㈠ 如何進行大數據營銷
大數據分析處理解決方案
方案闡述
每天,中國網民通過人和人的互動,人和平台的互動,平台與平台的互動,實時生產海量數據。這些數據匯聚在一起,就能夠獲取到網民當下的情緒、行為、關注點和興趣點、歸屬地、移動路徑、社會關系鏈等一系列有價值的信息。
數億網民實時留下的痕跡,可以真實反映當下的世界。微觀層面,我們可以看到個體們在想什麼,在干什麼,及時發現輿情的弱信號。宏觀層面,我們可以看到當下的中國正在發生什麼,將要發生什麼,以及為什麼?藉此可以觀察輿情的整體態勢,洞若觀火。
原本分散、孤立的信息通過分析、挖掘具有了關聯性,激發了智慧感知,感知用戶真實的態度和需求,輔助政府在智慧城市,企業在品牌傳播、產品口碑、營銷分析等方面的工作。
所謂未雨綢繆,防患於未然,最好的輿情應對處置莫過於讓輿情事件不發生。除了及時發現問題,大數據還可以幫我們預測未來。具體到輿情服務,輿情工作人員除了對輿情個案進行數據採集、數據分析之外,還可以通過大數據褲頌不斷增強關聯輿情信息的分析和預測,把服務的重點從單純的收集有效數據向對輿情的深入研判拓展,通過對同類型輿情事件歷史數據,及影響輿情演進變化的其他因素進行大數據分析,提煉出相關輿情的規律和特點。
大數據時代的輿情管理不再局限於危機解決,而是梳理出危機可能產生的各種條件和因素,以及從負面信息轉化成輿情事件的關鍵節點和衡量指標,增強我們對同類型輿情事件的認知和理解,幫助我們更加精準的預測未來。
用大數據引領創新管理。無論是政府的公共事務管理還是企業的管理決策都要用數據說話。政府部門在出台社會規范和政策時,採用大數據進行分析,可以避免個人意志帶來的主觀性、片面性和局限性,可以減少因缺少數據支撐而帶來的偏差,降低決策風險。通過大數據挖掘和分析技術,可以有針對性地解決社會治理難題;針對不同社會細分人群,提供精細化的服務和管理。政府和企業應建立資料庫資源的共享和開放利用機制,打破部門間的「信息孤島」,加強互動反饋。通過搭建關聯領域的資料庫、輿情基礎資料庫等,充分整合外部互聯網數據和用戶自身的業務數據,通過數據的融合,進行多維數據的關聯分析,進而完善決策流程,使數據驅動的社會決策與科學治理常態化,這是大數據時代輿情管理在服務上的延伸。
解決關鍵
如何能夠快速的找到所需信息,採集是大數據價值挖掘最重要的一環,其後的集成、分析、管理都構建於採集的基礎,多瑞科輿情數據分析站的採集子系統和分析子系統可以歸類熱點話題列表、發貼數量、評論數量、作者個數、敏感話題列表自動摘要、自動關鍵詞抽取、各類別趨勢圖表;在新聞類報表識別分析歸類:
標題、出處、發布時間、內容、點擊次數、評論人、評論內容、評論數量等;在論壇類報表識別分析歸類:
帖子的標題、發迅野言人、發布時間、內容、回帖內容、回帖數量等。
解決方案
多瑞科輿情數據分析站系統擁有自建獨立的大數據中心,伺服器集中採集對新聞、論壇、微博等多種類型互聯網數據進行7*24小時不間斷實時採集,具備上千億數據量的數據索引、挖掘分析和存儲能力,支畝純喊撐政府、企業、媒體、金融、公安等多行業用戶的輿情分析雲服務。因此多瑞科輿情數據分析站系統在這方面有著天然優勢,也是解決信息數量和信息(有價值的)獲取效率之間矛盾的唯一途徑,系統利用各種數據挖掘技術將產生人工無法替代的效果,為市場調研工作節省巨大的人力經費開支。
實施收益
多瑞科輿情數據分析站系統可通過對大數據實時監測、跟蹤研究對象在互聯網上產生的海量行為數據,進行挖掘分析,揭示出規律性的東西,提出研究結論和對策。
㈡ 大數據時代:整合營銷應該如何做
大數據時代: 整合營銷 應該如何做?
