⑴ 大數據分析了解競爭對手有什麼建議和方法
大數據分析了解競爭對手共分為10個步驟,如圖1是分析路線圖。這個分析路線圖側重於企業前端即營運端的分析。
當需要分析的指標有4個或4個以上時,一般的圖表就不能達到很好的展示效果,此時可以考慮使用雷達圖。但是雷達圖由於只有一個坐標軸,不能同時展示不同的量綱數據和不同的數量級數據,例如渠道廣度值介於100-400,渠道深度介於1000-5000,所以需要進行去量綱處理。我們可以採用排名的方法實現去量綱或去數量級的目的。
傳統零售業的波特五力分析
供應商的議價能力:無論是自營化的連鎖超市,還是平台化經營的百貨、購物中心,基本上都是零售商佔主導地位,供應商的議價能力不強。屬於店大欺客(戶)的狀況,特別是例如電器連鎖、KA大賣場等,供應商的議價能力更低。
購買者的議價能力:越充分競爭的市場,消費者選擇的餘地就越大,零售商間的競爭赤裸裸的體現在價格上,從而造成了顧客的議價能力逐漸加強。
潛在競爭者進入的能力:傳統零售業是一個需要高投入,投資周期長,要求規模化的行業,潛在競爭者直接進入的能力並不強。
替代品的替代能力:目前傳統零售的最大替代者是電子商務,電子商務對傳統零售的沖擊逐漸增強,所以替代品的替代能力很大。當然替代的邊界在哪兒,目前沒有人知道。
行業競爭力:零售業是一個充分競爭的行業,高線城市大都飽和,低線城市還有一些機會。 波特五力分析模型除了對行業整體的分析,還可以與具體競爭對手進行對比分析,可以通過專家打分的方式進行量化處理。
SWOT分析模型 SWOT是經典的戰略分析工具,始於麥肯錫。分別由優勢-Strengths、劣勢-Weaknesses、機會-Opportunities和威脅-Threats四部分組成。它是對企業所處的外部環境以及企業內部環境的一種綜合分析方法。SWOT分析可以用在公司戰略、競爭對手分析、市場定位、甚至個人的職業規劃等方面。用SWOT分析競爭對手就是將收集到的競爭對手情報進行綜合分析,並最終形成分析結論和策略。
SW為內部關鍵因素,OT是外部關鍵因素。對於零售企業或零售品牌來說,建立SWOT分析模型前我們需要回答如下問題:
優勢
S1. 我們最擅長什麼?是產品設計開發?渠道布局?營銷手段?還是價格殺手?
S2. 我們在成本、技術、定位和營運上有什麼優勢嗎?
S3. 我們是否有其他零售商不具有或做不到的東西?例如有的零售商有企事業單位發放購物券優勢。
S4. 我們的顧客為什麼到我們這兒來購物?我們的供應商為什麼支持我們?
S5. 我們成功的原因何在?
劣勢
W1. 我們最不擅長做什麼?產品、渠道、營銷還是成本控制?
W2. 其他零售商或品牌商在那些方面做得比我們好?
W3. 為什麼有些老顧客離開了我們?我們的員工為什麼離開我們?
W4. 我們最近失敗的案例是什麼?為什麼失敗?
W5. 在企業組織結構中我們的短板在哪兒?
機會
O1. 外部在產品開發、渠道布局、營銷規劃和成本控制方面我們還有什麼機會?
O2. 如何吸引到新的顧客?如何做到與眾不同?
O3. 在外部因素中和公司短期、中期規劃目標的機會點有哪些?
O4. 競爭對手的短板是否是我們的機會嗎?
O5. 行業未來的發展如何?是否可以異業聯盟?
威脅
T1. 經濟走勢、行業發展、政策規則是否會不利於企業的發展?
T2. 競爭對手最近的計劃是什麼?是否會有潛在競爭對手出現?行業內最近倒閉的企業是什麼原因?
T3. 企業最近的威脅來自於哪兒?有辦法規避嗎?
T4. 上下游的客戶中是否有不和諧的地方?資源狀況如何?
T5. 輿情是否不利於公司發展?
