A. 大數據分析方法,求助!
現在大數據分析越來越受歡迎.首先,由於各種網路平台收集了越來越多的數據,如何鄭伏整理這些數據,生成有用的東西?這就是大數據分析的目的.以下是一些常見的大數據喊缺攜分析方法.
大數據挖掘:定義目標,分析問題.在開始大數據處理之前,必須確定處理數據的目標,然後開始數據挖掘.
例如,統計近三年畢業生的各種情況.應該收集有關畢業生的信息.大數據挖掘:建立模型,收集數據,通過網路爬蟲類,或者通過往年的扮殲數據資料,建立相應的數據挖掘模型,收集數據,獲得大量的原始數據.
大數據挖掘:導入並准備數據.通過工具和腳本,將原始轉換為MySQL、數據文本等可處理的數據.大數據分析演算法:機器學慣用機器學習的方法處理收集的數據.根據具體問題來決定.
這里有很多方法.常見的方法是人工神經網路、隨機森林樹、LMS演算法.
大數據分析目標:語義引擎.在處理大數據的時候,往往會花費大量的時間和費用,所以每次生成的報告後,都應該支持語音發動機功能,這樣才能讓數據自己說話,人們從中提交數據就可以了.
大數據分析目標:產生可視化報告,便於人工分析.通過軟體處理大量數據後.然後可視化結果,便於人類分析.常見的軟體有splunk等.
大數據分析目標:預測性.通過大數據分析演算法,應該對數據進行一定的推斷,這樣的數據更具指導性.
B. 大數據分析需要學習什麼知識呀
1、學習大數據首先要學習java基礎
怎樣進行大數據學習的快速入門?學大數據課程之前要先學習一種計算機編程語言。Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學習hadoop,還是數據挖掘,都需要有編程語言作為基礎。因此,如果想學習大數據開發,掌握Java基礎是必不可少的。
2、學習大數據必須學習大數據核心知識
Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。
如果把大數據比作容器,那麼這個容器的容量無限大,什麼都能往裡裝,大數據離不開物聯網,移動互聯網,大數據還和人工智慧、雲計算和機器學習有著千絲萬縷的關系,大數據海量數據存儲要高擴展就離不開雲計算,大數據計算分析採用傳統的機器學習、數據挖掘技術會比較慢,需要做並行計算和分布式計算擴展。
3數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。
編程語言,對於想學大數據的同學,至少需要具備一門編程語言,比如SQL、hadoop、hive查詢、Python等均可。
4、學習大數據可以應用的領域
大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛,大數據技術已經像空氣一樣滲透在生活的方方面面。大數據技術的出現將社會帶入了一個高速發展的時代,這不僅是信息技術的終極目標,也是人類社會發展管理智能化的核心技術驅動力。
C. 數據挖掘需要學習哪些知識
1.統計知識
在做數據分析,統計的知識肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我們做數據挖掘的話,就要重視數學知識,數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等。
2.概率知識
而樸素貝葉斯演算法需要概率方面的知識,SKM演算法需要高等代數或者區間論方面的知識。當然,我們可以直接套模型,R、Python這些工具有現成的演算法包,可以直接套用。但如果我們想深入學習這些演算法,最好去學習一些數學知識,也會讓我們以後的路走得更順暢。我們經常會用到的語言包括Python、Java、C或者C++,我自己用Python或者Java比較多。有時用MapRece寫程序,再用Hadoop或者Hyp來處理數據,如果用Python的話會和Spark相結合。
