導航:首頁 > 網路數據 > 大數據課程設計

大數據課程設計

發布時間:2023-08-19 02:23:21

大數據行業怎麼樣尚矽谷的大數據課程怎麼樣

很樂意為您解答:

第一、大數據行業怎麼樣?

現在是大數據時代,我們國家正在大力發展大數據,現在社會也是很需要這方面人才的。大數據方面的人才緊缺,很多企業高薪聘請有能力的大數據高級應用人才。大數據是一個熱門的行業,要是學生們想選擇大數據專業的話,那麼需要好好扎實專業知識,為了日後更好地在大數據行業中獲得較好的發展。

第二、尚矽谷的大數據課程怎麼樣?

這個建議您從師資、課程設計、教學模式等多方面考察。

最後祝您掌握真的技術,實現高薪就業。

② 如何通過抓取教育大數據來深化課堂教學改革

現代信息技術的發展為大數據的收集和分析提供了無限的可能,大數據時代的這一趨勢也對教育產生了巨大的影響:一方面,在科技理性的指導下,通過多維度收集學生行為的數據並進行模型建構,可以對學生的學習行為進行預測;另一方面,大數據時代的人文主義轉向使人們更關注教學活動的適應性,教育大數據的挖掘和利用可以更好地實現適應個人需求的定製化教學。

國際數據公司(IDC)認為大數據時代數據有4大特點——數據的規模大、價值大、數據流轉速度快以及數據類型多。大數據的挖掘和利用對教育——特別是課堂教學——產生著深遠的影響。學習科學家索耶認為:越來越多的學習將經過計算機中介發生, 並產生越來越多的數據,我們有必要運用這些數據分析什麼時候有效的學習正在發生。所以數據挖掘可以用於探究行為與學習之間的關系,如學習者的個體差異與學習行為之間有何關系,不同行為又會導致何種不同的學習結果等。2012年美國發布《通過教育數據挖掘和學習分析促進教與學》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大數據時代教育數據的特點:具有層級性、時序性和情境性,其中數據的層級性指,既收集教師層面的數據也收集學生層面的數據,既收集課堂數據也收集活動數據,為後期模型的建立提供了多維度的資源;數據的時序性是指,數據是實時的、連續的,為材料的前沿性提供了保障;而數據的情境性是指,數據是基於真實情境脈的,保證了模型的信度。

大數據技術能夠促進以學生為本的學習,數據不僅僅是科技理性指導下收集數據和擬合成模型,並針對學生的群體行為做出預測判斷,還可能在固有模型的基礎上,通過診斷學生在課堂中的行為表現,對固有模型進行修改,使課程內容更加適合學生的長尾需求,實現個性化教學。大數據的利用可以支持對教育活動行為的建模預測,還可能支持教育實踐中的適應性教學。前者是後者的基礎,後者是前者的深化。

建模與預測導向的大數據應用

大數據時代數據促進教育變革的方法之一是收集和分析處理數據,並進行預測。現如今,由於數據記錄、存儲與運算的便捷性,海量的、多層次的數據可以便捷地加以收集,由隨機抽樣帶來的誤差因此減小,建模和預測可以基於全數據和真實數據,因而就更為精確。大數據時代通過探求海量數據的相關關系獲得盈利的最成功的案例是亞馬遜的市場營銷,亞馬遜收集讀者網上查閱行為和購買行為數據,建立讀者偏愛閱讀模型,預測讀者購買的群體行為,實現書籍的推薦。近幾年,教育研究的對象逐漸關注學生的學習行為,其背後是一種學習觀的轉變,學習被視為一種識知的過程(knowing about),識知是一個活動,而不是將知識作為一個物品加以傳遞。識知總是境脈化的,而不是抽象的和脫離於具體情境的。識知是在個體與環境的互動中交互建構的,而不是客觀准確的,也不是主觀創造的。所以,學生的行為活動數據被認為是可以反映學生在學習過程這一情境化的動態變化進程中的情況。海量、多層次、連續的行為數據在收集後被擬合成模型,實現預測,如學習管理系統(LMS)的運用。然而,由於建模和預測依賴的基本原理為數理統計,其預判對象主要是學生的群體行為。

