『壹』 讀書 | 大數據時代資本主義的重塑(No.22)
聽書筆記
《大數據時代資本主義的重塑》的作者是維克托·舍恩伯格和托馬斯·拉姆什。第一作者維克托·舍恩伯格是大數據領域的重量級人物。他在2012年出版的一本書《大數據時代》至今依然暢銷,也是國內外研究大數據的人的必讀書目。《大數據時代資本主義的重塑》是2018年2月剛出的一本新書,它從一個很獨特的角度,為我們揭示了大數據會給人類社會帶來怎樣顛覆性的變化,甚至將徹底終結我們今天使用的金錢。
一、市場轉向——從一個以價格為核心的市場轉變為以數據為中心的市場
價格的三大作用
價格給市場提供了一套標准語言。
價格可以傳遞信息。
價格可以記錄某個商品價值的波動情況。
以價格為核心的市場存在巨大缺陷
信息的損耗:信息壓縮在價格這個唯一標尺里,造成信息傳遞的不全面。
「唯價格論」價值觀:一切都向錢看,產品的質量性能反而退居第二位。
以數據為中心的市場是未來社會不可逆的轉向。
但是,這個以數據為核心的市場交易需要一套完備的數據分析方法,我們概括為三個關鍵詞就是:分類、偏好、配對。
分類:我們需要有一套分析、比較個人偏好的標准化的分類語言。
偏好:我們現在需要一種能有效地抓取、收集、記錄人們的偏好數據。
配對:我們需要有更優化的、更精準的配對能力,以便讓我們精確地找到合適的合作夥伴/賣家/買家。
二、資本轉向——金融資本將被數據資本所取代
數據——大數據時代的黃金石油
在大數據的時代,資本、財富將不再以金錢為主要形式,而是體現為數據。此外,相比於自然資源,數據資源可以反復利用,取之不盡,用之不竭。
未來數據的關注點:應從收集層轉向使用層。如何使用數據?
數據將發揮今天金錢才有的支付功能
用數據交稅
當前數據資本的現狀:被少數公司壟斷
危害:
會有聽命於商業老大哥的獨裁統治的風險
容易造成系統性風險:一旦有居心不良的人在其中動手腳,整個數據市場都會陷入癱瘓
對策:
數據雙向分享機制
數據稅
目的:
讓政府可以據此提供更好的公共服務
打破少數公司對數據市場的壟斷,不至於出現一家獨大的局面
三、公司、企業面臨轉型
公司、企業的定義及特點
公司、企業是擁有共同目標的一群人聚合起來的一個實體,是一個控制嚴密、權利集中、垂直整合的組織,特點是中心化。
在大數據時代,公司如何利用數據等手段來輔助自己做出更好的決策?
方式一,建立決策輔助機制——「機器+公司」模式
對於公司的未來,一種轉型思路是「機器+公司」模式,讓機器輔助公司進行決策。
當前,人們被期待擁有的技能,舍恩伯格教授稱之為「T」形技能(T-shaped skill)。未來機器在公司內部普及後,「T」的一豎也就是某個專業領域的技能已經可以被機器完全取代,而人自己只需做「T」的一橫上的事。
「T」形技能定義:
「T」的一橫是和其他多個部門溝通、交流、協作的能力,這是一種宏觀層面上的能力;
「T」的一豎是對某個領域深入的、專業的知識,屬於比較微觀的能力。
讓機器輔助公司進行決策結果:
大程度地削弱人在做決策時的偏見。
「T」形技能也許會向「一」型技能轉變。也就是說,大數據時代更看中人的溝通、交流能力。
方式二,建立高效的人才市場——「公司+市場」模式
運作方式:人才共享
管理者們不再持有人才,人才成了這個市場上的商品。人才不再是某個公司靜態的附屬品,可以自由在各個公司流通。
這是一種公司與市場相結合的運作模式,「公司+市場」是未來公司發展的前景之一。
作者的創見性預測:
隨著機器能乾的事情越來越多,再往後,許多大型的公司會變成只是法律名義上的法人實體,但不再大量僱傭員工,活生生變成一個空殼。
四、人的因素
在大數據時代這一去金錢化的資本主義社會中的人:
工作崗位的銳減,失業率的上升
人的智慧、想像力,以及溝通能力是機械化的事物無法取代。
『貳』 維克托邁爾舍恩伯格《大數據時代》讀後感
當仔細品讀一部作品後,大家一定都收獲不少,是時候寫一篇讀後感好好記錄一下了。千萬不能認為讀後感隨便應付就可以,以下是我幫大家整理的維克托邁爾舍恩伯格《大數據時代》讀後感範文,僅供參考,希望能夠幫助到大家。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲,此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。
他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。
對於第一個觀點,我不敢苟同。
一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的.方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
『叄』 誰最早提出大數據的概念
「大數據」概念最早由維克托·邁爾·舍恩伯格和肯尼斯·庫克耶在編寫《大數據時代》中提出,指對所有數據進行整體分析處理,而不是採用隨機分析法,即抽樣調查進行分析。 大數據有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。 大數據 (Big Data)又稱為巨量資料,具體指要更新新處理模式才能保證擁有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。 「大數據」概念最早由維克托·邁爾·舍恩伯格和肯尼斯·庫克耶在編寫《大數據時代》中提出,指對所有數據進行整體分析處理,而不是採用隨機分析法,即抽樣調查進行分析。
大數據有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