諸葛io認為,大數據時代的全面來臨,不僅僅是讓企業廣告投放更加精準,我們的生活、工作、思維、商業乃至管理都會發生改變,甚至也影響到互聯網行業的方方面面,包括網路營銷。
我們常常使用整合營銷手段也需要升級和改變。之前,我們為了達到營銷效果最大化,只是簡單的對各個渠道的資源進行整合,通過規模化宣傳來擴大營銷效應。而在大數據時代,對於網路整合營銷的玩法則不再只是營銷資源的疊加,而更多的是對各類渠道進行科學而又預見性的整合和使用,而這其中對於平台和渠道各方對於大數據的融合和互通就很重要。
不過,對於大數據的運用也有爭議,比如在保護用戶隱私方面,如何避免讓用戶感覺被無所不在的「第三隻眼」偷窺等等,也都對各大互聯網公司在大數據的挖掘和使用上提出挑戰。但無論如何,在大數據在營銷或其他場景的運用上,不作惡都應該是各大互聯網公司謹守的底線。
諸葛 在數據運營方面不僅能給企業提供更精細獨到的服務,也為讓企業節省百萬團隊費用。諸葛io讓 數據運營 起來更方便!
http://zhugeio.com/news/?p=183
㈢ 大數據對網路營銷的影響
大數據對網路營銷的影響
在這股大數據時代背景下,消費者行為的變遷也越來越趨於不確定,移動互聯網更是加速了這種不確定因素,那麼,大數據對網路營銷有何影響呢?
[摘要] 互聯網時代的發展推動了數據和信息加速傳播。大數據在這種大背景下應運而生,並逐步滲入到各行各業。而互聯網企業通過大數據,促進信息的實效轉化,為網路營銷的精準決策和整個營銷行業的發展提供了數據來源與支撐。文章主要通過闡述了大數據的定義、大數據的處理,進而總結大數據下網路營銷管理優化措施及有效的網路營銷策略,力求為各互聯網企業的網路營銷決策提供參考與借鑒。
[關鍵詞] 大數據;網路營銷;互聯網
1前言
21世紀是一個信息大爆炸的時代,各種各樣雜亂無章數據的出現,一方面給企業以及人們的日常生活造成了一定程度的困擾;另一方面人們也想從這繁雜的數據中找出規律,發現商機,從而抓住商機,開拓新的市場。大數據的出現恰恰能妥善地解決這一問題,大數據分析技術是通過對海量的數據信息進行系統的篩選與分析,力求尋求其中的規律,從而為企業的經營決策提供有力依據與支撐,使企業的經營決策變得更加准確且高效。現今,社會上人們之間的交流越來越密切,科技在高速發展,大數據就應運而生。阿里巴巴創辦人馬雲曾經在演講中提到,未來的時代將是DT的時代,DT即DataTechnology數據科技,對大數據的分析是阿里巴巴的重點工作之一。[1]互聯網在改變人們生活方式的同時也在改變企業的運作模式,這是信息技術發展的必然。然而隨著大數據的來臨,網路營銷也在不斷地進行營銷模式與管理模式的創新,試圖尋求企業與消費者的利益最大化。現在越來越多的企業通過互聯網平台抓取到的消費者的各種數據進行分析整理,獲取消費者的消費趨向及特徵,以此為依據來制定相應營銷策略,不僅可以提高市場決策的准確性,還能大大縮短市場調查與決策分析的時間,提高了企業的經濟效益,促進企業各個環節的高效運作。因此大數據與網路營銷的結合將是必然的,它將為企業開創全新局面,帶來前所未有的.機遇,同時也帶來了挑戰。
2大數據概述
麥肯錫全球研究對大數據的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。[2]大數據技術在互聯網時代的戰略意義,不是在於掌握海量的數據信息,而在於對收集到的數據進行高度專業化處理,力求找出其中的規律與價值,為企業經營決策服務。[3]簡而言之,大數據技術關鍵在於提高對數據的「加工處理能力」,通過「高加工」實現數據的「高增值」。它具有以下四大特徵:分別為海量的數據規模、多樣的數據類型、快速的數據流轉和價值密度低,具體分析如下:
(1)海量的數據。從互聯網或傳統渠道收集到的海量數據,涉及面更廣、種類繁多,只有運用大數據技術對數據進行分類,才能夠滿足企業的需求。
