❶ 大數據風險管理:
大數據作為21世紀的「鑽石礦」,對於互金行業的重要性已經不言而喻,大數據技術在風險控制領域的應用非常廣泛。很多人可能會認為:只要數據量「大」,數據維度「多」,就會有最強大的風控體系和行業最低的壞賬率。而事實上,做大數據風險控制是一件非常細致的事情,擁有數據並不意味著擁有一切,重要的不單是數據本身,分析、處理和應用這些數據才更有價值的。
傳統的信貸風險控制模型里,貸前、貸中、貸後,三個過程中,貸前是審查中最具價值的,而對貸中、貸後環節的重視程度相對較低。而大數據除了可以幫助互聯網金融企業做好傳統的貸前審核,還可以通過大數據技術,對數據維度和數據特徵進行充分的處理,在貸中、貸後環節更具深度更具廣度地做好風險控制。
例如,金融機構使用大數據來監控某一地區的企業經營狀況。如果在一段時間內出現異常,該機構將派人調查原因,這個方法是常見的傳統風控方法。但是大數據的便利,除了減少勞動力成本,更重要的是,通過大數據多維度的交叉核驗,行為數據異常分析,可以發掘更多的判斷依據,然後監測預警。
智眼現金貸系統搭載的AI大數據智能風控通過機器學習及人工智慧處理技術,採用最前沿的建模演算法等,將識別異常交易的速度縮短到『亞秒』級,可以在欺詐交易發生同時就能夠做出判斷,直接攔截異常交易。
大數據可以給出結論,但給不了解釋,只有把數據通過可視化效果呈現出來,並對其進行分析,才能找出真正的答案。我們面對復雜的數據問題時,首先把數據關聯起來,再利用人工智慧、機器學習等各種演算法,從數據的視角洞察消費生活的方方面面,打造精準合理的數據分析結果。
機器學習是人工智慧的核心能力之一,作為一個人工智慧系統,驚蟄智能風控引擎擁有極強的機器學習能力,可以隨著用戶行為對應人數的增加,不斷調整策略,持續迭代模型,定期進行優化調整。因此,做好大數據風險控制是一件非常細致的事情。它的秘密不在於數據本身,而在於對數據的理解分析,這個就非常需要專業人士處理,不是一個軟體開發程序員,一個金融專業的人能解決的,需要綜合性人才,對金融,互聯網,企業管理和法律會計知等比較了解,一定要有實操風控經驗,至少7年以上。
1,為什麼需要大數據做風控:因為小貸公司無法上傳人行徵信,也無法查詢人行徵信,只能通過其他數據輔助判斷。
2,定義「欺詐」的概念,然後做反欺詐。欺詐每個公司定義不一樣,當然後續的反欺詐措施就不一樣的。我個人認為的欺詐有以下幾個方面:1,身份欺詐,就不是本人申請的,冒用別人身份申請的。2,不管他有沒有還款能力,但是沒有還款意願的群體,說白了就是那些擼貸專業戶,他們有些人可能很有錢但就是不還。因為不上人行徵信,所以有些人敢不還。
剩餘的群體就包含了有還款意願也有還款能力的正常群體和有還款意願但沒還款能力的群體。
3,風控要做什麼:
我認為風控主要做反欺詐即可,也就是把控好上述欺詐定義里的兩點,第一點是比較容易的一點,這里就不多說了,技術比較成熟了。但是第二點就很難去把控。
所以互聯網小貸公司會找一些大數據公司通過各種技術和渠道獲取到很多很多信息,例如你的公積金,社保,電商,網上行為軌跡,火車航班記錄,學信網,其他貸款記錄(多頭記錄),通話記錄,通話詳單,通訊錄,甚至簡訊(現在已經獲取不到了)等等,幾乎你能想到的個人隱私他們都能想辦法得到。但是,這么花里胡哨,有用么?