1.案例分析

學習管理系統(Learning Manage System)簡稱LMS,是基於網路的管理系統平台,用於監控學生學習活動行為,識別和預測學困生(student at-risk),並為其提供相應的幫助。大多數LMS包括5個部分:有和課程相關的學習資料、用於確保學生提交作業與完成測試的評價工具、用於溝通的交流工具(如郵件、聊天室等)、用於確保教師記錄和存儲學生的學習活動並發布活動截止日期的課程管理工具、用於幫助學生學習回顧和跟蹤學習進程的學習管理工具。在高校大量使用的BB(Blackboard)平台就是一個常見的學習管理系統。系統記錄了學生參與選修的網上課程的種類、在線時長、閱讀和瀏覽的文章數量,反映學習者的學習行為。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列顛哥倫比亞大學通過分析5個本科班級使用BB平台選修生物課的數據,建立了預測模型。平台記錄了學生課程材料的使用情況、參與學業交流情況和完成作業提交和考試情況。大數據時代教育數據記錄的層級性在這裏充分顯現,課程材料的使用包括記錄在線時長、郵件的閱讀時間、郵件的發送時間、討論信息的閱讀時間等。參與學業交流記錄了發布新討論的時間、回復討論的時間、使用搜索工具所花的時間、訪問個人信息的時間、文件的瀏覽時間、瀏覽誰同時在線的時間、瀏覽網頁連結的時間等等。評價模塊記錄了評價的閱讀時長和提交評價的時間等。通過應用統計工具描述散點圖,發現了在LMS記錄下學生在線時長和學業表現呈相關關系。在進行多元回歸時,研究者發現,學業成就處在後四分之一的學生在線時間略長於平均時間,而學業成就處於前四分之一的學生的在線學習時間低於平均水平。緊接著,研究人員為了作出預測,利用邏輯斯特回歸生成了一個預測模型,通過收集學生的新的行為數據,預測學生是否處於真正參與了學習活動,並得出如下結論:討論舉行的次數、郵件信息發送量和測評的完成情況這三個維度構成的模型可以預測學生的學業水平情況。

大數據時代,通過探求學生行為與學業水平之間的相關關系,建立模型,實現預測,能夠對課堂教學產生重要影響。然而,數據建模過程中,為了保證模型的效度與信度,極端個別數據被處理,使模型只能實現群體行為的預測,不能針對學習者個體實現定製化和個性化。

2.建模與預測的不足

數據建模與預測的背後充分體現了實證主義的思想和方法。19世紀上半葉,以孔德為代表的社會學家提出了實證主義的基本信條:利用觀察、分類,探求彼此的關系,得到科學定律。實證主義的哲學思潮到20世紀60年代,演變成一種科技理性,實踐知識逐漸染上了工具性的色彩,專業活動存在於工具性的解決問題之中,所有的專業活動都被視為釐定目標、套用已知的方法解決問題的過程。這一期間,大量的學科被系統地整合發展,甚至包括教育學和社會學這樣的「軟科學」。用證據解決未知的問題,用數據預測未來一時成為潮流。

學生活動行為數據的建模尤其側重體驗實證主義的思想,模型注重成功教學行為的共性,忽視教師與學生群體的獨特性需求時,科技理性的主導有可能使課堂教學被視為獨立於真實境脈的模塊,只要教學行為取得成功,就會被數據抽象化,形成模型,對學生群體行為產生預測。科技理性有賴於人們認同的共有目標,教學實踐目標的釐定極其復雜,包含巨大的不確定性和獨特性,甚至,由於社會角色的不同,還會帶來價值沖突。一個穩定的、為所有人所認同的目標不復存在,依據科技理性精神和方法推理預測的行為模式並不可能滿足每一個人的需求,教育變革在大數據時代下出現新的取向。