『肆』 大數據概念是在哪一年由誰首次提出的
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。
於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
資料參考網路大數據
『伍』 大數據一詞最早出現於20世紀90年代
「大數據」一詞,最早出現於20世紀90年代,當時的數據倉庫之父比爾·恩門經常提及BigData。
『陸』 《大數據時代生活、工作與思維的大變革》epub下載在線閱讀全文,求百度網盤雲資源
《大數據時代》([英] 維克托•邁爾•舍恩伯格(Viktor Mayer-Schönberger))電子書網盤下載免費在線閱讀
鏈接: https://pan..com/s/14EqWS8hUg7X4suhVQi7g8A 提取碼: jh5h
書名:大數據時代
作者:[英] 維克托•邁爾•舍恩伯格(Viktor Mayer-Schönberger)
譯者:周濤
豆瓣評分:7.5
出版社:浙江人民出版社
出版年份:2012-12
頁數:261
內容簡介:
《大數據時代》是國外大數據研究的先河之作,本書作者維克托•邁爾•舍恩伯格被譽為「大數據商業應用第一人」,擁有在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多個互聯網研究重鎮任教的經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。
作者簡介:
他是十餘年潛心研究數據科學的技術權威,他是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。他曾先後任教於世界最著名的幾大互聯網研究學府。現任牛津大學網路學院互聯網治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人,哈佛國家電子商務研究中網路監管項目負責人;曾任新加坡國立大學李光耀學院信息與創新策略研究中心主任。並擔任耶魯大學、芝加哥大學、弗吉尼亞大學、聖地亞哥大學、維也納大學的客座教授。
『柒』 《大數據時代》讀後感
認真讀完一本著作後,相信大家的視野一定開拓了不少,為此需要認真地寫一寫讀後感了。怎樣寫讀後感才能避免寫成「流水賬」呢?下面是我收集整理的關於《大數據時代》讀後感範文(通用5篇),僅供參考,希望能夠幫助到大家。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。
一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。
二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。
三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧———巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。
看完此書,我心中的一些問題:
1、什麼是大數據?
查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2、大數據適合什麼樣的企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。
同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3、大數據帶來的`影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的。預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。
在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。
一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。
在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的答案。
此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
首先,想談一談何為大數據,何為大數據時代。大數據是一種資源,也是一種工具。它提供一種新的思維方式去理解當今這個信息化世界。為何說是一種新的思維方式:在信息缺乏的時代或模擬時代,我們更傾向於精確性的思維方式,就像是"釘是釘,鉚是鉚",而在這種傳統的思維方式下,我們得到問題的答案只有一個。
而在大數據時代下,我們打破了這種思維方式,換句話說,我們接受結果的不確定性。簡言概括之,我認為大數據是一種預測模型。在大數據時代下,我們關注的不是因果,即為什麼是這樣,而更關心"是什麼"這種相關關系。換句話說,在這種新思維的思考方式下,我們探究問題背後的原因也是不可行的。我們所做的是利用大數據這種工具,讓數據自己說話!
其次,我想談下如何利用大數據提升我軍戰鬥力。當然,大數據分析並不是精準的預測,精準的預測也是不存在的。大數據只能有利於我們理解現在和預測未來的可能性。
作為軍人,我所關注的是如何利用好大數據的工具提升我軍戰鬥力,打贏這場信息化戰爭。毫無疑問,現在我們打的不是刀對刀,槍對槍的戰爭,更不是模擬時代,當代乃是數字時代,打的是信息化戰爭!