很多申請人會偽裝,就像有些人面試的時候很牛逼,真正一到公司里卻連試用期都過不了就被淘汰了,這就是因為他在面試的時候偽裝了,或許誇大了自己能力,也可能虛構了自己的經驗等等。貸款申請人也一樣,專業的擼貸人經過多次申請測試,基本能探清楚你設置的一些攔截規則,也知道你們小貸公司想給哪些人群放貸,他們就針對性的去偽裝。這就是為什麼有些公司明明使用了很多大數據,並且將一些有用的欄位入了模,KS還挺高,但最後不良率還是那麼高的一個原因。
而且,現在誰還沒有支付寶和微信賬號?真正有借款需求,有還款意願的好人,基本都很在乎借款利率的高低,他們第一選擇都是借唄和微粒貸(銀行或信用卡的現金貸這里就不說了),而被借唄和微粒貸淘汰的人群才會流入普通小貸。
南方航空的大數據管理,一些平台公司的大數據管理都是有缺陷的,做大數據的人,也沒有專業的法律和金融常識,就進入這個領域負責風險管理,水平有限,當然和這個公司收入來源有直接的關系,企業主要盈利是接受外包數據。
一家企業的風險管理是否健全,主要看這個公司對財務和法律的重視以及管理這個法務部財務部或者合規部風險管理部門的負責人的水平和公司的執行董事的能力。
❷ 大數據風險管理不容忽視
大數據風險管理不容忽視
當前,我國信息化快速發展,人工智慧正以前所未有的速度、廣度和深度融入經濟社會各個方面,大數據風險管理的重要性和緊迫性日益凸顯。對此,我們必須與時俱進,切實重視數據安全問題,從組織管理、規程標准、技術手段等多角度著手進行風險防範,圍繞大數據市場准入的風險屏障與防範、生產使用過程中的風險監控和管制,以及風險預警和化解等關鍵環節,採取組織控制、制度控制與技術控制的綜合治理機制,形成數據安全防護「三位一體」的閉環管理鏈條。
信息和數據是進行國家公共治理的基礎,在經濟社會發展中的基礎性、戰略性、先導性地位日益突出。隨著信息和數據容量、復雜性和戰略意義的提升,如何更為有效地化解數據治理中戰略導向缺失、數據權屬體系不完善、分級分類機制缺失等難題,是當前需要研究的課題。要實現數據安全防護總體目標,就必須更好實施全面風險管理體制改革,有效統籌數據資源和風險管理,切實提升我國數據治理能力。
完善組織管理
應著力打造「集中式」風險管理組織架構,圍繞大數據市場准入的風險屏障與防範、生產使用過程中的風險監控和管制,以及風險預警和化解等關鍵環節,成立統一的大數據管理部門,負責組織領導、統籌協調全國大數據發展和具體的風險防範管控,以及發生重大事故時的危機管理。
具體來看,大數據管理部門應做好數據採集、數據維護、數據分析和風險管理以及數據政策的主導者,將主要開展跨區域、跨部門、跨層級的大數據交換共享,以及數據關聯、比對、清洗、安全防護等治理工作,需要具備包括數據收集能力、數據解讀能力、判斷能力和輔導能力等方面的專業能力,通過加強數據資源的建設、管理和開發,滿足監管、隱私保護和安全等方面的要求,保證數據安全管理方針、策略、制度的統一制定和有效實施。
同時,推進國家公共治理數字化基礎設施的建設,構建一個擴展性強、高度可靠的,以互聯網為基礎的數字平台,負責管理基礎數據資源安全。搭建「數據資源服務施政平台」,充分發揮平台組織協調和快速部署數據安全措施的作用。構建「安全即服務」的新模式,推進數據資源的整合共享、統一管理、主動防護,力爭將原本分散存儲在不同部門、行業的數據信息孤島連接成一個互聯互通的新價值網路,形成傳統以控制為核心的安全模式和新型的主動性數據安全模式相互支撐、協同發揮作用的數據風險防範體系。