從數據模型到支持適應性學習

在數據建模的基礎上實現教學的適應性是大數據時代促進教育變革的另一成果。數據建模及行為預測依舊屬於科技理性指導下的行為模式,可能會造成忽視學生個性需求的現象,而個性化需求正是知識社會的重要特徵,個性化的教育也受到教育研究者、政策制定者和教育實踐者越來越多的關注。教育系統設計專家賴格盧斯認為,教育投入沒有達到效果的一個很重要的原因是忽視了社會的轉型。「社會已經從工業社會步入了資訊時代,勞動力市場對人才的要求不再是工業時代在流水線上操作的工人,而是具有創新性思維、決斷力強的知識性人才。」教學面臨從產生清一色的勞工轉向產生有判斷力和適應性能力的人群。2010年,OECD的報告《The Nature Of Learning》中指出,適應性能力(adaptive competence)是21世紀核心競爭力,包括在真實的境脈中靈活並有創造力地使用有意義的知識和技能。吳剛在《大數據時代的個性化教育:策略與實踐》中提出了個性化教育的必要性和必然性,指出「只有利用信息技術所提供的強大支持,才有可能真正實現個性化學習」。大數據時代的來臨,正是個性化教育發展的一個良好契機。2012年,美國頒布了《通過教育數據挖掘和學習分析促進教與學》,提出大數據時代,通過收集在線學習數據,對數據進行分類和探尋數據之間關聯的方式挖掘數據,形成數據模型。通過學生行為和模型的互動,形成適應性學習系統。概言之,我們可以以對行為數據的充分利用為基礎,改變教學的內容和進度,構建適應性評價和教學系統,充分實現教育的定製化,滿足學生的長尾需求。

1.案例分析:
適應性教學系統又稱適應性學習系統,(Adaptive Learning Support System),簡稱ALSS系統,強調基於資源的主動學習,認為學習不是知識的傳遞,而是學習者的自我建構。自上世紀90年代以來,研究者開發了不少適應性學習系統,如1998年De Bra開發的AHA系統,2003年,Brandsford和Smith開發的針對任務型學習的MLtutor系統,以及近幾年頗受關注的翻轉課堂(Flipped Classroom Model)簡稱FCM系統。

學習者學習相關學科內容時,學習行為被記錄跟蹤下來,學生的學習行為數據被傳送到後台,記錄在學習者資料庫內,作用於預測模塊。預測模塊通過改變內容傳遞模塊,再次作用於學習者。在整個過程中,教師、教學管理者起干涉作用。

適應性學習系統是一個交互的動態系統,系統往往會提供給學生一些學習行為建議。奧地利針對學生的問題解決的過程設計了一個適應性學習系統。適應性學習系統的第一步是教育數據挖掘(ecational data mining),簡稱EDM。數據挖掘的過程包括數據收集、數據預處理、應用數據的挖掘和詮釋評價發展結果。Moodle提出了CMS數據挖掘系統(Course Management System)。研究者先使用原始數據進行建模,第一步是原始數據的收集,原始數據大約包含2007年73名用戶產生的28000活動例子,2008年97名用戶產生的265000份解決問題的案例和2009年45名用戶產生的115000個活動案例。除了記錄學生解答問題時產生的數據,原始數據還收集了學生的信息、問題的信息和解決問題的步驟;在對數據進行分類後,歸納出問題解決的類型,利用很擅長擬合連續數據的Markvo Models(MMs)的一個子模型DMMs擬合了如上的連續性數據,通過添加判斷學生學習行為的結果模型和一系列監控和調節模塊,構成了整個面向問題解決的適應性系統。當學生使用這個模型時,模型會根據學生的行為數據為學生提供他們所偏愛的解決問題的過程與方法。