3.數據挖掘的數據類型
那麼可以挖掘的數據類型都有什麼呢?關系資料庫、數據倉庫、事務資料庫、空間資料庫、時間序列資料庫、文本資料庫和多媒體資料庫。關系資料庫就是表的集合,每個表都賦予一個唯一的名字。每個表包含一組屬性列或欄位,並通常存放大量元組,比如記錄或行。關系中的每個元組代表一個被唯一關鍵字標識的對象,並被一組屬性值描述。
4.數據倉庫
什麼是數據倉庫呢?數據倉庫就是通過數據清理、數據變換、數據集成、數據裝入和定期數據刷新構造 。數據挖掘的工作內容是什麼呢?數據分析更偏向統計分析,出圖,作報告比較多,做一些展示。數據挖掘更偏向於建模型。比如,我們做一個電商的數據分析。萬達電商的數據非常大,具體要做什麼需要項目組自己來定。電商數據能給我們的業務什麼樣的推進,我們從這一點入手去思考。我們從中挑出一部分進行用戶分群。
關於數據挖掘需要學習哪些知識,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
D. 餐飲企業如何做好大數據挖掘
般餐企會將客戶分為四類:過客、散客、回頭客、忠實客。在這四種客戶中,過客和散客是不需要做過多營銷的,並且能夠帶給餐企更多利潤的是回頭客和忠實客,這兩類客戶對品牌認可度高,且會介紹給朋友。也就是說,餐企必須要對客戶進行進一步精準營銷,培養更多的回頭客和忠實客。
舉個簡單的例子,家門口有兩家飯店,兩個都是中餐館,味道都是尚可。其中一家,從來不主動做營銷,不會給任何點餐建議;而另外一家,進去之後就會有一種賓至如歸的感覺,服務員能親切地叫出客戶名字,了解喜好,甚至知道是偏好甜還是咸,能根據客戶喜好引導點餐,提供貼心的一站式服務。
那選擇哪一家就不言而喻了。
而這家餐廳對客戶的充分了解是建立在對客戶資料以及消費情況得深度挖掘下。這就是數據挖掘的魅力。
系統分析整理好的數據進行再次發掘,將客戶清晰分類。客戶分類的目的就是為了增加回頭客,壯大忠實客戶群體。在這個基礎上,客戶進行進一步細分如理性消費者、沖動型消費者;偏愛折扣型,喜歡嘗新型。針對這些不同的客戶群體,餐企再次營銷就可以更精準到位。
E. 大數據挖掘方法有哪些
謝邀。
大數據挖掘的方法:
神經網路方法
神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
遺傳演算法
遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。
決策樹方法
決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。
粗集方法
粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。
覆蓋正例排斥反例方法
它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。
統計分析方法
在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。
模糊集方法
即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。
F. 大數據挖掘技術涉及哪些內容
大數據挖掘技術涉及的主要內容有:模式跟蹤,數據清理和准備,基於分類的數據挖掘技術,異常值檢測,關聯,聚類。
基於大環境下的數據特點,挖掘技術與對應:
1.數據來源多, 大數據挖掘的研究對象往往不只涉及一個業務系統, 肯定是多個系統的融合分析, 因此,需要強大的ETL技術, 將多個系統的數據整合到一起, 並且, 多個系統的數據可能標准不同, 需要清洗。
2.數據的維度高, 整合起來的數據就不只傳統數據挖掘的那一些維度了, 可能成百上千維, 這需要降維技術了。