強化制度規范
為確保數據風險管理工作有規可依,建議構建與現代化經濟體系和國家治理能力現代化相適應的風險管理制度環境,努力將保護數據信息資產的措施融入現代化經濟體系建設、國家治理體系建設,探索出一條以控制功能和主動保護雙管齊下、共同落實數據安全管理責任的發展模式和路徑。
一是強化頂層設計,打造全方位的安全保障體系。應在國家法律法規層面,進一步完善包括數據權屬、數據管理、關鍵基礎設施、穩定性保障、數據安全等在內的相關專門性法律。同時,在生產使用過程中的風險監控和管制方面,應聚焦大數據領域的技術研究與應用,推進大數據採集、管理、共享、交易等標准規范的制定和實施,研究制定一批基礎共性、重點應用和關鍵技術標准;在風險預警和化解方面,應在確保大數據法律性開放的基礎上,加強風險管理流程、授權管理制度、風險限額管理、風險評價考核、風險獎懲處罰、風險責任約束、風險決策報告等方面的建設,構建全面數據風險管理的體系架構。
二是明確相關部門和人員責任,完善風險管理體制機制。在大數據市場准入的風險屏障與防範方面,明確數據系統許可權和數據管理相關責任部門,制定數據系統許可權及數據管理辦法,規范政府部門數據系統許可權申請及數據管理流程,形成數據安全實踐工作的制度保障。建立完善數據服務、網路安全防護和信息安全等級保護等相關制度。在生產使用過程中的風險監控和管制方面,有必要針對大數據安全可能引發的負面影響,編制數據管理制度和規程文件。在風險預警和化解方面,相關部門必須適應風險管理從靜態數據向動態數據的轉化、從人為判斷向模型分析的轉化、從零散管理向體系管理的轉化,加強數據安全事件監測和事態發展信息搜集工作,積極開展應急處置、風險評估和安全控制的能力建設,提升基於持續檢測、態勢感知和及時響應處置的數據安全保障能力,釋放數據活力。
三是加快建立數據信息資源目錄體系,滿足技術性開放的數據安全要求。立足實際情況,根據數據應用的差異化需求和不同場景,明確數據信息資源目錄的管理者、提供者和使用者的不同角色和職責,按照管理范圍和職責許可權,落實數據資源的編目、注冊、發布和維護。在生產使用過程中也要加快建立統一的數據標准體系並制定數據安全策略,通過數據鏈的標准化和主動性數據安全模式,確保數據的清晰可溯,確保相關機構和個人最大程度地自由安全獲取和利用數據。
加強技術保障
有效的技術保障,是保障大數據安全、提升數據治理能力的關鍵。
一是加強政策引導,不斷提升技術能力。推動大數據領域產學研協同創新合作,加強大數據風險管理核心技術的聯合攻關,增強防範和處置數據安全事件的技術支撐能力。重點支持網路安全監測預警、處置救援、應急服務等,以核心技術的突破和發展,有效降低大數據的安全風險。
二是建立數據安全防範資料庫,加強數據共享。鼓勵以大數據產業聯盟、相關行業協會等組織為依託,在大數據生產使用過程中的風險監控和管制,以及風險預警和化解方面,建立一個共享的數據安全防範資料庫,促進數據安全防範信息和修復舉措的收集和共享,低成本、高質量、高頻度地生產、使用數據安全防範相關知識。
❸ 如何利用機器學習和大數據分析來優化投資組合和風險管理策略
機器學戚扒習和大數據分析可以在投資組合和風險管理方面提供有價值的信息和洞見,以下是一些基本的步驟:
數據准備:獲取和整理數據,包括資產價格、財務指標、市場數據、宏觀經濟數據等。