除了適應性教學系統,還有適應性評測系統。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一個計算機輔助的個性化網路學習測評平台,平台不提供課程設計和課程目標,而是一個教學工具。CAPA通過後台記錄學生的基本資料,學生參與的互動交流、學業情況,針對學業課程中的疑難點,提供個性化的考試資源。

2.適應性轉向的意義

在大數據時代,科技理性指導下的模型預判在面對結構不良的問題時顯得應對能力不足。科技理性指導下的數據建模忽視學習的真實境脈,只能支持群體行為的預判,模型的推廣可能會使人們忽視其實踐成功背後的個體經驗與具體情境,從而導致科技理性與哲學思辨對抗。然而,完全依靠哲學思辨和經驗進行教學不僅不利於教育學科系統理論性的發展,也不利於課堂實踐的管理與教師的培訓。唐納德·A.舍恩提出了一種適應性思維模式。他指出:「如果科技理性的模式在面對『多樣』的情境時,是無法勝任、不完整的,甚至更遭的話,那麼,讓我們重新尋找替代的、較符合實踐的、富有藝術性及直覺性的實踐認識。」適應性學習是在系統理論知識的指導下,針對個體差異,使學習內容和活動高度個性化的學習方式。

適應性平衡了理性與經驗的兩難,英國學者Hargreaves(1996)首次提出基於證據的教育研究向醫療診斷學靠攏。臨床診斷學和教育的相似之處在於,他們都要面對變動不居、極其復雜的環境,在這樣一個結構不良的系統中,充分意識到客體(患者或者學生)的獨特性與共性,利用系統的專業知識解決問題。

Ralf St. Clair教授在參考醫學臨床實踐研究的三要素後提出基於證據的教育研究的三要素——研究的證據、教育工作者的經驗、學習者的環境與特點。其中,行為預測關注的是研究的證據,而適應性學習系統的建設則關注的是教育工作者的經驗和學習者的環境與特點。

從預測行為到支持適應性教學的轉向,是一種人文主義的轉向,教育研究的重點從關注研究的證據走向關注教育工作者的經驗與學習環境特點,關注以證據支持個性化學習的實踐變革。證據不再是其在科技理性時代所處的指導決策的角色,而是被視作一種資源,教育工作者在大量的基於證據的課堂教學決策中找尋最適合自己特點和學生特點的方式,推進課堂教學流程。也就是說,大數據的更重要價值在於支持適應性學習,滿足個性化學習和個性化發展的時代需要。數據的預測功能依賴於大數據收集數據的全面性與處理數據的便捷性,根據統計學原理對群體行為做出預測,一定程度上弱化了個體特徵和具體情境。其主要指向行為預判。而適應性是在模型與客體的交互作用上改變模型,如圖3所示,數據的適應性運轉模型比預測模型多了一個循環(loop until)系統,使其更加契合個人需求,其主要指向實踐改進。預測是支持個性化學習的基礎,而支持個性化學習是預測功能的深化和轉化——從整體人群到個體學習者、從理論模型到實踐策略的轉化。

分析與啟示

大數據時代由於數據量大,數據收集與攜帶便捷,使海量學生行為數據被挖掘、收集,通過數據建模對學習者行為的分析變得比前大數據時代更為全面和可靠。數據時代在數據的挖掘和預測上固然潛力十足,但是大數據時代更多的價值是滿足學習者的適應性長尾需求,在預測行為的基礎上,修改教學模式,使之個性化與定製化。從數據建模走向支持適應性教學,支持對象從群體轉向了個人,對教育活動的影響從對行為的認識轉向了教育活動的實踐,從科技理性指導下的去境脈轉向了基於真實情境的教學活動。