3.大數據量的計算, 在單台伺服器上是計算不了的, 這就需要用分布式計算, 所以要掌握各種分布式計算框架, 像hadoop, spark之類, 需要掌握機器學習演算法的分布式實現。
數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
想了解更多大數據挖掘技術,請關注CDA數據分析課程。CDA(Certified Data Analyst),即「CDA 數據分析」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。國家發展戰略的要求,崗位人才的缺口以及市場規模的帶動,都從不同方面體現了數據分析師職業的重要性。大數據挖掘技術的學習,有利於提高人在職場的信譽度,增加職場競爭力,提高自己的經濟地位。點擊預約免費試聽課。
G. 大數據價值挖掘的三要素
大數據價值挖掘的三要素
如何充分利用大數據,挖掘大數據的商業價值,從而提升企業的競爭力,已經成為企業關注的一個焦點。
全面解決方案才能奏效
當前,越來越多企業將大數據的分析結果作為其判斷未來發展的依據。同時,傳統的商業預測邏輯正日益被新的大數據預測所取代。但是,我們要謹慎管理大家對大數據的期望值,因為海量數據只有在得到有效治理的前提下才能進一步發展其業務價值。
最廣為人知的大數據定義是Gartner給出的大數據的3V特性:巨大的數據量(Volume)、數據的快速處理(Velocity)、多變的數據結構和類型(Variety)。根據這一定義,大家首先想到的是IT系統中一直難以處理卻又不容忽視的非結構化數據。也就是說,大數據不僅要處理好交易型數據的分析,還把社交媒體、電子商務、決策支持等信息都融入進來。現在,分布式處理技術Hadoop和NoSQL已經能對非結構化數據進行存儲、處理、分析和挖掘,但未能為滿足客戶的大數據需求提供一個全面的解決方案。
事實上,普遍意義上的大數據范圍更加廣泛,任何涉及海量數據及多數據源的復雜計算,均屬大數據范疇,而不僅局限於非結構化數據。因此,諸如電信運營商所擁有的巨量用戶的各類詳細數據、手機開關機信息、手機在網注冊信息、手機通話計費信息、手機上網詳細日誌信息、用戶漫遊信息、用戶訂閱服務信息和用戶基礎服務信息等,均可劃歸為大數據。
與幾年前興起的雲計算相比,大數據實現其業務價值所要走的路或許更為長遠。但是企業用戶已經迫不及待,越來越多企業高層傾向於將大數據分析結果作為其商業決策的重要依據。在這種背景下,我們必須找到一種全面的大數據解決方案,不僅要解決非結構化數據的處理問題,還要將功能擴展到海量數據的存儲、大數據的分布式採集和交換、海量數據的實時快速訪問、統計分析與挖掘和商務智能分析等。
典型的大數據解決方案應該是具有多種能力的平台化解決方案,這些能力包括結構化數據的存儲、計算、分析和挖掘,多結構化數據的存儲、加工和處理,以及大數據的商務智能分析。這種解決方案在技術應具有以下四個特性:軟硬集成化的大數據處理、全結構化數據處理的能力、大規模內存計算的能力、超高網路速度的訪問。
軟硬體集成是必然選擇
我們認為,大數據解決方案的關鍵在於如何處理好大規模數據計算。過去,傳統的前端資料庫伺服器、後端大存儲的架構難以有效存儲大規模數據並保持高性能數據處理。這時候,我們讓軟體和硬體更有效地集成起來進行更緊密的協作。也就是說,我們需要軟硬一體化的專門設備來應對大數據的挑戰。
一直以來,甲骨文公司在傳統的關系型資料庫領域佔有絕對優勢,但並未因此固步自封。面對大數據熱潮,甲骨文公司根據用戶的需求不斷推陳出新,將在數據領域的優勢從傳統的關系型資料庫擴展到全面的大數據解決方案,成為業界首個通過全面的、軟硬體集成的產品來滿足企業關鍵大數據需求的公司。