特徵工程:從數據中提取有意義的特徵,如市場波動、行業變化、財務穩定性等,用於機器學習模型的訓練和預測。
模型選擇和訓練:根據投資組合和風險管理的需求,選擇合適的機器學習演算法,如回歸、分類、聚類等,利用歷史數據對模型進行訓練。
模型評估和優化:評估模型的表現,比較不同演算法和參數組合的效果,進行枯缺優化,以提高預測准確度和投資回報率。
風險管理:利用機器學習模型高敗昌預測風險和波動性,制定相應的風險管理策略,如對沖、分散投資等。
實時監控和調整:定期更新數據和模型,實時監控投資組合和風險管理策略的表現,及時調整和優化。
在以上步驟中,特徵工程和模型選擇和訓練是非常重要的,需要具備一定的數據科學和機器學習技能。此外,還需要一定的金融和投資知識,以確保模型的合理性和有效性。
❹ 2018年開始運用大數據進行內部控制和風險管理的企業有哪些
你好朋友,隨著時代的發展這樣的企業只有好多的。數據觀微信速遞專
隨著金融科技的深入屬發展和多方面應用,以大數據等科技手段提收增效成為金融行業核心訴求。數據觀微信小編獲悉,3月12日,網路金融攜手愛分析聯合發布了《2018年中國大數據風控調研報告》,對能夠有效降低金融風險管理成本的大數據風控技術和市場進行了研究分析。
2017年中國大數據風控市場規模達140億人民幣,發展潛力巨大,互聯網巨頭、產業類公司、創新類公司和IT類公司四類公司紛紛入場。隨著開源類技術迅猛發展、行業趨於合規化,以及百行徵信的成立,大數據分析市場越來越趨於集中,技術、數據、場景理解、客群和獲客成為了大數據風控公司五大核心競爭力,其中,互聯網巨頭更占優勢。
❺ 大數據安全層面的風險主要包括
大數據在應用和存儲中存在著一系列安全風險,包括以下幾個層面:
數據泄露風險:大數據的存儲和傳輸,容易面臨數據泄露的風險。這些數據可能是敏感性數據,如個人身份信息、財務信息、醫療記錄等。
數據完整性風險:大數據存儲和傳輸中,數據可能會遭受損壞、篡改或丟失,因此需要採取保護措施,保證大數據的完整性。
許可權管理風險:「大數據時代」涉及眾多數據源,管理人員要對各類數據源的許可權進行仔細的分析和考慮,設置合適的許可權,避免數據泄漏、篡改等風險。
命令注入風險:黑客利用安全漏洞,通過構造特殊的輸入進行攻擊,從而在系統內執行惡意命令,造成系統癱瘓、用戶數據丟失等風險。
惡意軟體攻擊:惡意軟體是指那些被創建來入侵計算機、網路或移動設備的軟體,通過惡意指令來獲取敏感數據,竊取隱私信息,或者破壞系統的完整性。
供應鏈風險:大數據往往依賴於雲服務、第三方應用等,這些供應商存在安全問題時,會直接影響大數據的安全。
數據處理風險:大數據可能存在各種數據處理問題,如特徵選擇錯誤、處沒爛理數據集不準確、應用演算法核閉缺陷等,從而導致大數據的隱私和安全問題。
這些安全風險需要引起我們的注意,企業或個人在使用、處理與存儲大數據時,應制定安全策略和措施,加強數據管理與安枯氏漏全運維,從而有效地緩解數據的安全風險。
❻ 淺議大數據時代如何加強稅收風險管理
內容提要:「大數據」時代的到來,為稅收風險管理提供了新機遇,帶來了新挑戰。本文在分析大數據為稅收風險管理提供契機的基礎上,結合基層稅務機關工作實踐,嘗試提出相應的稅收風險管理策略和建議,提升風險管理水平。
關鍵字:大數據,稅收風險管理
稅收風險管理是提升稅收征管質量、提高納稅人稅收遵從度的重要手段,「大數據含頃」時談局陸代的到來又為稅收風險管理提出了新的要求,如何運用大數據提升稅收風險管理水平,是新形勢下基層稅務機關面臨的巨大挑戰。