行業不一樣、企業不一樣這25個問題也會不一樣,每個企業可以根據自己的特性進行調整。我們需要通過這些問題來對SWOT進行量化處理。如圖6所示,結合收集到的競爭對手情報,對25個問題分別進行打分,然後設定不同問題的權重,最後就得到SWOT以及SW、OT的綜合得分。
⑵ 大數據分析行業發展趨勢及成果有哪些
【導讀】目前,大數據分析是一個非常熱門的行業,一夜間,似乎企業的數據已經價值連城。企業都在開始嘗試利用大數據來增強自己的企業業務競爭力,但是對於大數據分析行業來說,仍然處於快速發展的初期,這是一個快速發展的領域,每時每刻的都在產生新的變化。那麼你知道大數據分析行業發展趨勢及成果有哪些嗎?還不清楚的一起來了解了解吧!
1.基於雲的大數據分析
Hadoop是用於處理大型數據集的一個框架和一組工具,這個最初被設計工作在物理機的集群上,但是目前這種現象已經改變,越來越多的基於雲中的數據處理器技術出現,例如亞馬遜利用雲的數據BI的託管長款,谷歌BigQuery中的數據分析服務,IBM的Bluemix雲平等等,這些都是基於雲的大數據分析平台。
2. Hadoop:新的企業數據操作系統
Hadoop,分布式的分析框架,如今正在演變成分布式資源管理器,它可能將是數據分析的一個通用的操作系統。有了這些系統,你可以將不同的數據操作和分析操作插入到Hadoop分布式存儲系統中來執行。
3.更多的預測分析
隨著大數據的發展,分析師不僅會嗯更多的數據一起工作,而且還將處理大量的許多屬性的工具。但是隨著大數據行業的發展,針對舊數據的分析更多的是為了提供預測的功能,畢竟人們更希望利用原有的數據來對未來產生有利的用途。
4. 更多更好的NoSQL
替代傳統的基於SQL的關系資料庫的產品被稱為NoSQL資料庫,如今被迅速的普及在特定種類的分析應用程序中。而且這一勢頭在持續增長,據估計,預計未來將有15至20個開源的NoSQL資料庫共同存在,他們各自有的的專長,這些資料庫會得到快速的發展。
5.在內存分析
使用內存資料庫來加快分析處理的方式如今越來越受歡迎,很多用戶都非常喜歡這種方式,目前很多基於內存的分析管理工具以及出現,其中以亞馬遜的HANA一體機尤為明顯。
除了分析軟體看好這個市場,作為全球的企業級市場的處理器生產商,英特爾也非常看好這一領域的發展,從目前其產品推出的發展趨勢來看,其內存支持將會越來越大,一些特定的產品甚至支持的比硬碟的容量還要大。
以上就是小編今天給大家整理發送的關於「大數據分析行業發展趨勢及成果有哪些?」的相關內容,希望對大家有所幫助。那我們如何入門學習大數據呢,如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑶ 互聯網大數據時代企業面臨的挑戰
沒有人會否定疫情下數據給全國防控帶來的幫助。得益於大數據、 雲計算 、人工智慧以及5G技術的發展,數據得以更好的共享以及分析,政府、企業推出的健康碼、防疫行程卡等應用,使得人員流通、密切接觸者排查有數可依。
也沒有企業不清楚數據在這個年代對經營管理的價值。通過將數據沉澱、清洗,並挖掘、分析,企業運營效率將得以提升、成本得以優化,經營也將得以改善。
事實正是如此。在智能終端、 物聯網 以及5G的推動下,全球數據量正呈指數般增長:2010年全球數據量剛剛突破1ZB,而今年全球數據量預計將超過40ZB。相關數據表明,到2025年時,全球的數據量將達到163ZB。
數據洪流下,全球也正從IT信息時代走向DT數據時代。由大數據引發的產業變革已經開始。IDC發布的《全球半年度大數據支出指南,2018H2》曾預計, 2019年大數據與商業分析解決方案全球市場的整體收益將達到1896.6億美元,同比增長12.1%。
同時,在2019-2023年預測期內,全球大數據市場相關收益將實現13.1%的CAGR(復合年均增長率),並預計總收益於2023年達到3126.7億美元。