四次戰爭的大勝,美軍的戰爭形態從機械化轉向信息化,而且相應的在戰場取勝的時間也越來越短,這正是大數據時代下的必然結果。而我軍正在轉向信息化的過程中。在此戰爭形態的過程中,我們需要更多的計算分析師,大數據分析師,數學家等高等技術性人才來打贏這場信息化戰爭。這正是大數據時代下我們不得不有的基礎。我軍戰鬥力的提升迫在眉睫!
當然大數據是一把雙刃劍,利用好了取勝也是得心應手,相反,利用不好會導致不可估量的損失。
畢竟,這只是一種預測模型,得不到精準的預測結果。我們更要讓數據為我們所用,不要被龐大的資料庫框住我們的思維。為適應時代的發展,在這個適者生存,弱肉強食的世界,大數據時代下的殘酷競爭已經給我們敲響警鍾,一場悄無聲息的信息化戰爭已經打響!
『捌』 《大數據時代》01 什麼是大數據
今天我們第一本解讀的是《大數據時代》這本書。
大數據是這幾年特別火的一個詞,那究竟什麼是大數據呢?
字面意思可以理解為大數據就是數量巨大的數據,而這些巨大的數據再結合雲計算、人工智慧、物聯網等技術會對於我們的生活、工作都會帶來翻天覆地的影響。
芝加哥大學商學院教授、麥肯錫公司創始人,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
而我們今天所講的這本《大數據時代》是國外大數據研究的先河之作,本書作者舍恩伯格被譽為「大數據商業應用第一人」。舍恩伯格在書中前瞻性地指出,大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,並用三個部分講述了大數據時代的思維變革、商業變革和管理變革。對於身處於大數據時代額我們可謂是會產生異常極大的思維方式的變革。
舍恩伯格最具洞見之處在於,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這就顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
下面我們就進入到《大數據時代》這本書中去吧。
首先來看第一個話題大數據的思維變革
大數據與三個重大的思維變革有關,而這三個轉變是相互作用的。
一.不是隨機樣本,而是全體數據
解釋一下就是分析事物相關的所有數據,而不是僅僅依靠分析少量的數據樣本。
二是不是精確性,而是混雜性
就是要接受數據的紛繁復雜,而不再追求准確性。
三是不是因果關系,而是相關關系
即不再追求難以摸索的因果關系,轉而關注事物的相關關系。
這三個在大數據時代思維變革的轉變我們會在接下來節目中一一講解。
今天我們這一節先講解:不是隨機樣本,而是全體樣本,這一思維的變革。
小數據時代的隨機抽樣
為什麼這么說呢?在我們過去技術並不發達的時候,只能用少量數據來進行隨機采樣是最高效的方式,即利用最少的數據來獲取更多的信息。
在19世紀時美國的人口普查中,因為數據的變化超過了當時的人口普查統計分析能力,有人提出到數據無比龐大時可以進行有目的的選擇,具有選出代表性的樣本是最恰當的方式,這就是隨機抽樣。並且還非常有見解的提出:采樣分析的精確性是隨著采樣隨機性的增加而大幅的提高與樣本的數量增加關系並不大,也就是說,隨機采樣樣本的隨機性比數量的多少更為重要。
而在當時,政府確實也採用了隨機調查的方式來對於經濟和人口進行了200多次小規模的調查,除此之外,在商業領域也會採用隨機調查的方式來抽取部分商品來檢查商品的質量安全。
隨機抽樣取得了巨大的成功,成為了現代社會,現代測量領域的主心骨,但這只是一條捷徑,是不可能收集和分析全部數據情況下的選擇,他本身就有很多的缺陷。
隨機抽樣的缺陷
第一,它的成功依賴於采樣的絕對隨機性,但在實現中絕對的隨機性是非常困難,一旦分析過程中存在任何「偏見」,分析結果就會相去甚遠。
第二,隨機采樣不適宜用於考察此類別的情況,也就是說隨機抽樣,一旦繼續細分錯誤率會大大增加,比如說你想調查大學生玩手機的情況,您採取的調查結果可能會有3%的誤差,但如果又把這個調查結果根據性別地域、收入來進行細分,那結果就會變得更為不準確。