一、大數據時代的稅收風險應對的機遇與挑戰
(一)涉稅數據規模大,速度呈現跳躍性增長。大數據時代的進步,給稅務管理以信息管稅帶來了前所未有的機遇:現成的網路資源和真實的數據基礎。「信息管稅」,內涵要求是管住信息,沒有信息談何信息管稅。2011年地稅就實現了征管數據的全國大集中,標志已經步入了「數據驅動決策方法」的大數據時代,據統計,「金稅三期」工程在全國推行後,數據量和業務量將會極大地增長,數據規模的增長速度也會呈跳躍性增長。
(二)涉稅信息採集和掌握比較困難。大數據時代的進步,給稅務管理以信息管稅帶來的挑戰也是前所未有的,理論上客觀存在的這些涉稅信息,稅務系統是既看不著,也摸不著。面對這突變發展的大數據時代,由於落後的稅務征管信息系統背離大數據時代互通特徵與現實應用的網路資源脫節臘拆,所以征管系統現存的數據就不可能做到完整、真實、准確。而由於不重視文明、進步社會管理的基本理理念,至今尚未開展稅源信息標准化的基礎工作,致使社會稅源信息五花八門,其產生只能將就各市場主體自身業務推進的需要,不能滿足稅源信息採集的需要,進入大數據時代就如何採集和掌握現實稅源信息成了信息管理最大的難題。
二、大數據時代下基層稅務機關稅收風險管理現狀
(一)稅收風險管理專業人才匱乏。在大數據時代中,稅收風險管理要通過建立風險監控模型,來進行預測分析。特別是面對海量的數據,監控模型能左右著稅收風險管理的成敗。能建立或者組織建立風險監控模型的人才首先要有專業的稅收業務知識、要熟練掌握稅收應用系統、要有大數據的理念、熟悉數據的來源和構成,同時還要有創新意識和奉獻精神。在基層稅務機關,這種風險管理領域的專業人才少,導致工作實績不明顯。
(二)數據獲取不全面。風險管理必須依靠大量正確的數據信息,金稅三期的推行,解決了內部數據獲取的問題,但是,納稅人的生產經營信息、財務信息以及第三方信息的獲取渠道仍然有限。基層稅務機關無法像總局大企業司的全流程風險監控那樣獲取信息,外部涉稅信息主要來源於自行報送,獲取信息的范圍狹窄、渠道少且不準確。一些對風險分析至關重要的物流、資金流信息數據無法取得。同時,金稅三期等含有無效甚至垃圾數據,嚴重影響了風險監控的准確性。
(三)思想認識上有偏差。風險管理的基礎是信息的採集,也就是對數據的處理。在基層稅務機關,多數人認為稅收數據是信息中心的活。因此,把數據管理也看成了技術活,一方面覺得事不關己高高掛起,另一方面會認為數據管理高深莫測的,遙不可及。其實數據是業務載體和表現形式,是決定風險管理質量的基礎和關鍵所在。
(四)涉稅數據更新不及時。稅務管理包括稅務登記、納稅申報、稅款徵收、發票管理、納稅評估、稅務稽查等產生的涉稅信息資源,構成了稅務機關征管系統的主體數據。由於採集方式多以手工錄入為主,數據在質量上,特別是在完整性、准確性、規范性、邏輯性等方面,依然難以滿足稅收風險管理的需要。另外,不同納稅人的名稱、生產經營地、法人、財務負責人、經營范圍經常變化,使稅務機關征管系統的數據很難做到隨時更新,也給稅收風險管理帶來難題。
(五)數據分析技術能力有待提高。在基層稅務機關,絕大多數的數據分析仍停留在簡單的查詢和比對層面,缺乏行之有效的數據分析工具,使大量沉積在業務操作層的數據尚未有效轉換為管理決策層所需要的信息,即使是納稅人提供的網上申報數據和財務報表數據電子信息,也難以實現所有信息的全面自動讀取、分類加工。稅務機關難以對這些數據進行深層次的分析,獲得更有價值的信息,對數據所反映出的稅收風險、經濟內涵進行分析監控乏力,沒有建立稅收與相關經濟數據之間的關聯模型,難以對現有數據進行數理統計和趨勢預測分析,不能為管理決策提供科學、有效的信息支撐。