走向適應性,不僅改變人類行為方式,更重要的是改變了認知方式。前大數據時代人們在科技理性的指導下完全被數據證據左右(driven by the data),教師和學生、教育決策者和學校形成傳統社會契約關系,當事人把自己百分之百地交給專業工作人員,而專業工作人員遵守契約,對當事人全心全意地負責,從而使專業工作人員享受至高無上的壟斷性地位。大數據時代,教師不再是知識的控制者,他通過參與學生的學習活動,根據學生的先擁知識和認知特點、個性需求,不斷地調整教學步驟、教學進度和難度。學生不用完全將自己有如病人交付給醫生一般完全託付給教師。在學習的過程中,通過與教師的互動交流,在教師的協助下,成為自己學習的主體,控制並對自己的學習負責。由於教師精力有限,大數據時代下網路計算機輔助學習系統可以為教師和學生提供輔助指導的機會。

盡管如此,一方面,我們要擁抱大數據給我們帶來的便捷的生活和高質量的教育,另一方面,我們需要保持警惕和防止因果關系和相關關系的誤用,並且維護數據安全。

在推理方面,教育工作者需要警惕將相關關系和因果關系誤用,以Leah P.Macfadyen教授的前述案例為例,BB平台在線時間的長短和學生的學業成就有相關關系,而非因果關系,成績優異的學生在線時間低於平均在線時間,但不能說低於平均在線時間的學習導致學生成績優異而要求學生減少在線學習時間。

此外,在信息安全方面,學生和教師的大量信息被收集和使用,在使用的過程中,必須制定相關私隱保護法,保證信息的安全,警惕數據濫用。學生的行為數據也不可以作為教師教學評優的依據,讓大數據真正成為支持教學變革、提升教學效能、促進學生發展的手段,而不是控制教師和學生的工具。

③ 大數據管理專業學什麼

大數據管理專業學計算機科學原理,數據科學原理,數據結構原理,演算法原理,程序設計原理,數據挖掘技術,數據分析方法,概率論和統計等。

一、大數據管理與應用學科基礎課程:

大數據管理與應用導論、管理學、會計學、經濟學、運籌學、概率論與數理統計等。另外安排有計算機基本技能訓練、程序設計基礎課程設計等實踐課。

有人工智慧導論、信息管理與系統建模、電子商務、企業大數據管理、推薦系統導論、大數據營銷與管理、網路前沿安全技術、深度學習導論、區塊鏈技術、智能交互技術、雲計算基礎、多元系統分析及R語言建模、WEB前端設計、NOSQL資料庫、IT項目管理等等。

五、專業實踐課程:大數據技術原理與應用課程設計、資料庫原理及應用課程設計、商業數據分析課程設計、數據可視化綜合實踐、大數據管理畢業實習及畢業設計等。

④ 大數據培訓課程介紹,大數據學習課程要學習哪些

《大數據實訓課程資料》網路網盤資源免費下載

鏈接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw

?pwd=zxcv 提取碼:zxcv

大數據實訓課程資料|雲計算與虛擬化課程資源|課程實驗指導書綜合版|機器學習與演算法分析課程資源|Spark課程資源|Python課程資源|Hadoop技術課程資源|雲計算課程資料.zip|微課.zip|演算法建模與程序示例.zip|spark課程資源.zip|hadoop課程資源.zip|實驗指導書|教學視頻|教學PPT

⑤ hadoop課程設計

1. 大數據專業課程有哪些

首先我們要了解java語言和linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

2. hadoop視頻教程下載

其實這個課程講的「微博」項目是《HBase in action》中的例子。其中的源代碼都放在 github 上面。

3. 請問哪位有《深入淺出Hadoop實戰開發》的視頻教程

Hadoop是什麼,為什麼要學習Hadoop?

