入門書籍有哪些
當年互聯網瘋狂發展的時候,很多人在觀望和猶豫中錯過了這班順風車(沒有盡早開個淘寶店,腸子都悔青了好幾遍呢)。如今,同樣的橋段上演,大數據時代,堅決不能再無動於衷!
於是,你著急,你迷茫,你很方……除了平時要加班加點的搬磚,牙縫里擠出來的的閑碎時間都貢獻給度娘了,「小白如何學習大數據」,「大數據入門書籍有哪些」……
1:<大數據時代>
這是學習大數據必讀的一本書,也是最系統的關於大數據概念的一本書,由維克托·邁爾-舍恩伯格和肯尼斯·庫克耶編寫,主要介紹了大數據理念和生活工作及思維變革的關系。
它被包括寬頻資本董事長田朔寧、知名IT評論人謝文等專業讀者鑒定為「大數據領域最好的著作沒有之一,一本頂一萬本」。有這么好嗎?看完自己評價吧。這本書對這個大規模產生、分享和應用數據的新的大時代進行了闡述和釐清,作者圍繞「要全體不要抽樣、要效率不要絕對精確、要相關不要因果」三大理念,通過數十個商業和學術案例,剖析了萬事萬物數據化和數據復用挖掘的巨大價值。
2:<爆發>
由巴拉巴西編寫,主要講了在一個歷史故事的連續講述中,了解大數據的概念實質。從大數據的歷史開始,能更深入的了解大數據的發展歷程。
巴拉巴西整本書講述的大數據根本目的,是預測。他甚至有零有整地判斷,人類行為93%是可以預測的。打個比方,千百年前人類無法如今天般准確預測天氣,以致某些大致預測的行為都被認為是「通神」,其實核心在於對天氣數據的海量佔有和分析能力。但假如全人類的所有基礎及行為數據全部被佔有全部能分析呢?比如通過智能終端LBS功能採集全部運動軌跡、通過金融系統採集所有支付記錄、通過SNS採集所有社會關系和通過郵件、文檔、社會視頻監控和自我視頻監測採集所有言行記錄,24小時,每分每秒,一生,全地球70億人,那會如何?
3:<大數據>
由徐子沛編寫,看美國政府在大數據開放上的進程與反復,算是個案。如果能夠基本了解這三本的觀點,出門有底氣,見人腰桿直,不再被忽悠。
全書講述的,是大數據在美國政府管理中的應用,以及美國政府運行方式大數據變革的歷史與斗爭,其實也是故事性的。從奧巴馬上台就頒布《信息公開法案》,到設立第一個美國政府首席信息官開始,講述美國政府與民間在社會數據公開的斗爭史,以及美國社會管理向大數據思維轉變的過程。首先,這算是一個最詳實的案例;其次,這代表的不是某種管理方式變革,深處是對民主運行機制的變革與進步。說好了,這本書用心良苦,遠遠超越科普技術領域;說壞了,其心可誅。有一段,民間斗爭,逼迫奧巴馬公布所有每日白宮全部日程,包括接見了誰、談話的全部內容,這不就是個人大數據全公開在公眾人物上的應用嗎?這可比現在所謂官員公開財產的要求高了幾十倍——這要求政府全部行為、全部數據、全部公開,全體公眾隨時可查——技術和成本上其實已經可以做到或至少努力接近——如果不這么做,不止是落後問題而是真正的其心可誅了。
4:<大數據基礎與應用>
由陳明編寫。看名字就知道,入門級別拯救小白的書。這本書共17章,第1章是對大數據的簡單概述,第2章介紹大數據研究的方法論,第3、8、9、14章介紹大數據的生態環境,第17章介紹數據科學的內容,剩下的章節是本書重點,介紹大數據技術及應用方法。
身處大數據大環境下,身邊的人經常討論資料庫、數據可視化、大數據預處理等等。這些詞聽得多了會讓人產生錯覺——自己已經知道裡面的門道了。但事實上還是個「門外漢」。
舉個例子,沒有人肯在上千人規模的講座上專門花半個小時教你怎樣進行數據清洗。本書專門列了一章,詳細介紹大數據預處理技術,包括數據清洗的實現方式,從步驟到檢驗,都做了用心的闡述。諸如此類,數據挖掘、大數據流式計算、Hadoop、NoSQL等等都從最基礎的點做了詳細介紹。耐心看完這些,再往深處進階就不會那麼吃力了。
5:<一本書讀懂大數據>
進入大數據時代,讓數據開口說話將成為司空見慣的事情,本書將從大數據時代的前因後果講起,全面分析大數據時代的特徵、企業實踐的案例、大數據的發展方向、未來的機遇和挑戰等內容,展現一個客觀立體、自由開放的大數據時代。
5:<集體智慧編程>
入門,淺顯易懂,裡面每一章都是一個案例,但是很方便,有具體的代碼,用來入門最好。
6:<社交網路的數據挖掘>
專門做社交網路的數據挖掘,案例很豐富,有代碼。
7:<數據可視化之美>
致力於介紹各種可視化方案。
8:<鮮活的數據>
比較簡單的可視化,不過內容豐富,有代碼。
9:<數據挖掘導論完整版>
看完上述的書,對大數據產生很大的興趣,已經初步入門了,現在開始理論方面的學習,數據挖掘入門教程,個人覺得寫的很好,目前正在研究這本書,努力。。。
10:<統計學習方法>
這本書比較深,剛開始看的就是這一本,不過太深,看到一半,准備在導論看完之後,在看這本書提升一下自己。