(2)多樣的數據類型。大數據容納的信息量大,信息種類也繁多,容量也比傳統的數據倉庫更大,通常有用戶的查詢信息、瀏覽信息、消費記錄、消費周期等數據。
(3)快速的數據流轉。大數據技術要求在短時間內對海量的數據進行高速處理,對龐大的數據進行分析、處理,從中找出有價值的數據資料,因此對數據的處理速度有很高的要求。(4)商業價值高,價值密度低。大數據需要從海量的數據當中提取出有價值的信息,對技術的要求很高,往往數據的價值密度低而商業價值高。
3大數據處理與網路營銷
3.1大數據時代下的網路營銷
網路營銷是藉助網路、通信和數字媒體技術實現營銷目標的商務活動。其中可以利用多種手段,如微信營銷、微博及博客營銷、E-mail營銷、視頻營銷等。大數據技術為網路營銷帶來了技術創新,也為企業帶來了前所未有的機遇與挑戰。網路營銷的發展主要依賴於對消費者消費信息的了解,掌握了消費者消費信息相關的數據,就能夠以此來制定合理化的營銷策略,能夠提前預測市場的發展方向,提高企業的生產效率,降低了企業的運營成本。同時也為企業開發新產品提供數據來源與支撐,有利於提高企業產品在市場的佔有率。
3.2網路營銷需要借力大數據
(1)科技的發展。互聯網時代的到來,收集海量的數據信息顯得更加簡單可行,人們可以通過互聯網平台收集到各種數據,還可以對數據進行反復的使用與共享,實現數據的循環利用,使數據創造出更多的價值。
(2)個性化需求的增加。社會的發展使人們的消費習慣與心理發生了顯著的變化,不再希望自己所使用的產品與別人一樣,希望自己是獨特的,與眾不同的,而企業恰恰能通過對消費者的消費偏好進行大數據分析,來為其制定個性化消費方案。
(3)用戶數據易獲取。互聯網企業與傳統的企業相比,其不同點之一就是數據的獲取方式不同。傳統企業能知道客戶當時的需求和購買意向,但是無法獲得更多與客戶有關的信息與資料;而互聯網企業通過用戶的訪問記錄和消費行為
3.3商業定位的轉變
大數據時代背景下,消費者對品牌的忠誠度不斷下降,使得大數據時代商業模式必須從以品牌為中心向以消費者為中心轉變。[3]阿里巴巴於2016年提出了以「消費者的生命周期」來做銷售。充分體現了現在商業社會對品牌的轉變逐步增加到了以消費者為中心的轉變。在工業時代,我們無法獲知消費者的翔實數據,但是在大數據時代下數據的原始積累和獲取變得容易,藉助於智能手機和穿戴設備等科技的發展,數據變得越來越翔實,因此讓商家更容易全方位了解消費者,能夠針對消費者做到千人千面。從而增加產品的依賴性和忠誠度。所以未來企業的競爭力逐步轉變為:誰能提供專業化的產品和服務,誰能全面了解和分析信息,誰就會站在商業的浪潮上。
3.4商業理念
從以商品為主向服務轉型大數據時代,消費者的知識水平越來越高,消費者會從已有的大量數據中全面了解商品的功能、價值等,如果僅僅是在商場或互聯網簡單的介紹商品品牌、包裝及使用方法已經遠遠不能滿足消費者的需求了。消費者依據大量的數據,對產品的了解程度甚至比營業員還要充分,因此企業不僅要非常精準地把商品構架、各種性能指標等解剖出來外,還必須向消費者提供大量的解決方案,即大數據時代企業賣出的不僅僅是簡單的商品,而是方案的系統集成和商品的服務。所以轉型勢在必行,從以商品為主轉向以服務為主,增加顧客對商品的忠誠度和依賴度,迎接新一輪的商業變革。
4結論
2016年是大數據的發展年,據保守估計,未來大數據的市場規模至少達到萬億元以上。在這股大數據時代背景下,消費者行為的變遷也越來越趨於不確定,移動互聯網更是加速了這種不確定因素,電商和傳統企業變得越來越離不開數據,數據即將成為未來企業的核心競爭力,企業要不斷完善自己的企業治理結構,抓住市場潮流的變化,讓不確定的消費者變得確定,這樣才能有針對性地做到千人千面,提供個性化的商品和服務,在未來競爭格局中占據一席之地。
參考文獻:
[1]AllisonCerra,KevinEasterwood,JerryPower.商業模式重構:大數據、移動化和全球化[M].北京:人民郵電出版社,2014:29-43.