Hadoop是一個分布式系統基礎架構,由Apache基金會開發。用戶可以在不了解分布式底層細節的情況下,開發分布式程序。充分利用集群的威力高速運算和存儲。Hadoop實現了一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。HDFS有著高容錯性的特點,並且設計用來部署在低廉的(low-cost)硬體上。而且它提供高傳輸率(high throughput)來訪問應用程序的數據,適合那些有著超大數據集(large data set)的應用程序。HDFS放寬了(relax)POSIX的要求(requirements)這樣可以流的形式訪問(streaming access)文件系統中的數據。
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
Hadoop帶有用Java 語言編寫的框架,因此運行在 Linux 生產平台上是非常理想的。本課程的講解是採用linux平台進行模擬講解,完全基於真實場景進行模擬現實

亮點一:技術點全面,體系完善
本課程在兼顧Hadoop課程知識體系完善的前提下,把實際開發中應用最多、最深、最實用的技術抽取出來,通過本課程,你將達到技術的新高點,進入雲計算的美好世界。在技術方面你將徹底掌握基本的Hadoop集群;Hadoop HDFS原理;Hadoop HDFS基本的命令;Namenode的工作機制;HDFS基本配置管理;MapRece原理; HBase的系統架構;HBase的表結構;HBase如何使用MapRece;MapRece高級編程;split的實現詳解;Hive入門;Hive結合MapRece;Hadoop的集群安裝等眾多知識點。

亮點二:基礎+實戰=應用,兼顧學與練
課程每階段都安排了實戰應用項目,以此方便學生能更快的掌握知識點的應用,如在第一階段,課程結合HDFS應用,講解了圖片伺服器的設計、以及如何利用Java API去對HDFS操作、在第二階段;課程結合HBase實現微博項目的各種功能,使學員可以活學活用。在第三階段:HBase和MapRece結合時下了實現話單查詢與統計系統,在第四階段,Hive實戰部分,通過實戰數據統計系統,使學員在最短的時間內掌握Hive的高級應用。

亮點三:講師豐富的電信集團雲平台運作經驗
講師robby擁有豐富的電信集團工作經驗,目前負責雲平台的各方面工作,並擁有多年的企業內部培訓經驗。講課內容完全貼近企業需求,絕不紙上談兵。

更多技術亮點參考課程大綱:(本大綱以章節形式命名要為防止某些章節1章節內容超過1課時)

第1章節:
> Hadoop背景
> HDFS設計目標
> HDFS不適合的場景
> HDFS架構詳盡分析
> MapRece的基本原理

第2章節
> Hadoop的版本介紹
> 安裝單機版Hadoop
> 安裝Hadoop集群

第3章節
> HDFS命令行基本操作
> Namenode的工作機制
> HDFS基本配置管理

第4章節
> HDFS應用實戰:圖片伺服器(1) - 系統設計
> 應用的環境搭建 php + bootstrap + java
> 使用Hadoop Java API實現向HDFS寫入文件

第5章節
> HDFS應用實戰:圖片伺服器(2)
> 使用Hadoop Java API實現讀取HDFS中的文件
> 使用Hadoop Java API實現獲取HDFS目錄列表
> 使用Hadoop Java API實現刪除HDFS中的文件

第6章節
> MapRece的基本原理
> MapRece的運行過程
> 搭建MapRece的java開發環境
> 使用MapRece的java介面實現WordCount

第7章節
> WordCount運算過程分析
> MapRece的biner
> 使用MapRece實現數據去重
> 使用MapRece實現數據排序
> 使用MapRece實現數據平均成績計算

第8章節
> HBase詳細介紹
> HBase的系統架構
> HBase的表結構,RowKey,列族和時間戳
> HBase中的Master,Region以及Region Server

第9章節
> 使用HBase實現微博應用(1)
> 用戶注冊,登陸和注銷的設計
> 搭建環境 struts2 + jsp + bootstrap + jquery + HBase Java API
> HBase和用戶相關的表結構設計
> 用戶注冊的實現

第10章節
> 使用HBase實現微博應用(2)
> 使用session實現用戶登錄和注銷
> 「關注"功能的設計
> 「關注"功能的表結構設計
> 「關注"功能的實現