三、稅收風險管理適應大數據時代發展的建議與對策
(一)強化以數治稅理念。將該理念貫穿於稅收征管改革和體系建設的全過程,引導基層稅務幹部正確理解大數據的核心理念,培養大數據的思維方式,自覺運用大數據查找風險疑點,開展風險排查和應對,營造用數據管理、用數據決策、用數據創新的風險管理氛圍。強化稅收風險共治理念。立足工作實際,以科學有效的稅收風險共治平台為支撐,持續推進稅務部門、納稅人、政府部門、社會組織在稅收風險管理上的深度合作和協同治理,構 建黨 政領導、稅務主責、部門合作、社會協同、公眾參與的稅收風險共治模式,實現部門之間數據信息的開放共享、互聯互通和深度應用,形成風險管理合力。
(二)建立良性的風險監管工作機制。基層稅務機關可以建立本地區專門的風險監控管理機構。並且明確各崗位的職責許可權:稅源管理和納稅服務部門在變管戶為管事的基礎上,深化納稅服務,同時提供個性化的納稅服務,比如建立對話、幫助簽訂稅收遵從協議等。風險監控部門可以看成是既有稅收業務知識和一定數據管理水平的成員組成的本地區團隊,負責數據管理、設計並更新維護本地區風險監控指標、對稅收風險進行分析識別、向相關部門進行風險推送。納稅評估部門接收推送過來的風險任務、採取納稅評估或者稅務審計等手段進行風險應對、同時將風險應對結果向相關部門推送。綜合業務部門在執行稅收政策的同時,審核風險應對結果,同時向風控部門推送風險應對的審核結果,為其更新和完善風險監控指標提供依據,由此形成了一個協調配合、聯動監督、良性互動的閉環工作模式。
(三)建立以風險管理為導向的扁平化立體式征管模式。為積極應對大數據時代給稅收風險管理帶來的挑戰,應進一步明確職能,規范流程,建立上下聯動、橫向互動的兩級任務中心,形成扁平化立體式征管模式,以適應稅收風險管理工作的開展。同時,按照納稅人的「規模或行業+征管事項分類」的原則,結合稅源結構特點設置與風險管理相適應的稅源管理機構,形成事項分類管理、風險專門應對,科學化、專業化、精細化更加突出的征管模式。通過征管模式的重構,形成市局、基層局相互呼應、互為依託、相互補充、共同提升的工作模式,繼續提升大數據時代地稅部門的工作質效。
(四)提升數據採集和應用能力。稅收大數據是稅務部門最核心和關鍵的征管資源。為了不斷提升稅務機關的核心競爭力,必須加強對稅收大數據的交換共享、智能比對和邏輯相關分析,拓寬採集渠道,全面獲取各方各類涉稅信息。對地稅內部、外部海量涉稅數據信息進行全面歸集採集、整合加工,實現「信息+數據」增值應用,著力突破征納雙方信息不對稱的管理瓶頸,有效促進納稅遵從和管理增效。在信息採集方面,一是繼續做好政府部門涉稅信息採集工作。充分發揮《江西省地方稅收保障條例》的作用,繼續爭取政府和相關職能部門的大力支持,發揮跨部門信息交換和共享平台作用,形成跨部門協同治理格局,全面准確及時地獲取涉稅信息,形成全面實時、動態化的稅源監控網路,有效加強地方稅收征管。二是繼續加強互聯網涉稅信息的採集力度。充分利用互聯網海量資源,甄別、採集、整合上市公司中涉及企業的有效數據,為稅收管理提供數據基礎。