[2]蔡承秉.掘金大數據數據驅動商業變革[M].北京:時代華文書局,2013:103-110.
[3]黃升民,劉珊.「大數據」背景下營銷體系的解構與重構[J].現代傳播: 中國傳媒大學學報,2012 ( 11) : 13 - 20.
[摘要]
文章對當前有關大數據時代網路營銷模式的相關概述進行了梳理和分析,進而對大數據時代網路營銷模式的創新、精準性以及效果性研究作以歸納,最後進行了總結與展望。
[關鍵詞]
大數據;網路營銷模式;綜述
1引言
大數據對時展產生了深遠影響,網路營銷模式如何充分發揮數據帶來的機遇,從而促進其發展成為當前熱門話題。數據具有的四大特點能為企業網路營銷模式發展提供更加精準、個性化的信息,此外,大數據時代下的網路營銷模式不僅重視創新性、精準性,也重視效果性。
2大數據與網路營銷模式相關概述
2.1大數據的定義
20世紀80年代大數據被提出,到2008年才廣泛傳播。麥肯錫定義其為在一定時間內使用傳統資料庫軟體無法對數據內容進行搜集、存儲等的數據集合;《Science》將其定義為數據集規模無法在可容忍的時間內用目前的技術、方法等去獲取、管理的數據;[3]維基網路將大數據定義為運用當前主流軟體工具難以在合理時間內為企業經營決策提供完整分析過程的資源。比較有影響力的是Gartner的定義,其認為大數據通過新的處理模式能增強決策力、洞察力以及流程能力,並具備多樣、快速增長性以及數據量大的信息資產。本文將大數據定義為以其主要特徵為基礎,通過運用科學的大數據處理技術能夠增強其精準性、效果性等價值的信息資產。
2.2網路營銷模式的定義
Rafi-AMohammed和RobertFisher等將網路營銷定義為在線維護客戶和公司在產品、服務等方面的關系;孫志宏認為網路營銷是通過計算機網路、通信技術等為實現營銷目標的市場營銷方式;蘆文娟、韓德昌認為其是以網路通信技術以及數字互動式為基礎的營銷活動;徐艷旻將網路營銷定義為藉助網路開展市場服務的營銷活動。閻斌認為網路營銷模式是企業通過有效運用互聯網信息技術平台力求實現企業經營目標的營銷活動。本文認為網路營銷模式是藉助網路、通信技術以及數字互動式媒體等進行的市場營銷活動。
2.3網路營銷模式主要類別
蘆文娟、韓德昌認為網路營銷模式主要有創建企業網站、參與網路社區、博客營銷、網上廣告投放;張在宏將其分為廣告商、網上商店和服務、價值鏈服務提供商、網路渠道和虛擬社區;玄文啟認為其可分為電子郵件、微博營銷、病毒性營銷、搜索引擎營銷和博客營銷;本文認為較有影響力的是周曙東等將其分為在線商店模式、中立交易平台模式、企業間網路營銷模式、網上采購模式、網路拍賣模式、電子郵件營銷模式、電子報關模式等的觀點。
2.4大數據時代網路營銷模式的特徵
陳慧、王明宇認為大數據網路營銷具有性價比高、時效性強、互動性強和個性化營銷的特點。胡江濤研究認為關聯性緊也是其主要的特點。
3大數據時代網路營銷模式創新研究
張冠鳳認為大數據時代網路營銷模式主要包括商品關聯挖掘營銷、現代通信的大數據分析、大數據的用戶行為分析營銷和個性化推薦營銷模式。張艷紅認為大數據時代網路營銷模式的革新還包括基於大數據的搜索引擎營銷和DSP網路廣告模式。高源、張桂剛認為其還包括基於大數據的商品地理營銷模式。吳英鷹認為大數據背景下旅遊企業網路營銷新模式主要包括關聯推薦和精準網路營銷模式;王雯研究了大數據下電影整合營銷和O2O營銷模式。以上學者對大數據時代下網路營銷模式創新研究較為全面,但總體上相關理論研究較少。
4大數據時代網路營銷模式精準性研究
李曉龍、馮俊文提出了大數據環境下電商精準網路營銷策略。牛艷紅、王春國認為大數據時代網路營銷模式精準性策略主要有搜索引擎、再鎖定精準營銷和博客營銷。樊永梅發現了全數據精確制導、汽車銷售整合信息對於汽車精確營銷實現的重要性。倪寧、金韶認為其主要有精準定位目標消費群、精準挖掘消費需求、精準可控廣告投放和精準評估廣告效果。林燕提出了傳播和廣告精準營銷策略。以上研究豐富了理論成果,但沒系統分析大數據時代網路營銷模式精準性營銷的基本原理。