甲骨文公司以軟硬體集成的方式提供大數據的捕獲、組織、分析和決策的所有能力,為企業提供完整的集成化大數據解決方案,其中的核心產品包括Oracle大數據機、Exalytics商務智能雲伺服器和OracleExadata資料庫雲伺服器。
Oracle大數據機用於多結構化大數據處理,旨在簡化大數據項目的實施與管理,其數據加工結果可以通過超高帶寬的InfiniBand網路連接到OracleExadata資料庫雲伺服器中。OracleExadata可提供高效數據存儲和計算能力,配備超大容量的內存和快速快閃記憶體,配合特有的軟硬體優化技術,可對大數據進行高效的加工、分析和挖掘。同時,甲骨文公司在OracleExadata以及資料庫軟體層面提供了非常高效和便捷的高級數據分析軟體,使數據能夠更快、更高效地得到分析、挖掘和處理。
通過Oracle大數據機快速獲得、組織大數據之後,企業還要根據對大數據全面、實時的分析結果做出科學的業務決策。OracleExalytics商務智能雲伺服器能以前所未有的速度運行數據分析應用,為客戶提供實時、快速的可視分析。同樣,它通過InfiniBand網路連接到OracleExadata上進行數據載入和讀取,讓大數據直接在內存中快速計算,滿足大數據時代對數據分析展現的快速響應需求。OracleExalytics實現了新型分析應用,可用於異構IT環境,能存取和分析來自任何Oracle或非Oracle的關系型數據、OLAP或非結構化數據源的數據。
Oracle大數據機、OracleExalytics商務智能雲伺服器和OracleExadata資料庫雲伺服器一起,組成了甲骨文最廣泛、高度集成化系統產品組合,為企業提供了一個端到端的大數據解決方案,滿足企業對大數據治理的所有需求。
堅持開放的戰略
從當前的情況來看,在大數據應用領域,僅靠一家廠商的產品難以解決所有問題。因此對於大數據解決方案供應商來說,採用開放的策略是必然選擇。甲骨文公司堅持全面、開放、集成的產品策略。這一策略在大數據領域同樣適用。
這首先體現在大數據戰略在技術上支持Hadoop和開源軟體。除了集成化產品,甲骨文公司還擁有一系列領先技術,以幫助用戶全面應對大數據應用的挑戰,其中包括OracleNoSQL資料庫,以及針對Hadoop架構的系列產品。
OracleNoSQL資料庫專門為管理海量數據而設計,可以幫助企業存取非結構化數據,並可橫向擴展至數百個高可用性節點。同時,該產品能夠提供可預測的吞吐量和延遲時間,而且更加容易安裝、配置和管理,支持廣泛的工作負載。
而專門針對Hadoop架構的產品,能夠幫助企業應對在組織和提取大數據方面所面臨的挑戰,包括Oracle數據集成Hadoop應用適配器、OracleHadoop裝載器以及OracleSQL Connector等。
此外,OracleR Enterprise實現了R開源統計環境與Oracle資料庫11g的集成,為進行更進一步的數據分析提供了一個企業就緒的、深度集成的環境。
值得一提的是,除對產品和解決方案不斷投入,甲骨文公司還致力於和合作夥伴合作開發大數據解決方案。目前,幾乎所有的甲骨文合作夥伴都在關注和測試大數據解決方案。甲骨文公司正積極尋找更多本地合作夥伴,為客戶提供更加定製化的產品和解決方案。
總而言之,大數據已經和雲計算、社交化、移動化一起,成為現階段驅動企業IT模式變革的重要因素。Oracle大數據解決方案可以橫跨IT架構的所有層面,與其他產品進行創新集成,並憑借卓越的可靠性、可擴展性和可管理性,為企業的IT發展,甚至業務發展提供理想的IT基礎支持。
H. 大數據時代的數據怎麼挖掘
3月13日下午,南京郵電大學計算機學院、軟體學院院長、教授李濤在CIO時代微講座欄目作了題為《大數據時代的數據挖掘》的主題分享,深度詮釋了大數據及大數據時代下的數據挖掘。
眾所周知,大數據時代的大數據挖掘已成為各行各業的一大熱點。