11:<鳥哥私房菜—基礎篇>
作為一個計算機專業linux那是必學的,而且Hadoop是建立在Linux基礎上的,不求多麼的精通,但是基礎的操作要學會。
如果是沒有任何編程語言基礎的想入行大數據的話,是必須要學習java基礎的,雖然大數據支持很多開發語言,但是企業用的最多的還是java,接下來學習數據結構,關系型資料庫,linux系統操作,有了基礎之後,在進入大數據學習,可以給小白學習的體系。
第一階段
COREJAVA(加**的需重點熟練掌握,其他掌握)
Java基礎**
數據類型
運算符、循環
演算法
順序結構程序設計
程序結構
數組及多維數組
面向對象**
構造方法、控制符、封裝
繼承**
多態**
抽象類、介面**
常用類
集合Collection、list**
HashSet、TreeSet、Collection
集合類Map**
異常
File
文件/流**
數據流和對象流**
線程(理解即可)
網路通信(理解即可)
第二階段
數據結構
關系型資料庫
Linux系統操作
Linux操作系統概述
安裝Linux操作系統
圖形界面操作基礎
Linux字元界面基礎
字元界面操作進階
用戶、組群和許可權管理
文件系統管理
軟體包管理與系統備份
Linux網路配置
(主要掌握Linux操作系統的理論基礎和伺服器配置實踐知識,同時通過大量實驗,著重培養學生的動手能力。使學生了解Linux操作系統在行業中的重要地位和廣泛的使用范圍。在學習Linux的基礎上,加深對伺服器操作系統的認識和實踐配置能力。加深對計算機網路基礎知識的理解,並在實踐中加以應用。掌握Linux操作系統的安裝、命令行操作、用戶管理、磁碟管理、文件系統管理、軟體包管理、進程管理、系統監測和系統故障排除。掌握Linux操作系統的網路配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服務的配置與管理。為更深一步學習其它網路操作系統和軟體系統開發奠定堅實的基礎。與此同時,如果大家有時間把javaweb及框架學習一番,會讓你的大數據學習更自由一些)
重點掌握:
常見演算法
資料庫表設計
SQL語句
Linux常見命令
第三階段
Hadoop階段
離線分析階段
實時計算階段
重點掌握:
Hadoop基礎
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm實時數據處理平台
Spark平台
若之前沒有項目經驗或JAVA基礎,掌握了第一階段進入企業,不足以立即上手做項目,企業需再花時間與成本培養;
第二階段掌握扎實以後,進入企業就可以跟著做項目了,跟著一大幫人做項目倒也不用太擔心自己能不能應付的來,當然薪資不能有太高的要求;
前兩個階段都服務於第三階段的學習,除了熟練掌握這些知識以外,重點需要找些相應的項目去做,不管項目大小做過與沒有相差很多的哦!掌握扎實後可直接面對企業就業,薪資待遇較高!
E. 市面上大數據的書不少,如果只挑一本,哪本值得推薦
市場上大數據的說不少,但是你要挑一本的話,其實我還是覺得你在網路上選擇一些自己可以公開的數據。因為每個人需要的每個程度的書是不一樣的,你可以選擇購買一些書的電子版本。電子版本反而比書籍會更好一點。
F. 有什麼比較好的大數據入門的書推薦
比較好的大數據入門的書有《大數據日知錄:架構與演算法》。
《大數據日知錄:架構與演算法》是2014年電子工業出版社出版的圖書,作者是張俊林。《大數據日知錄:架構與演算法》從架構與演算法的角度全面梳理了大數據存儲與處理的相關技術。大數據技術具有涉及的知識點異常眾多且正處於快速演進發展過程中等特點。
其技術點包括底層的硬體體系結構、相關的基礎理論、大規模數據存儲系統、分布式架構設計、各種不同應用場景下的差異化系統設計思路、機器學習與數據挖掘並行演算法以及層出不窮的新架構、新系統等。
主要介紹
本書對眾多紛繁蕪雜的相關技術文獻和系統進行了擇優汰劣並系統性地對相關知識分門別類地進行整理和介紹,將大數據相關技術分為大數據基礎理論、大數據系統體系結構、大數據存儲。
以及包含批處理、流式計算、互動式數據分析、圖資料庫、並行機器學習的架構與演算法以及增量計算等技術分支在內的大數據處理等幾個大的方向。通過這種體系化的知識梳理與講解,相信對於讀者整體和系統地了解、吸收和掌握相關的技術有很大的幫助與促進作用。
G. 對即將學習大數據專業的學生有什麼建議和推薦的書籍
對於即將學習大數據專業的學生,個人認為主要取決於,自己對大數據的理解,其實很多人對大數據僅限於知道,而並非真正了解大數據,個人的主要建議就是,一定要明白什麼是數據,大數據的入門基礎,如果大數據的基本概念,都不明白,那怎麼來學習。