第11章節
> 使用HBase實現微博應用(3)
> 「發微博"功能的設計
> 「發微博"功能的表結構設計
> 「發微博"功能的實現
> 展現整個應用的運行

第12章節
> HBase與MapRece介紹
> HBase如何使用MapRece

第13章節
> HBase應用實戰:話單查詢與統計(1)
> 應用的整體設計
> 開發環境搭建
> 表結構設計

第14章節
> HBase應用實戰:話單查詢與統計(2)
> 話單入庫單設計與實現
> 話單查詢的設計與實現

第15章節
> HBase應用實戰:話單查詢與統計(3)
> 統計功能設計
> 統計功能實現

第16章節
> 深入MapRece(1)
> split的實現詳解
> 自定義輸入的實現
> 實例講解

第17章節
> 深入MapRece(2)
> Rece的partition
> 實例講解

第18章節
> Hive入門
> 安裝Hive
> 使用Hive向HDFS存入結構化數據
> Hive的基本使用

第19章節
> 使用MySql作為Hive的元資料庫
> Hive結合MapRece

第20章節
> Hive應用實戰:數據統計(1)
> 應用設計,表結構設計

第21章節
> Hive應用實戰:數據統計(2)
> 數據錄入與統計的實現

4. 哪個課程題庫有hadoop的題

這是在一個平衡Hadoop集群中,為數據節點/任務追蹤器提供的規格:
在一個磁碟陣列中要有12到24個1~4TB硬碟
2個頻率為2~2.5GHz的四核、六核或八核CPU
64~512GB的內存
有保障的千兆或萬兆乙太網(存儲密度越大,需要的網路吞吐量越高)
名位元組點角色負責協調集群上的數據存儲,作業追蹤器協調數據處理(備用的名位元組點不應與集群中的名位元組點共存,並且運行在與之相同的硬體環境上。)。Cloudera客戶購買在RAID1或10配置上有足夠功率和級磁碟數的商用機器來運行名位元組點和作業追蹤器。

NameNode也會直接需要與群集中的數據塊的數量成比列的RAM。一個好的但不精確的規則是對於存儲在分布式文件系統裡面的每一個1百萬的數據塊,分配1GB的NameNode內存。於在一個群集裡面的100個DataNodes而言,NameNode上的64GB的RAM提供了足夠的空間來保證群集的增長。我們也把HA同時配置在NameNode和JobTracker上,
這里就是為NameNode/JobTracker/Standby NameNode節點群的技術細節。驅動器的數量或多或少,將取決於冗餘數量的需要。
4–6 1TB 硬碟驅動器 採用 一個 JBOD 配置 (1個用於OS, 2個用於文件系統映像[RAID 1], 1個用於Apache ZooKeeper, 1個用於Journal節點)
2 4-/16-/8-核心 CPUs, 至少運行於 2-2.5GHz
64-128GB 隨機存儲器
Bonded Gigabit 乙太網卡 or 10Gigabit 乙太網卡
記住, 在思想上,Hadoop 體系設計為用於一種並行環境。

5. 大數據的課程都有哪些

大數據本身屬於交叉學科,涵蓋計算機、統計學、數學三個學科的專業知識。所以大數據的課程內容,基本上也是圍繞著三個學科展開的。
數理統計方面:數學分析、統計學習、高等代數、離散數學、概率與統計等課程是基本配置。
計算機專業課程:數據結構、數據科學、程序設計、演算法分析與設計、數據計算智能、資料庫系統、計算機系統基礎、並行體系結構與編程、非結構化大數據分析等,也是必備課程。
而想要真正找到工作的話,大數據主流技術框架,也要去補充起來,這才是找工作當中能夠獲得競爭力的加分項。

6. hadoop 集群教程

要教程?不明白你這個啥意思

7. 有哪些好的hadoop學習資料

1."Hadoop.Operations.pdf.zip"//vdisk.weibo/s/vDOQs6xMAQH62
2."Hadoop權威指南(中文版)(帶書簽).pdf"Hadoop權威指南(中文版)(帶書簽).pdf
3."[Hadoop權威指南(第2版)].pdf"[Hadoop權威指南(第2版)].pdf
4."hadoop權威指南第3版2012.rar"hadoop權威指南第3版2012.rar