一、數據挖掘
在大數據時代,數據的產生和收集是基礎,數據挖掘是關鍵,數據挖掘可以說是大數據最關鍵也是最基本的工作。通常而言,數據挖掘也稱為DataMining,或知識發現Knowledge Discovery from Data,泛指從大量數據中挖掘出隱含的、先前未知但潛在的有用信息和模式的一個工程化和系統化的過程。
不同的學者對數據挖掘有著不同的理解,但個人認為,數據挖掘的特性主要有以下四個方面:
1.應用性(A Combination of Theory and Application):數據挖掘是理論演算法和應用實踐的完美結合。數據挖掘源於實際生產生活中應用的需求,挖掘的數據來自於具體應用,同時通過數據挖掘發現的知識又要運用到實踐中去,輔助實際決策。所以,數據挖掘來自於應用實踐,同時也服務於應用實踐,數據是根本,數據挖掘應以數據為導向,其中涉及到演算法的設計與開發都需考慮到實際應用的需求,對問題進行抽象和泛化,將好的演算法應用於實際中,並在實際中得到檢驗。
2.工程性(An Engineering Process):數據挖掘是一個由多個步驟組成的工程化過程。數據挖掘的應用特性決定了數據挖掘不僅僅是演算法分析和應用,而是一個包含數據准備和管理、數據預處理和轉換、挖掘演算法開發和應用、結果展示和驗證以及知識積累和使用的完整過程。而且在實際應用中,典型的數據挖掘過程還是一個交互和循環的過程。
3.集合性(A Collection of Functionalities):數據挖掘是多種功能的集合。常用的數據挖掘功能包括數據探索分析、關聯規則挖掘、時間序列模式挖掘、分類預測、聚類分析、異常檢測、數據可視化和鏈接分析等。一個具體的應用案例往往涉及多個不同的功能。不同的功能通常有不同的理論和技術基礎,而且每一個功能都有不同的演算法支撐。
4.交叉性(An Interdisciplinary Field):數據挖掘是一門交叉學科,它利用了來自統計分析、模式識別、機器學習、人工智慧、信息檢索、資料庫等諸多不同領域的研究成果和學術思想。同時一些其他領域如隨機演算法、資訊理論、可視化、分布式計算和最優化也對數據挖掘的發展起到重要的作用。數據挖掘與這些相關領域的區別可以由前面提到的數據挖掘的3個特性來總結,最重要的是它更側重於應用。
綜上所述,應用性是數據挖掘的一個重要特性,是其區別於其他學科的關鍵,同時,其應用特性與其他特性相輔相成,這些特性在一定程度上決定了數據挖掘的研究與發展,同時,也為如何學習和掌握數據挖掘提出了指導性意見。如從研究發展來看,實際應用的需求是數據挖掘領域很多方法提出和發展的根源。從最開始的顧客交易數據分析(market basket analysis)、多媒體數據挖掘(multimedia data mining)、隱私保護數據挖掘(privacy-preserving data mining)到文本數據挖掘(text mining)和Web挖掘(Web mining),再到社交媒體挖掘(social media mining)都是由應用推動的。工程性和集合性決定了數據挖掘研究內容和方向的廣泛性。其中,工程性使得整個研究過程里的不同步驟都屬於數據挖掘的研究范疇。而集合性使得數據挖掘有多種不同的功能,而如何將多種功能聯系和結合起來,從一定程度上影響了數據挖掘研究方法的發展。比如,20世紀90年代中期,數據挖掘的研究主要集中在關聯規則和時間序列模式的挖掘。到20世紀90年代末,研究人員開始研究基於關聯規則和時間序列模式的分類演算法(如classification based on association),將兩種不同的數據挖掘功能有機地結合起來。21世紀初,一個研究的熱點是半監督學習(semi-supervised learning)和半監督聚類(semi-supervised clustering),也是將分類和聚類這兩種功能有機結合起來。近年來的一些其他研究方向如子空間聚類(subspace clustering)(特徵抽取和聚類的結合)和圖分類(graph classification)(圖挖掘和分類的結合)也是將多種功能聯系和結合在一起。最後,交叉性導致了研究思路和方法設計的多樣化。