具體到中國大數據市場, 2019-2023年預測期內的年CAGR(復合年均增長率)為23.5%,增速高於全球平均水平。到2023年,中國大數據市場規模則將增長至224.9億美元。
盡管大數據市場前景一片光明,但真正能很好把握數據,充分發揮數據價值的企業,往往是少數在技術、資本、人才均占據優勢的行業領導者。
而絕多數長尾企業,本就在行業競爭中處於劣勢,在大數據產業變革中,盡管知道數據對經營管理那麼重要。但受限於運營成本、人才以及技術,很難找到一款合適的工具,去抓住這些數據中蘊藏的商機。
數字經濟下的企業經營困擾
眾所周知的是,無論是國家層面「新基建」概念的提出,還是受疫情影響企業、組織加速數字化轉型的步伐,這些均代表著數字經濟時代的到來。
數據最直觀:到2021年,全球數字經濟規模將達到45萬億美元,全球數字經濟的比重將超過50%。中國是全球數字經濟的引領者之一。到2021年,中國數字經濟規模將達到8.5萬億美元,其中數字經濟所佔比重將超過55%。截止目前,中國數字經濟增速已連續3年排名世界第一。
但作為數字經濟的推動者,企業在面對錯綜繁雜的 互聯網 大數據時,依然不能採取行之有效的方案,將其妥善的用於經營管理。具體來看的話,企業在藉助互聯網大數據幫助經營管理時面臨的挑戰主要在以下幾方面:
一是缺乏專業的市場研究工具或團隊。 相比企業現在所使用的IT技術,大數據可以說是一門新技術。對於沒有部署這一技術的企業而言,由於沒有專業的市場研究工具或者研究團隊,一方面將由於數據質量不佳面臨產品開發設計難題。
這是因為企業無法對所處的市場進行量化統計分析,如市場規模是否增加,友商最近有何動態,是否有新入局者,該市場某細分市場是否有潛在機會。同時,由於不知道市場上有哪些爆款產品、創新產品,友商的競品有何特性以及潛在市場的需求,導致企業在產品開發、策劃、推廣時沒有針對性,難以形成爆款。
另一方面導致店鋪運營效率不佳: 同樣,由於缺乏專業的監控、分析工具,企業無法對友商線上渠道布局清晰掌握,無法實現自營/經銷店鋪的批量監控、店鋪異動的自動記錄以及爆款產品的促銷復盤。並且,由於無法及時獲取用戶的吐槽、建議等,店鋪在改善運營上也存在難度。
二是部署大數據技術面臨的資金、周期等問題。 使用大數據改善經營管理是大勢所趨,所以企業要麼已經部署大數據要麼考慮部署。而在自行部署大數據技術時,不免要多方考慮,既要考慮新硬體的采購費用或者雲服務的購買費用,同時還要考慮開發人員的招聘費用,開發周期及運維等。而對 中小企業 而言,這無疑又是一項重大開支。
三是數據的安全問題。大數據技術從誕生到現在,其發展並不算太完善,因此自身安全性相對弱一些。同時,大數據平台又存在諸多組件,以Hadoop為例,至少包含了二三十個組件,這意味著黑客入侵某一個組件便可對整個組群整個平台進行控制。
不可避免,企業在開發大數據方案時需要與公司原有IT系統以及各部門數據間打通,這些入口也增加了大數據平台的安全風險。
不難看出,數字經濟時代,企業在藉助互聯網大數據改善經營管理過程中,主要面臨的便是大數據平台的部署、應用以及運維難題。
○本文節選自DOIT傳媒《釋放數據紅利 美雲智數互聯網大數據與企業掘金數字經濟》,圖片為陰山所加。
⑷ 為什麼越來越多的大數據智能營銷系統競價競爭
大數據智能營銷系統瘋炒了這么久,市場競爭厲害,各種手段,奇葩營銷,狂風亂炸...今天小編就給大家揭秘一下業內的所有真實面目。
上述盤點了大數據智能營銷系統的動態和真實面目,相信大家能夠認清事實。
⑸ 如何搭建大數據分析平台
隨著各個企業的不斷發展,企業的數據量不斷的增加。企業的競爭壓力也在不斷的加大,利用數據分析平台來增加企業的競爭力,已經成為各個企業的信息化建設的核心環節。數據分析,我認為其含義就是從數據中提取信息創造價值。因為數據本身的價值是無法直接可見的,但是通過各種數據計算和分析,可以將人們無法注意到的信息從數據中提取出來,創造價值。那麼具體如何搭建數據分析平台呢?我認為應從一下幾個方面:
1.分析價值:明確數據分析的價值,通過笑譽大數據的分析,能夠快速地發現消費者的需求變化和市場發展趨勢,從而幫助企業及時做出正確的決策,從而使企業在市場上擁有更強的競爭力和不斷創新的能力。
2.數據源頭:有可供數據分析進行數據獲取的平台。當今的IT信息化系統都在不斷的建設當中,在數據分析時需要對虧升橋各種不同種類來源的數據進行分析。這些來源有可能是系統內部的日誌數據,也有可能是來源於其他介面的數據等等。
3.數據處理:從數據源中採集各種符合企業需求的數據,經過驗證、清洗、並轉化銷猛為所需格式後,儲存到一個合適的持久化儲存層中。
4.數據展現:將各個不同分析演算法處理過的結果進行可視化展示。將數據從預先計算匯總的結果數據中讀取出來,並用一種友好界面或者表格的形式展示出來,這樣便於企業內部非專業人員對數據分析結果的理解。
⑹ 大數據未來發展趨勢如何
趨勢一:數據的資源化
什麼是數據的資源化,它指的是大數據成為企業和社會關注的重要戰略資源,並且已經成為大家爭奪的焦點。因此,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。
趨勢二:與雲計算的深度結合
大數據離不開雲處理,雲處理能夠為大數據提供彈性可拓展的基礎設備,是產生大數據的平台之一。自從2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。
另外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
趨勢三:數據科學和數據聯盟的成立
未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。
⑺ 技術落地性成大數據競爭賽點,鯤鵬大數據解決方案憑何領先
文 | 曾響鈴
來源 | 科技 向令說(xiangling0815)
新基建浪潮下,作為底層支撐力量的數據與計算正變得越來越重要。
最近,由中國大數據與智能計算產業聯盟主辦,以「新算力 新基建 新經濟」為主題的第二屆中國超級算力大會ChinaSC在北京召開,包括國內外院士、知名學者和產業大咖在內的600多人參加,探討了超級計算、新基建、雲計算、大數據、人工智慧、區塊鏈等前沿技術進展。
這個獎項的頒出,官方給出的標準是,「能夠把當前的各種技術有機的整合在一起,以滿足不同應用場景下的各種綜合的軟硬體及系統方案,集科學性、先進性、穩定性、經濟性等眾多實際指標於一身,是技術轉變為實際應用的關鍵環節。」
顯然,這個權威獎項最關心的,是大數據解決方案在推動技術向實際應用轉變的能力,而這也正是當下市場環境對大數據的核心需求。筆者嘗試拆解鯤鵬大數據解決方案從宏觀到操作層面的布局,希望能給予相關從業者這方面的行業借鑒。
技術競賽不停, 但大數據需求轉向應用落地
數據的價值越來越明顯,更好地釋放數據價值的技術在不斷演化,但是,隨著更多政企組織開始著手利用大數據能力幫助現實業務提升,其需求也開始更多傾向於技術能否更好地實現應用落地,大數據解決方案正是為此而生。
以鯤鵬為案例,在推動技術落地的過程中,其大數據解決方案表現出符合時代需要的三大特徵,讓它在新趨勢下占據領先優勢,受到客戶廣泛歡迎並獲得ChinaSC權威認可。
1、超高性能仍然是應用落地的最有力支撐
大數據解決方案要推動技術實現各種場景的落地,其前提和支撐,是底層軟硬體性能本身要足夠強悍,否則,再完善和深度的解決方案,沒有性能支撐也只能是空中樓閣。
而也只有性能足夠強悍,在應用落地階段才能夠盡可能去滿足客戶各類數據價值需求。
得益於底層軟硬體能力的深度開發,鯤鵬大數據解決方案就擁有超高性能,為應用做好了充分的准備以及支撐。
例如,硬體方面,採用自主研發高性能鯤鵬920處理器,軟體方面,則擁有在大數據場景下獲得倍級性能提升的獨創IO智能預取和Spark機器學習&圖增強演算法。
