導航:首頁 > 網路數據 > python做大數據分析

python做大數據分析

發布時間:2023-08-18 13:00:35

A. 為什麼用Python做數據分析

為什麼用Python做數據分析

原因如下:

1、python大量的庫為數據分析提供了完整的工具

python擁有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科學計算方面十分有優勢,尤其是pandas,在處理中型數據方面可以說有著無與倫比的優勢,已經成為數據分析中流砥柱的分析工具。

2、比起MATLAB、R語言等其他主要用於數據分析語言,python語言功能更加健全

Python具有強大的編程能力,這種編程語言不同於R或者matlab,python有些非常強大的數據分析能力,並且還可以利用Python進行爬蟲,寫游戲,以及自動化運維,在這些領域中有著很廣泛的應用,這些優點就使得一種技術去解決所有的業務服務問題,這就充分的體現的Python有利於各個業務之間的融合。如果使用Python,能夠大大的提高數據分析的效率。

3、python庫一直在增加,演算法的實現採取的方法更加創新

4、python能很方便的對接其他語言,比如c、java等。

Python最大的優點那就是簡單易學。Python代碼十分容易被讀寫,最適合剛剛入門的朋友去學習。我們在處理數據的時候,一般都希望數據能夠轉化成可運算的數字形式,這樣,不管是沒學過編程的人還是學過編程的人都能夠看懂這個數據。

其實現如今,Python是一個面向世界的編程語言,Python對於如今火熱的人工智慧也有一定的幫助,這是因為人工智慧需要的是即時性,而Python是一種非常簡潔的語言,同時有著豐富的資料庫以及活躍的社區,這樣就能夠輕松的提取數據,從而為人工智慧做出優質的服務。

通過上面的描述,相信大家已經知道了使用Python做數據分析的優點了。Python語言得益於它的簡單方便,使得其在大數據、數據分析以及人工智慧方面都有十分明顯的存在感,對於數據分析從業者以及想要進入數據分析行業的人來說,簡單易學容易上手的優勢也是一個優勢,所以不管大家是否進入數據分析行業,學習Python是沒有壞處的。

Python中文網,大量Python視頻教程,歡迎學習!

B. Python 適合大數據量的處理嗎

python可以處理大數據,python處理大數據不一定是最優的選擇。適合大數據處理。而不是大數據量處理。 如果大數據量處理,需要採用並用結構,比如在hadoop上使用python,或者是自己做的分布式處理框架。

python的優勢不在於運行效率,而在於開發效率和高可維護性。針對特定的問題挑選合適的工具,本身也是一項技術能力。

Python處理數據的優勢(不是處理大數據):

1. 異常快捷的開發速度,代碼量巨少

2. 豐富的數據處理包,不管正則也好,html解析啦,xml解析啦,用起來非常方便

3. 內部類型使用成本巨低,不需要額外怎麼操作(java,c++用個map都很費勁)

4. 公司中,很大量的數據處理工作工作是不需要面對非常大的數據的

5. 巨大的數據不是語言所能解決的,需要處理數據的框架(hadoop, mpi)雖然小眾,但是python還是有處理大數據的框架的,或者一些框架也支持python。

(2)python做大數據分析擴展閱讀:

Python處理數據缺點:

Python處理大數據的劣勢:

1、python線程有gil,通俗說就是多線程的時候只能在一個核上跑,浪費了多核伺服器。在一種常見的場景下是要命的:並發單元之間有巨大的數據共享或者共用(例如大dict)。

多進程會導致內存吃緊,多線程則解決不了數據共享的問題,單獨的寫一個進程之間負責維護讀寫這個數據不僅效率不高而且麻煩

2、python執行效率不高,在處理大數據的時候,效率不高,這是真的,pypy(一個jit的python解釋器,可以理解成腳本語言加速執行的東西)能夠提高很大的速度,但是pypy不支持很多python經典的包,例如numpy。

3. 絕大部分的大公司,用java處理大數據不管是環境也好,積累也好,都會好很多。

參考資料來源:網路-Python



C. 為什麼從事大數據行業,一定要學習Python

Python這只小蟲子最近隨著大數據的興起可以說是十分的火了。有越來越多的人不敢小覷Python這門語言了。也有更多的人在學習Python。Python為何會有如此大的魅力?為什麼從事大數據行業必學Python?這還要從Python這門語言的優點開始講起。

雖然Python這種語言不如Java、C++這些語言普及,卻早在1991年就已經誕生了。它的語法簡單清晰,以實用為主,是門十分樸素的語言。同時,它還是編程語言中的「和事佬」,被人戲稱為膠水語言。因為它能夠將其他語言製作的各種模塊很輕松的聯結在一起。