前面提到的是數據挖掘的特性對研究發展及研究方法的影響,另外,數據挖掘的這些特性對如何學習和掌握數據挖掘提出了指導性的意見,對培養研究生、本科生均有一些指導意見,如應用性在指導數據挖掘時,應熟悉應用的業務和需求,需求才是數據挖掘的目的,業務和演算法、技術的緊密結合非常重要,了解業務、把握需求才能有針對性地對數據進行分析,挖掘其價值。因此,在實際應用中需要的是一種既懂業務,又懂數據挖掘演算法的人才。工程性決定了要掌握數據挖掘需有一定的工程能力,一個好的數據額挖掘人員首先是一名工程師,有很強大的處理大規模數據和開發原型系統的能力,這相當於在培養數據挖掘工程師時,對數據的處理能力和編程能力很重要。集合性使得在具體應用數據挖掘時,要做好底層不同功能和多種演算法積累。交叉性決定了在學習數據挖掘時要主動了解和學習相關領域的思想和技術。
因此,這些特性均是數據挖掘的特點,通過這四個特性可總結和學習數據挖掘。
二、大數據的特徵
大數據(bigdata)一詞經常被用以描述和指代信息爆炸時代產生的海量信息。研究大數據的意義在於發現和理解信息內容及信息與信息之間的聯系。研究大數據首先要理清和了解大數據的特點及基本概念,進而理解和認識大數據。
研究大數據首先要理解大數據的特徵和基本概念。業界普遍認為,大數據具有標準的「4V」特徵:
1.Volume(大量):數據體量巨大,從TB級別躍升到PB級別。
2.Variety(多樣):數據類型繁多,如網路日誌、視頻、圖片、地理位置信息等。
3.Velocity(高速):處理速度快,實時分析,這也是和傳統的數據挖掘技術有著本質的不同。
4.Value(價值):價值密度低,蘊含有效價值高,合理利用低密度價值的數據並對其進行正確、准確的分析,將會帶來巨大的商業和社會價值。
上述「4V」特點描述了大數據與以往部分抽樣的「小數據」的主要區別。然而,實踐是大數據的最終價值體現的唯一途徑。從實際應用和大數據處理的復雜性看,大數據還具有如下新的「4V」特點:
5.Variability(變化):在不同的場景、不同的研究目標下數據的結構和意義可能會發生變化,因此,在實際研究中要考慮具體的上下文場景(Context)。
6.Veracity(真實性):獲取真實、可靠的數據是保證分析結果准確、有效的前提。只有真實而准確的數據才能獲取真正有意義的結果。
7.Volatility(波動性)/Variance(差異):由於數據本身含有噪音及分析流程的不規范性,導致採用不同的演算法或不同分析過程與手段會得到不穩定的分析結果。
8.Visualization(可視化):在大數據環境下,通過數據可視化可以更加直觀地闡釋數據的意義,幫助理解數據,解釋結果。
綜上所述,以上「8V」特徵在大數據分析與數據挖掘中具有很強的指導意義。
三、大數據時代下的數據挖掘
在大數據時代,數據挖掘需考慮以下四個問題:
大數據挖掘的核心和本質是應用、演算法、數據和平台4個要素的有機結合。
因為數據挖掘是應用驅動的,來源於實踐,海量數據產生於應用之中。需用具體的應用數據作為驅動,以演算法、工具和平台作為支撐,最終將發現的知識和信息應用到實踐中去,從而提供量化的、合理的、可行的、且能產生巨大價值的信息。
挖掘大數據中隱含的有用信息需設計和開發相應的數據挖掘和學習演算法。演算法的設計和開發需以具體的應用數據作為驅動,同時在實際問題中得到應用和驗證,而演算法的實現和應用需要高效的處理平台,這個處理平台可以解決波動性問題。高效的處理平台需要有效分析海量數據,及時對多元數據進行集成,同時有力支持數據化對演算法及數據可視化的執行,並對數據分析的流程進行規范。