以鯤鵬與浙江移動的合作為例,2019年,浙江移動相繼完成了IT雲鯤鵬伺服器測試,營業廳前台系統、CRM、計費、大數據、CDN等系統的驗證及上線商用。這其中,浙江移動的CRM&BOSS系統在鯤鵬大數據方案支撐下,整體得到了較大提升,在規模承載網路運營支撐業務的情況下,該系統現在已經穩定運行一年。
目前,浙江移動圍繞網路雲,IT雲和移動雲,已經打造了全球首個運營商領域ICT全場景樣板點。
2、全棧方案才能推動技術全面落地
解決方案本身並不是一種具體的技術,其價值在於各種技術的有效融匯,作為統一的輸出方式面向政企客戶。而在政企客戶需求日益加深的情況下,盡可能滿足多種場景、多種技術訴求的解決方案,就必須建立一套盡可能完善的全棧體系,將各種技術有機地、系統地、全面地整合在一起。
這正是華為鯤鵬大數據解決方案的體系構成,其基於鯤鵬處理器,構建了端到端打通硬體、操作系統、中間件、大數據軟體的全棧體系,並對應進行了全棧性能優化,推動各類技術匯聚成高性能解決方案:
可以看到,這套全棧體系,一方面通過有機整合,能夠較為容易地同時滿足科學性、先進性、穩定性、經濟性等需求(例如,加速特性和大數據組件能夠幫助方案更有效率同時成本更低);另一方面,作為全面、完整、一體化的信息化解決方案,也更容易去適應政府、金融、電信、互聯網、大企業等不同行業應用需求。
從技術到應用落地,「全棧」成為重要的中間轉換環節,不但「無損」,而且「增益」。
3、符合政企個性化需求讓技術落地更具現實價值
在最終面向單個客戶落地時,大數據解決方案還需要真正貼合這個客戶的實際需要,這是從技術到應用落地的「臨門一腳」,畢竟,不論性能如何強悍,全棧體系如何完善靈活,落實到客戶頭上,最終還是需要符合業務實際,產生現實價值。
既要有能力,更需要契合,鯤鵬大數據解決方案就是這么做的。
2019年,江蘇省基於鯤鵬架構打造了全國首個省區市縣三級政務大數據,未來將有越來越多的政務系統可以由自主可靠的鯤鵬計算平台來承載;
在廣西,區內首個鯤鵬產業生態雲項目——「壯美廣西·玉林政務雲(鯤鵬雲)」已於不久前上線,這是該市全面推廣應用廣西數字政務一體化平台的體現,而其推出的廣西首個市級公共數據開放管理辦法,就與鯤鵬的大數據解決方案緊密相關;
目光轉到浙江,在鯤鵬生態落子浙江的過程中,浙江推動形成「用鯤鵬」的共識,城市被當成鯤鵬生態的「試驗場」,杭州市政務雲已經選用鯤鵬作為算力底座,基於鯤鵬技術架構的解決方案和應用在政府服務場景中得到廣泛應用。
總得看來,僅有高高在上的技術而無法產生實際價值的大數據玩法已經行不通,鯤鵬大數據解決方案跨越技術與應用的鴻溝,已經在眾多行業、場景和企業中實現落地。
電信行業三巨頭中,中國移動已實現鯤鵬大數據解決方案規模商用,中國電信則基於鯤鵬打造了天翼雲,中國聯通則基於鯤鵬構建了天宮IT系統;政務方面,北京、廣東、江蘇、浙江、廣西等政務雲都出現鯤鵬身影,當下其已經成為首選技術路線;在金融行業,鯤鵬正在幫助銀行系統加速完成國產化。
可以說,鯤鵬大數據解決方案有力推動了中國數字經濟發展,尤其是信息技術應用創新的落地。
領先優勢下, 鯤鵬三個角度出發為大數據技術落地「鋪路」
1、走得更穩——回應數字時代重要的安全關切
因此,鯤鵬大數據解決方案在安全方面一直加大投入,最典型的,是在底層硬體而非軟體層面進行安全保障——鯤鵬920處理器內置硬體加速器、業界首創支持國密演算法加速,這種CPU內置加速模塊的做法,被稱作「內生安全」,配合國密演算法在技術上更為安全。
而與通常的大數據解決方案為了保證安全不得不讓渡較多的性能隨時監控系統運行不同,華為鯤鵬大數據解決方案內生安全的做法,做到了加密對業務性能的損耗低於5%——既解決安全痛點問題,也解決「為了安全需要」本身導致的痛點問題。
2、走得更順——用兼容性保護既有數據軟硬體投資
前文提到政務雲大數據解決方案中,與現有的伺服器的混合部署,這其中有一個十分重要的兼容性做法——由於鯤鵬大數據解決方案建立在鯤鵬處理器基礎之上,而很多政企組織原有的軟硬體投資都基於X86架構,所以鯤鵬要讓技術的應用落地走得更順,還需要在技術上完成對X86在部署層面的兼容,這樣還能保護政企客戶現有的數字化投資。