如果將Python語言擬人化,它絕對屬於「老好人」的那一類,讓人容易親近,人們與它交流並不需要花太多心思。但它卻擁有強大的功能。很多語言不能完成的任務,Python都能輕易完成。它幾乎可以被用來做任何事情,應用於多個系統和平台。無論是系統操作還是Web開發,抑或是伺服器和管理工具、部署、科學建模等,它都能輕松掌握。因此,從事海量數據處理的大數據行業,自然少不了這個「萬能工具」。

除此之外,Python這只小蟲子還受到了大數據老大哥Google的青睞。Google的很多開發都用到了Python。這使得人們能夠找到Python的很多指南和教程。讓你學起來更方便,你在使用中可能遇到的很多問題大多數都已經被Google給解決了,並把解決方法發布到了網路平台。

Python還擁有一系列非常優秀的庫,這省了你編程中的很多時間。尤其是在人工智慧和機器學習領域,這些庫的價值體現得更為明顯。

不管怎麼說,從事大數據工作,少不得要在網路上爬取數據,不用Python爬蟲,你還打算用什麼呢?

因此,在當前的大數據領域,從事大數據行業必學Python。
人工智慧、大數據、雲計算和物聯網的未來發展值得重視,均為前沿產業,多智時代專注於人工智慧和大數據的入門和科譜,在此為你推薦幾篇優質好文:
————————————————
版權聲明:本文為CSDN博主「oshidai」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/oshidai/article/details/88712833

D. python可以做數據分析,好處是什麼呢怎麼學習

鏈接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg

提取碼:7234

煉數成金:Python數據分析。Python是一種面向對象、直譯式計算機程序設計語言。也是一種功能強大而完善的通用型語言,已經具有十多年的發展歷史,成熟且穩定。Python 具有腳本語言中最豐富和強大的類庫,足以支持絕大多數日常應用。 Python語法簡捷而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠很輕松的把用其他語言製作的各種模塊(尤其是C/C++)輕松地聯結在一起。

課程將從Python的基本使用方法開始,一步步講解,從ETL到各種數據分析方法的使用,並結合實例,讓學員能從中借鑒學習。

課程目錄:

Python基礎

Python的概覽——Python的基本介紹、安裝與基本語法、變數類型與運算符

了解Python流程式控制制——條件、循環語句與其他語句

常用函數——函數的定義與使用方法、主要內置函數的介紹

.....

E. python大數據挖掘系列之基礎知識入門 知識整理(入門教程含源碼)

Python在大數據行業非常火爆近兩年,as a pythonic,所以也得涉足下大數據分析,下面就聊聊它們。

Python數據分析與挖掘技術概述

所謂數據分析,即對已知的數據進行分析,然後提取出一些有價值的信息,比如統計平均數,標准差等信息,數據分析的數據量可能不會太大,而數據挖掘,是指對大量的數據進行分析與挖倔,得到一些未知的,有價值的信息等,比如從網站的用戶和用戶行為中挖掘出用戶的潛在需求信息,從而對網站進行改善等。
數據分析與數據挖掘密不可分,數據挖掘是對數據分析的提升。數據挖掘技術可以幫助我們更好的發現事物之間的規律。所以我們可以利用數據挖掘技術可以幫助我們更好的發現事物之間的規律。比如發掘用戶潛在需求,實現信息的個性化推送,發現疾病與病狀甚至病與葯物之間的規律等。

預先善其事必先利其器

我們首先聊聊數據分析的模塊有哪些:

下面就說說這些模塊的基礎使用。

numpy模塊安裝與使用

安裝:
下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我這里下載的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下載好後,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安裝的numpy版本一定要是帶mkl版本的,這樣能夠更好支持numpy

numpy簡單使用

生成隨機數

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代碼:
下面看看pandas輸出的結果, 這一行的數字第幾列,第一列的數字是行數,定位一個通過第一行,第幾列來定位:

常用方法如下:

下面看看pandas對數據的統計,下面就說說每一行的信息

轉置功能:把行數轉換為列數,把列數轉換為行數,如下所示:

通過pandas導入數據

pandas支持多種輸入格式,我這里就簡單羅列日常生活最常用的幾種,對於更多的輸入方式可以查看源碼後者官網。

CSV文件

csv文件導入後顯示輸出的話,是按照csv文件默認的行輸出的,有多少列就輸出多少列,比如我有五列數據,那麼它就在prinit輸出結果的時候,就顯示五列

excel表格

依賴於xlrd模塊,請安裝它。
老樣子,原滋原味的輸出顯示excel本來的結果,只不過在每一行的開頭加上了一個行數

讀取SQL

依賴於PyMySQL,所以需要安裝它。pandas把sql作為輸入的時候,需要制定兩個參數,第一個是sql語句,第二個是sql連接實例。

讀取HTML

依賴於lxml模塊,請安裝它。
對於HTTPS的網頁,依賴於BeautifulSoup4,html5lib模塊。
讀取HTML只會讀取HTML里的表格,也就是只讀取

顯示的是時候是通過python的列表展示,同時添加了行與列的標識

讀取txt文件

輸出顯示的時候同時添加了行與列的標識

scipy

安裝方法是先下載whl格式文件,然後通過pip install 「包名」 安裝。whl包下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 數據可視化分析

我們安裝這個模塊直接使用pip install即可。不需要提前下載whl後通過 pip install安裝。

下面請看代碼:

下面說說修改圖的樣式

關於圖形類型,有下面幾種:

關於顏色,有下面幾種:

關於形狀,有下面幾種:

我們還可以對圖稍作修改,添加一些樣式,下面修改圓點圖為紅色的點,代碼如下:

我們還可以畫虛線圖,代碼如下所示:

還可以給圖添加上標題,x,y軸的標簽,代碼如下所示

直方圖

利用直方圖能夠很好的顯示每一段的數據。下面使用隨機數做一個直方圖。

Y軸為出現的次數,X軸為這個數的值(或者是范圍)

還可以指定直方圖類型通過histtype參數:

圖形區別語言無法描述很詳細,大家可以自信嘗試。

舉個例子:

子圖功能

什麼是子圖功能呢?子圖就是在一個大的畫板裡面能夠顯示多張小圖,每個一小圖為大畫板的子圖。
我們知道生成一個圖是使用plot功能,子圖就是subplog。代碼操作如下:

我們現在可以通過一堆數據來繪圖,根據圖能夠很容易的發現異常。下面我們就通過一個csv文件來實踐下,這個csv文件是某個網站的文章閱讀數與評論數。


先說說這個csv的文件結構,第一列是序號,第二列是每篇文章的URL,第三列每篇文章的閱讀數,第四列是每篇評論數。


我們的需求就是把評論數作為Y軸,閱讀數作為X軸,所以我們需要獲取第三列和第四列的數據。我們知道獲取數據的方法是通過pandas的values方法來獲取某一行的值,在對這一行的值做切片處理,獲取下標為3(閱讀數)和4(評論數)的值,但是,這里只是一行的值,我們需要是這個csv文件下的所有評論數和閱讀數,那怎麼辦?聰明的你會說,我自定義2個列表,我遍歷下這個csv文件,把閱讀數和評論數分別添加到對應的列表裡,這不就行了嘛。呵呵,其實有一個更快捷的方法,那麼就是使用T轉置方法,這樣再通過values方法,就能直接獲取這一評論數和閱讀數了,此時在交給你matplotlib里的pylab方法來作圖,那麼就OK了。了解思路後,那麼就寫吧。

下面看看代碼:

F. 為什麼從事大數據行業,一定要學習Python

因為Python是一門獨特的語言,和其他諸如C語言,C++不一樣,Python更貼近於人工智慧,日常生活中隨便寫個爬蟲爬取大量數據之類的,Python相比於其他語言效率更高。

閱讀全文

與python做大數據分析相關的資料

熱點內容
哪裡買麥田app 瀏覽:79
tif修改工具 瀏覽:982
蘋果tv怎樣設置密碼 瀏覽:651
java開發沒人教 瀏覽:683
圖片取消不了隱藏文件 瀏覽:97
word復制批註 瀏覽:725
安卓迅雷30老版本 瀏覽:14
651代碼錯誤什麼意思 瀏覽:582
2017迅雷閃退win10 瀏覽:338
華為手機刪除app如何在設置中找回來 瀏覽:900
原子貸app最新版本 瀏覽:633
壓縮的文件怎麼打開 瀏覽:658
高唐哪裡能學編程 瀏覽:893
集成電路封裝控製程序 瀏覽:304
打開word加密文檔 瀏覽:412
微信聊天文件如何轉為筆記 瀏覽:962
圖片編程軟體有哪些 瀏覽:384
西部數據移動硬碟加密碼 瀏覽:166
蘋果wifi設置dns更快 瀏覽:182
qq紅包設置尾數金額 瀏覽:310

友情鏈接