5大數據時代網路營銷模式效果性研究
胡江濤發現了大數據時代網路營銷實現從精準營銷到效果營銷的轉變的關鍵問題,張艷紅提出從政府層面、企業層面實現網路營銷的效果性,目前學者對大數據時代網路營銷模式效果性研究不多,還處在逐步認識的階段。
6總結與展望
本文認為大數據時代下網路營銷模式的研究還處在積極探索階段,具體體現在缺乏成熟的網路營銷模式劃分標准;大數據時代下網路營銷模式研究視角較單一和對其精準性和效果性缺乏深入研究,對於兩者的交叉研究更是缺乏。本文認為未來研究可以結合大數據時代下網路營銷模式的精準性和效果性進行綜合研究;從多視角和結合具體的實際加強對其效果性研究;加強網路營銷模式的系統性研究,實現大數據時代網路營銷模式時效精準、效果統一。
;㈣ 大數據營銷知識點總結
一、走進大數據世界
大數據的特徵(4V):
1. 數據的規模性
2. 數據結構多樣性
3. 數據傳播高速性
4. 大數據的真實性、價值性、易變性;
結構化數據、半結構化數據、非結構化數據
大數據處理的基本流程圖
大數據關鍵技術:
1. 大數據採集
2. 大數據預處理
3. 大數據存儲及管理
4. 大數據安全技術
5. 大數據分析與挖掘
6. 大數據展現與應用
二、大數據營銷概論
Target 百貨客戶懷孕預測案例
大數據營銷的特點:
1. 多樣化、平台化數據採集: 多平台包括互聯網、移動互聯網、廣電網、智能電視等
2. 強調時效性: 在網民需求點最高時及時進行營銷
3. 個性化營銷: 廣告理念已從媒體導向轉為受眾導向
4. 性價比高: 讓廣告可根據時效性的效果反饋,進行調整
5. 關聯性: 網民關注的廣告與廣告之間的關聯性
大數據運營方式:
1. 基礎運營方式
2. 數據租賃運營方式
3. 數據購買運營方式
大數據營銷的應用
1. 價格策略和優化定價
2. 客戶分析
3. 提升客戶關系管理
4. 客戶相應能力和洞察力
5. 智能嵌入的情景營銷
6. 長期的營銷戰略
三、產品預測與規劃
整體產品概念與整體產品五層次
整體產品概念: 狹義的產品: 具有某種特定物質形態和用途的物體。
產品整體概念(廣義):向市場提供的能夠滿足人們某種需要的
一切物品和服務。
整體產品包含:有形產品和無形的服務
整體產品五層次:潛在產品、延伸產品、期望產品、形式產品、核心產品
大數據新產品開發模型:
1. 需求信息收集及新產品立項階段
2. 新產品設計及生產調試階段
3. 小規模試銷及反饋修改階段
4. 新產品量產上市及評估階段
產品生命周期模型
傳統產品生命周期劃分法:
(1)銷售增長率分析法
銷售增長率=(當年銷售額-上年銷售額)/上年銷售額×100%
銷售增長率小於10%且不穩定時為導入期;
銷售增長率大於10%時為成長期;
銷售增長率小於10%且穩定時為成熟期;
銷售增長率小於0時為衰退期。
(2)產品普及率分析法
產品普及率小於5%時為投入期;
普及率在5%—50%時為成長期;
普及率在50%—90%時為成熟期;
普及率在90%以上時為衰退期。
大數據對產品組合進行動態優化
產品組合
銷售對象、銷售渠道等方面比較接近的一系列產品項目被稱為產品線。產品組合是指一個企業所經營的不同產品線和產品項目的組合方式,它可以通過寬度、長度、深度和關聯度四個維度反映出來
四、產品定價與策略
大數據定價的基本步驟:
1. 獲取大數據
2. 選擇定價方法
3. 分析影響定價因素的主要指標
4. 建立指標體系表
5. 構建定價模型
6. 選擇定價策略
定價的3C模式:成本導向法、競爭導向法、需求導向法
影響定價的主要指標與指標體系表的建立
影響定價因素的主要指標:
1. 個人統計信息:家庭出生、教育背景、所在地區、年齡、感情狀況、家庭關系等。