(五)多措並舉,不斷提升數據應用的有效性。一是規范數據質量管理。嚴格規范納稅人的財務報表、基本資料等基礎數據信息,把好數據入口關、校驗關;
同時,對通過風險管理發現的數據質量問題進行跟蹤管理,確保錯誤數據及時得到更正;
注重發揮納稅輔導提示、服務作用,提醒納稅人重視數據質量並及時更正錯誤數據。二是做好數據整合應用。其一,實現稅務系統內部信息的有機整合和結構化存儲。對稅收征管主體軟體、發票系統、風險管理等各系統中的涉稅信息,第三方渠道採集的各類信息,以及稅務人員在實地巡查、約談、評估、稽查中獲取的各類信息,進行有機整合和一戶式歸集,建立起統一規范的納稅人數據倉庫,在各級稅務機關、各稅種管理部門、前台服務人員之間,按照職能許可權實行信息開放和增值應用。其二,加強內外部數據的合作應用。對內,加強市局各業務處的合作,共同探討信息分析應用途徑;
積極徵求基層局意見建議,了解信息的有效性、針對性,通過信息分析方與應用方的對接,形成數據採集、整理、運用的良性互動,進一步提升信息應用效率。對外,加強與國稅、財政等部門的合作,對獲取的數據進行綜合分析,共同應用,互利共贏,共同提升信息應用水平。
(六)建立人才培養機制,打造專業稅收風險分析管理團隊。以風險分析、應對納稅、調整賬務處理、計算機操作技能和評估約談技巧等為主要內容,組織開展風險管理能力培訓,激發幹部業務學習活力;
要優化組合,合理配備資源,使得人盡其才。逐步建立一支綜合素質高、專業技能強的專業化風險管理團隊。加強風險管理隊伍建設。結合「數字人事」和個人績效管理,將管、考、訓、用有效統一, 圍繞打造風險管理專業團隊的目標加強業務培訓,面向風險管理人員定期考核,優化激勵機制,重視工作實績,促進風險管理人員自覺學習業務、鑽研業務,不斷提高風險管理能力和水平。
參考文獻
(1)彭驥鳴曹永旭 韓曉琴 《大數據時代稅源專業化管理面臨的機遇與挑戰》,《稅收經濟研究》,2013年6期
(2)林偉勝 許卓偉 《大數據時代信息系統建設的一些思考》,《信息與電腦》,2013年1期
(3)阿里2014財年數據,2014
(4)趙國棟 《大數據時代的三大發展趨勢》,高科技與產業化,2013
(5)孫開沈昱池 《大數據,構建現代稅收征管體系的推進器》,《稅務研究》,2015年1期
(6)劉暢 《大數據背景下需改革稅收征管模式》,《稅收征納》2014年12期
❼ 如何運用大數據進行商業銀行風險管理
商業銀行的風險管理除了對基於銀行過往的數據對未來做出預測以外,還內會涉及到公司層容面的問題。比如,公司以及其產品在網民中的地位如何,有哪些優點和不足,公司的競爭對手目前有什麼舉動等等。這里就涉及到對於網路進行信息的採集,進而進行輿情監測,發覺公司需要的有價值的信息和情報。
就目前來說,輿情 監測已經成為金融行業的一種十分重要的風險管理手段,因為互聯網的力量越來越不可忽視。交行等就是其中典型的代表,他們的輿情系統來自Knowlesys,是基於web2db knowlesys 的,其主要的效果是這樣的:
1. 可實時監測微博,論壇,博客,新聞,搜索引擎中相關信息
2. 可對重點QQ群的聊天內容進行監測
3. 可對重點首頁進行定時截屏監測及特別頁面證據保存
4. 對於新聞頁面可以找出其所有轉載頁面
5. 系統可自動對信息進行分類26禁止9盜用0
6. 系統可追蹤某個專題或某個作者的所有相關信息
7. 監測人員可對信息進行挑選,再分類
8. 監測人員可以基於自己的工作結果輕松導出製作含有圖表的輿情日報周報