總之,應用、演算法、數據、平台這四個方面相結合的思想,是對大數據時代的數據挖掘理解與認識的綜合提煉,體現了大數據時代數據挖掘的本質與核心。這四個方面也是對相應研究方面的集成和架構,這四個架構具體從以下四個層面展開:
應用層(Application):關心的是數據的收集與演算法驗證,關鍵問題是理解與應用相關的語義和領域知識。
數據層(Data):數據的管理、存儲、訪問與安全,關心的是如何進行高效的數據使用。
演算法層(Algorithm):主要是數據挖掘、機器學習、近似演算法等演算法的設計與實現。
平台層(Infrastructure):數據的訪問和計算,計算平台處理分布式大規模的數據。
綜上所述,數據挖掘的演算法分為多個層次,在不同的層面有不同的研究內容,可以看到目前在做數據挖掘時的主要研究方向,如利用數據融合技術預處理稀疏、異構、不確定、不完整以及多來源數據;挖掘復雜動態變化的數據;測試通過局部學習和模型融合所得到的全局知識,並反饋相關信息給預處理階段;對數據並行分布化,達到有效使用的目的。
四、大數據挖掘系統的開發
1.背景目標
大數據時代的來臨使得數據的規模和復雜性都出現爆炸式的增長,促使不同應用領域的數據分析人員利用數據挖掘技術對數據進行分析。在應用領域中,如醫療保健、高端製造、金融等,一個典型的數據挖掘任務往往需要復雜的子任務配置,整合多種不同類型的挖掘演算法以及在分布式計算環境中高效運行。因此,在大數據時代進行數據挖掘應用的一個當務之急是要開發和建立計算平台和工具,支持應用領域的數據分析人員能夠有效地執行數據分析任務。
之前提到一個數據挖掘有多種任務、多種功能及不同的挖掘演算法,同時,需要一個高效的平台。因此,大數據時代的數據挖掘和應用的當務之急,便是開發和建立計算平台和工具,支持應用領域的數據分析人員能夠有效地執行數據分析任務。
2.相關產品
現有的數據挖掘工具
有Weka、SPSS和SQLServer,它們提供了友好的界面,方便用戶進行分析,然而這些工具並不適合進行大規模的數據分析,同時,在使用這些工具時用戶很難添加新的演算法程序。
流行的數據挖掘演算法庫
如Mahout、MLC++和MILK,這些演算法庫提供了大量的數據挖掘演算法。但這些演算法庫需要有高級編程技能才能進行任務配置和演算法集成。
最近出現的一些集成的數據挖掘產品
如Radoop和BC-PDM,它們提供友好的用戶界面來快速配置數據挖掘任務。但這些產品是基於Hadoop框架的,對非Hadoop演算法程序的支持非常有限。沒有明確地解決在多用戶和多任務情況下的資源分配。
3.FIU-Miner
為解決現有工具和產品在大數據挖掘中的局限性,我們團隊開發了一個新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一個用戶友好並支持在分布式環境中進行高效率計算和快速集成的數據挖掘系統。與現有數據挖掘平台相比,FIU-Miner提供了一組新的功能,能夠幫助數據分析人員方便並有效地開展各項復雜的數據挖掘任務。
與傳統的數據挖掘平台相比,它提供了一些新的功能,主要有以下幾個方面:
A.用戶友好、人性化、快速的數據挖掘任務配置。基於「軟體即服務」這一模式,FIU-Miner隱藏了與數據分析任務無關的低端細節。通過FIU-Miner提供的人性化用戶界面,用戶可以通過將現有演算法直接組裝成工作流,輕松完成一個復雜數據挖掘問題的任務配置,而不需要編寫任何代碼。
B.靈活的多語言程序集成。允許用戶將目前最先進的數據挖掘演算法直接導入系統演算法庫中,以此對分析工具集合進行擴充和管理。同時,由於FIU-Miner能夠正確地將任務分配到有合適運行環境的計算節點上,所以對這些導入的演算法沒有實現語言的限制。