2. 工作狀況:行業、崗位、收入水平、發展空間等
3. 興趣:健身與養生、運動和戶外活動、娛樂、科技、購物和時尚等
4. 消費行為:消費心理、購買動機等。
定價策略:
精算定價: 保險、期貨等對風險計算要求很高的行業
差異定價: 平台利用大數據對客戶建立標簽,分析對產品的使用習慣、需求判斷客戶的忠誠度,對不同客戶進行差別定價
動態定價: 即根據顧客認可的產品、服務的價值或者根據供需狀況動態調整服務價格,通過價格控制供需關系。動態定價在提高消費者價格感知和企業盈利能力方面起著至關重要的作用。
價格自動化 :根據商品成本、市場供需情況、競爭產品價格變動、促銷活動、市場調查投票、網上協商、預訂周期長短等因素決定自身產品價格
用戶感知定價 :顧客所能感知到的利益與其在獲取產品或服務中所付出的成本進行權衡後對產品或服務效用所做出的整體評價。
協同定價: 是大數據時代企業雙邊平台多邊協同定價策略
價格歧視:
一級 :就是每一單位產品都有不同的價格,即商家完全掌握消費者的消費意願,對每個消費者將商品價格定為其能夠承受的最高出價;
二級 :商家按照客戶的購買數量,對相同場景提供的、同質商品進行差別定價;
三級 :可視為市場細分後的定價結果,根據客戶所處的地域、會員等級等個人屬性進行差別定價,但是對於同一細分市場的客戶定價一致。
五、銷售促進與管理
促銷組合設計概念
大數據促銷組合設計流程
精準廣告設計與投放
[if !supportLists]l [endif] 廣告設計5M:任務(Mission),預算(Money),信息(Message),媒體(Media),測量(Measurement)。
通過用戶畫像的進一步挖掘分析,企業可以找出其目標消費群體的廣告偏好,如平面廣告的配色偏好,構圖偏好,視頻廣告的情節偏好,配樂偏好,人物偏好等,企業可以根據這些偏好設計出符合目標消費群體審美的廣告創意,選擇消費者喜歡的廣告代言人,做出能在目標消費群體中迅速傳播開來的廣告。
在媒體決策方面,利用大數據綜合考慮其廣告目的、目標受眾覆蓋率、廣告信息傳播要求、購買決策的時間和地點、媒體成本等因素後,有重點地採用媒體工具。企業可以在確定前述影響變數後,通過大數據的決策模型,確定相對最優的媒體組合。
六、客戶管理
大數據在客戶管理中的作用
1. 增強客戶粘性
2. 挖掘潛在客戶
3. 建立客戶分類
客戶管理中數據的分類、收集及清洗
數據分類:
描述性數據: 這類數據是客戶的基本信息。
如果是個人客戶,涵蓋了客戶的姓名、年齡、地域分布、婚姻狀況、學歷、所在行業、職業角色、職位層級、收入水平、住房情況、購車情況等;
如果是企業客戶,則包含了企業的名稱、規模、聯系人和法人代表等。
促銷性數據: 企業曾經為客戶提供的產品和服務的歷史數據。
包括:用戶產品使用情況調查的數據、促銷活動記錄數據、客服人員的建議數據和廣告數據等
交易性數據: 這類數據是反映客戶對企業做出的回饋的數據。
包括歷史購買記錄數據、投訴數據、請求提供咨詢及其他服務的相關數據、客戶建議數據等。
收集:
清洗:
首先,數據營銷人需要憑借經驗對收集的客戶質量進行評估
其次,通過相關欄位的對比了解數據真實度
最後,通過測試工具對已經確認格式和邏輯正確數據進行測試
客戶分層模型
客戶分層模型 是大數據在客戶管理中最常見的分析模型之一,客戶分層與大數據運營的本質是密切相關的。在客戶管理中,出於一對一的精準營銷要求針對不同層級的客戶進行區別對待,而客戶分層則是區別對待的基礎。
RFM客戶價值分析模型
時間(Rencency):
客戶離現在上一次的購買時間。
頻率(Frequency):
客戶在一定時間段內的消費次數。
貨幣價值(MonetaryValue):
客戶在一定的時間內購買企業產品的金額。
七、 跨界營銷
利用大數據跨界營銷成功的關鍵點
1. 價值落地
2. 杠杠傳播