5.《Hadoop技術內幕:深入解析HadoopCommon和HDFS.pdf"《Hadoop技術內幕:深入解析Hadoop Common和HDFS.pdf
6."Hadoop技術內幕:深入解析MapRece架構設計與實現原理.pdf"Hadoop技術內幕:深入解析MapRece架構設計與實現原理.pdf

7."Hadoop實戰.pdf"Hadoop實戰.pdf
8."Hadoop實戰-陸嘉恆(高清完整版).pdf"Hadoop實戰-陸嘉恆(高清完整版).pdf
9."Hadoop實戰(第2版).pdf"Hadoop實戰(第2版).pdf
10."HadoopinAction.pdf"Hadoop in Action.pdf

11"Hadoop in practice.pdf"Hadoop in practice.pdf
12"HadoopThe.Definitive.Guide,3Ed.pdf"Hadoop The.Definitive.Guide,3Ed.pdf
13."O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf"O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf

14."hadoop入門實戰手冊.pdf"hadoop入門實戰手冊.pdf
15."Hadoop入門手冊.chm"Hadoop入門手冊.chm

16."windows下配置cygwin、hadoop等並運行maprece及maprece程序講解.doc"windows下配置cygwin、hadoop等並運行maprece及maprece程序講解.doc
17"在Windows上安裝Hadoop教程.pdf"在Windows上安裝Hadoop教程.pdf

18."Hadoop源代碼分析(完整版).pdf"Hadoop源代碼分析(完整版).pdf
19."hadoop-api.CHM"hadoop-api.CHM

20."HBase-Hadoop@小米.pptx" HBase-Hadoop@小米.pptx
21."但彬-Hadoop平台的大數據整合.pdf"但彬-Hadoop平台的大數據整合.pdf

22."QCon2013-羅李-Hadoop在阿里.pdf"QCon2013-羅李
23."網路hadoop計算技術發展.pdf"網路hadoop計算技術發展.pdf
24."QCon-吳威-基於Hadoop的海量數據平台.pdf"QCon-吳威-基於Hadoop的海量數據平台.pdf
25."8步安裝好你的hadoop.docx"8步安裝好你的hadoop.docx
26."hadoop運維經驗分享.ppsx"hadoop運維經驗分享.ppsx

27."PPT集萃:20位Hadoop專家分享大數據技術工具與最佳實踐.rar"PPT集萃:20位Hadoop專家分享大數據技術工具與最佳實踐.rar
28."Hadoop2.0基本架構和發展趨勢.pdf"Hadoop 2.0基本架構和發展趨勢.pdf
29."Hadoop與大數據技術大會PPT資料.rar"Hadoop與大數據技術大會PPT資料.rar
30."Hadoop2011雲計算大會.rar"Hadoop2011雲計算大會.rar

閱讀全文

與大數據課程設計相關的資料

熱點內容
哪裡買麥田app 瀏覽:79
tif修改工具 瀏覽:982
蘋果tv怎樣設置密碼 瀏覽:651
java開發沒人教 瀏覽:683
圖片取消不了隱藏文件 瀏覽:97
word復制批註 瀏覽:725
安卓迅雷30老版本 瀏覽:14
651代碼錯誤什麼意思 瀏覽:582
2017迅雷閃退win10 瀏覽:338
華為手機刪除app如何在設置中找回來 瀏覽:900
原子貸app最新版本 瀏覽:633
壓縮的文件怎麼打開 瀏覽:658
高唐哪裡能學編程 瀏覽:893
集成電路封裝控製程序 瀏覽:304
打開word加密文檔 瀏覽:412
微信聊天文件如何轉為筆記 瀏覽:962
圖片編程軟體有哪些 瀏覽:384
西部數據移動硬碟加密碼 瀏覽:166
蘋果wifi設置dns更快 瀏覽:182
qq紅包設置尾數金額 瀏覽:310

友情鏈接