C.異構環境中有效的資源管理。FIU-Miner支持在異構的計算環境中(包括圖形工作站、單個計算機、和伺服器等)運行數據挖掘任務。FIU-Miner綜合考慮各種因素(包括演算法實現、伺服器負載平衡和數據位置)來優化計算資源的利用率。
D.有效的程序調度和執行。
應用架構上包括用戶界面層、任務和系統管理層、邏輯資源層、異構的物理資源層。這種分層架構充分考慮了海量數據的分布式存儲、不同數據挖掘演算法的集成、多重任務的配置及系統用戶的交付功能。一個典型的數據挖掘任務在應用之中需要復雜的主任務配置,整合多種不同類型的挖掘演算法。因此,開發和建立這樣的計算平台和工具,支持應用領域的數據分析人員進行有效的分析是大數據挖掘中的一個重要任務。
FIU-Miner系統用在了不同方面:如高端製造業、倉庫智能管理、空間數據處理等,TerraFly GeoCloud是建立在TerraFly系統之上的、支持多種在線空間數據分析的一個平台。提供了一種類SQL語句的空間數據查詢與挖掘語言MapQL。它不但支持類SQL語句,更重要的是可根據用戶的不同要求,進行空間數據挖掘,渲染和畫圖查詢得到空間數據。通過構建空間數據分析的工作流來優化分析流程,提高分析效率。
製造業是指大規模地把原材料加工成成品的工業生產過程。高端製造業是指製造業中新出現的具有高技術含量、高附加值、強競爭力的產業。典型的高端製造業包括電子半導體生產、精密儀器製造、生物制葯等。這些製造領域往往涉及嚴密的工程設計、復雜的裝配生產線、大量的控制加工設備與工藝參數、精確的過程式控制制和材料的嚴格規范。產量和品質極大地依賴流程管控和優化決策。因此,製造企業不遺餘力地採用各種措施優化生產流程、調優控制參數、提高產品品質和產量,從而提高企業的競爭力。
在空間數據處理方面,TerraFly GeoCloud對多種在線空間數據分析。對傳統數據分析而言,其難點在於MapQL語句比較難寫,任務之間的關系比較復雜,順序執行之間空間數據分許效率較低。而FIU-Miner可有效解決以上三個難點。
總結而言,大數據的復雜特徵對數據挖掘在理論和演算法研究方面提出了新的要求和挑戰。大數據是現象,核心是挖掘數據中蘊含的潛在信息,並使它們發揮價值。數據挖掘是理論技術和實際應用的完美結合。數據挖掘是理論和實踐相結合的一個例子。
I. 大數據挖掘需要學習哪些技術大數據的工作
首先
我由各種編程語言的背景——matlab,R,java,C/C++,python,網路編程等
我又一定的數學基礎——高數,線代,概率論,統計學等
我又一定的演算法基礎——經典演算法,神經網路,部分預測演算法,群智能演算法等
但這些目前來講都不那麼重要,但慢慢要用到
Step 1:大數據理論,方法和技術
大數據理論——啥都不說,人家問你什麼是大數據時,你能夠講到別人知道什麼是大數據
大數據方法——然後別人問你,那怎麼實現呢?嗯,繼續講:說的是方法(就好像歸並排序演算法:分,並)。到目前外行人理解無障礙
大數據技術——多嘴的人繼續問:用的技術。
這階段只是基礎,不涉及任何技術細節,慢慢看慢慢總結,積累對「大數據」這個詞的理解。
Step 2:大數據思維
Bang~這是繼Step 1量變發展而來的質變:學了那麼久「大數據」,把你扔到製造業,你怎麼辦?
我想,這就是「學泛」的作用吧,並不是學到什麼具體東西,而是學到了對待事物的思維。
----------------------------------------------------------------------
以下階段我還沒開始=_=,不好誤導大家
Step 3:大數據技術基礎
Step 4:大數據技術進階
Step 5:打實戰
Step 6:大融合