3. 深度融合
4. 數據打通
八、精準營銷
精準營銷的四大特點
1. 可量化
2. 可調控
3. 保持企業和客戶的互動溝通
4. 簡化過程
精準營銷的步驟
1. 確定目標
2. 搜集數據
3. 分析與建模
4. 制定戰略
九、商品關聯營銷
商品關聯營銷的概念及應用
關聯營銷:
關聯營銷是一種建立在雙方互利互益的基礎上的營銷,在交叉營銷的基礎上,將事物、產品、品牌等所要營銷的東西上尋找關聯性,來實現深層次的多面引導。
關聯營銷也是一種新的、低成本的、企業在網站上用來提高收入的營銷方法。
關聯分析的概念與定義
最早的關聯分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顧客購買行為的規律,發現連帶購買商品,為制定合理的方便顧客選取的貨架擺放方案提供依據。該分析稱為購物籃分析。
電子商務領域: 關聯分析可幫助經營者發現顧客的消費偏好,定位顧客消費需求,制定合理的交叉銷售方案, 實現商品的精準推薦 ;
保險公司業務: 關聯分析可幫助企業分析保險索賠的原因,及時甄別欺詐行為;
電信行業: 關聯分析可幫助企業發現不同增值業務間的關聯性及對客戶流失的影響等
簡單關聯規則及其表達式
事務:簡單關聯分析的分析對象
項目:事務中涉及的對象
項集:若干個項目的集合
簡單關聯規則 的一般表示形式是:前項→後項(支持度=s%,置信度=c%)
或表達為:X→Y(S=s%,C=c%)
例如:麵包->牛奶(S=85%,C=90%)
性別(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)
支持度、置信度、頻繁項集、強關聯規則、購物籃分析模型
置信度和支持度
support(X→Y)= P(X∩Y)
confidence(X→Y)= P(Y|X)
十、評論文本數據的情感分析
商品品論文本數據挖掘目標
電商平台激烈競爭的大背景下,除了提高商品質量、壓低商品價格外,了解更多消費者的心聲對於電商平台來說也變得越來越有必要,其中非常重要的方式就是對消費者的文本評論數據進行內在信息的數據挖掘分析。評論信息中蘊含著消費者對特定產品和服務的主觀感受,反映了人們的態度、立場和意見,具有非常寶貴的研究價值。
針對電子商務平台上的商品評論進行文本數據挖掘的目標一般如下:
分析商品的用戶情感傾向,了解用戶的需求、意見、購買原因;
從評論文本中挖掘商品的優點與不足,提出改善產品的建議;
提煉不同品牌的商品賣點。
商品評論文本分析的步驟和流程
商品評論文本的數據採集、預處理與模型構建
數據採集:
1、「易用型」:八爪魚、火車採集器
2、利用R語言、Python語言的強大程序編寫來抓取數據
預處理:
1文本去重
檢查是否是默認文本
是否是評論人重復復制黏貼的內容
是否引用了其他人的評論
2機械壓縮去詞
例如: 「好好好好好好好好好好」->「好」
3短句刪除
原本過短的評論文本 例如:很「好好好好好好好好好好」->「好」
機械壓縮去詞後過短的評論文本 例如:「好好好好好好好好好好」->「好」
4評論分詞
文本模型構建包括三方面:情感傾向分析、語義網路分析、基於LDA模型的主體分析
情感傾向分析:
基於情感詞進行情感匹配
對情感詞的傾向進行修正
對情感分析結果進行檢驗
語義網路分析:
基於LDA模型的主體分析
十一、大數據營銷中的倫理與責任
大數據的安全與隱私保護
數據安全:一是保證用戶的數據不損壞、不丟失;二是要保證數據不會被泄露或者盜用
大數據營銷中的倫理風險:用戶隱私、信息不對稱下的消費者弱勢群體、大數據「殺熟」
大數據倫理困境的成因:
用戶隱私意識淡薄
用戶未能清晰認知數據價值
企業利益驅使
] 管理機制不夠完善
大數據倫理構建的必要性:企業社會責任、用戶與社會群體的維系
這些是我按照老師講的課本上的內容結合PPT總結出來的《大數據營銷》的重點。