可以看到,當下的鯤鵬方案已經支持大數據組件TaiShan伺服器與其他架構伺服器混合部署。
以江蘇電信為例,去年7月,其宣布成功上線全球首個基於鯤鵬處理器的運營商大數據平台。作為核心的業務系統,該大數據平台基於鯤鵬處理器的華為TaiShan伺服器和開源Hadoop軟體構建,承載著江蘇電信所有生產系統的運行數據、存儲及分析:
在項目進行過程中,雙方攜手完成基於鯤鵬處理器的開源Hadoop源代碼編譯,讓關鍵的大數據業務組件在華為TaiShan伺服器上的成功部署和運行,在原有集群上實現了傳統架構伺服器和TaiShan伺服器融合部署。
這種兼容的做法,有效結合了江蘇電信大數據業務特點和未來演進趨勢,且充分發揮鯤鵬處理器的性能,提高了數據存儲、計算等資源的使用效率。
3、走得更寬——生態開放才能讓大數據擁有內生動力
鯤鵬生態的主要推動者華為一直強調的理念是「硬體開放、軟體開源、使能合作夥伴」,在大數據解決方案中,這種理念同樣得到了應用。
例如,在鯤鵬全棧方案中,頂層大數據平台就支持華為自研的FusionInsight大數據平台以及開源Apache、開源HDP/CDH、星環大數據平台,可以有效對接各類場景需要。今年8月,星環 科技 就發布了基於鯤鵬的大數據平台軟硬體聯合解決方案,由星環 科技 的TDH大數據平台提供軟體層面優異的功能,由鯤鵬晶元提供硬體層面強大的性能,擁有極致性能、平滑遷移、豐富的場景支持以及快速部署多重優勢,為行業創造價值。
此外,鯤鵬主導的數據虛擬化引擎openLooKeng開源,就支持跨數據格式、跨數據源、跨數據中心的海量分析,最終幫助方案的性能大幅度提升,典型的如北明數據資產管理平台V4.0就基於openLooKeng技術,解決了數據資產管理數據冗雜、標准不一、難以管理等痛點問題,為企業守護和挖掘數據的價值。
開放的生態,將幫助更多合作夥伴發展伺服器和PC等計算產品,幫助構建高質量的基礎軟體生態,也讓更多生態夥伴獲得端、邊、雲的全場景開發能力,最終促進鯤鵬計算生態的繁榮,也加速大數據行業應用創新。
打好基礎、做好標桿, 鯤鵬進入「強者恆強」周期
彌合技術與應用落地的鴻溝後,鯤鵬大數據解決方案擁有越來越多的政企實踐,它們中大多數都是行業典型客戶,本身既是大數據發展過程中的優質案例。
擁有這些客戶資源的鯤鵬,實際上已經進入了強者恆強的發展周期,這不僅僅是因為它獲得了諸多標桿合作案例、領先於行業,更重要的還在於,技術到應用實踐的通路打通後,實踐也將不斷反饋技術,不斷幫助鯤鵬錘煉自身的技術能力,從而形成有效的正反饋循環。
一旦這種循環形成,大數據解決方案就會進入「飛輪」式發展進程,越轉越快、越難以停下,也很難以被後進者追趕,逐步成為政企客戶最有競爭優勢的選擇。
更進一步來看,大數據服務從來都不是孤立存在的,在計算需求多樣化的時代,鯤鵬計算產業生態的主要推動者華為在物聯網、5G、AI等方面的能力和生態布局,無疑將幫助鯤鵬大數據解決方案有更多橫向技術連接和融合的想像空間,滿足更多政企客戶潛在的創新業務需求。
總而言之,在以鯤鵬大數據解決方案為代表的優質案例引領下,數據與計算的時代正在加速到來,最終,「新算力」將推動「新基建」全面落地,帶來「新經濟」動能,更多政企客戶將享受到技術帶來的價值紅利。
*本文圖片均來源於網路
【完】
曾響鈴
1鈦媒體、品途、人人都是產品經理等多家創投、 科技 網站年度十大作者;
2虎嘯獎評委;
3作家:【移動互聯網+ 新常態下的商業機會】等暢銷書作者;
4《中國經營報》《商界》《商界評論》《銷售與市場》等近十家報刊、雜志特約評論員;
5鈦媒體、36kr、虎嗅、界面、澎湃新聞等近80家專欄作者;
6「腦藝人」(腦力手藝人)概念提出者,現演變為「自媒體」,成為一個行業;
7騰訊全媒派榮譽導師、多家 科技 智能公司傳播顧問。