因此當人們想要了解更深層次的細分領域的情況,採用隨機采樣的方法顯然是不可取的,在宏觀領域起作用的方法,在微觀領域上失去了作用,隨機采樣就像是模擬照片,列印再遠看會是非常不錯,但是一旦聚焦在某個點,就會變得模糊不清。
全部數據的采樣方式
現在我們正在步入了大數據時代,我們需要一中新的數據採集模式----全數據模式,即樣本等於總體。
我們這個時代收集數據,並不像過去那樣困難,手機導航、社交網站、微博、微信這些隨時隨地或主動或被動的收集你所產生的信息,並且通過計算機就可以輕而易舉地完成數據處理。
採取全部數據的采樣方式,可以不用考慮隨機抽樣所考慮的隨機性,並且在細分領域也會發揮極大的作用,一個很好的例子,就是日本國民體育運動相撲之中所產生的非法操控比賽結果。
相撲比賽和其他比賽有所不同的就是選手需要在15場比賽之中的大部分場次獲得勝利,才能保持排名和收入。這樣一來就會出現收益不對稱的情況,比如說一個7勝7負的選手,遇到一個8勝6負的選手,比賽結果對於第一個選手會比對第二個選手更為重要。列維特和達根發現在這種情況下,需要贏的那個選手,最可能會贏,這是為什麼呢?有沒有可能是選手的求勝心呢?當然有可能,但並不是完全!有數據顯示需要贏的選手,求勝心,也只能把勝率增加25%。並且對於數據進一步分析發現,選手如果幫助上一次失利的一方的話,當他們再次相遇時,對方會回報回來。
這種情況在相撲界是顯而易見的,但若是隨機抽樣就無法發現這個情況。而大數據通過分析所有比賽,用極大的數據來捕捉到這個情況。
還有關於大數據應用的例子是:2009年,谷歌公司將5000萬條美國最頻繁的檢索詞條和美國疾控中心在2003年至2008年季節性流感傳播實際數據進行比較,成功預測了甲型H1N1流感的出現。
現在2021年,利用大數據來預測新冠肺炎的發展情況,已經成為我們日常新聞報道的一部分了。
在大數據時代的到來,讓我們可以利用技術,從不同角度更細致的觀察和研究數據的方方面面,使我們的調查更為精準。
回顧一下我們這一節所講的過去的調查是採用小部分的數據來進行抽樣調查,這一方法有顯著的缺點
首先是抽樣分析依賴於采樣的隨機性,而一旦數據出現」偏見「,結果便會大相徑庭
第二抽樣分析也只適用於宏觀分析,對於更加微觀的調查結果並不理想。
如今的技術環境已經有了很大的改善,在大數據時代進行抽樣分析就是在汽車時代騎馬一樣,我們要分析與事物相關的而所有數據,而不僅僅是少量的數據。
以上就是我們本期全部內容,下一期我會講到大數據時代下思維變革的後兩個思維變革。
我的節目首發平台是公眾號「悅讀深入思考」關注還有更多內容
『玖』 大數據時代讀後感5篇600字
去年的"雲計算"炒得熱火朝天的,今年的"大數據"又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起"大數據"來了。於是乎,各企業的CIO也將熱度紛紛轉向關注"大數據"來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀,下面是我為大家帶來的大數據時代 讀後感 ,希望你喜歡。
大數據時代讀後感1
舍恩伯格的《大數據時代》被人推崇為2012最佳書籍,今年安泰讀書會的重頭戲。雖然主講人最後放了個香港大黃鴨般的鴿子,但現場討論氛圍依舊非常熱烈——而且還是在沒幾個人讀完的情況下,也就意味著——大數據對我們的影響,已經深入到生活的方方面面。
無處不在的大數據:各種雲計算,谷歌的神通,亞馬遜的推送,天涯人肉,微博萬能等等等等,我們掌握了新的工具,也獲取了以前從未有過的各種信息。大數據拉近了我們與現實的距離,「地球村」變成了「地球屋」,彷彿所有人所有事物都觸手可及,而這些牛逼哄哄的互聯網巨頭就在客廳展示著世界的每一寸光景。
然而,事實真的是這樣嗎?首先,從應用角度出發,低廉的運算能力和存儲空間,讓以前的樣本分析顯得非常簡陋——一些從全體數據挖掘出來,忽略精確而從大量數據的簡單演算法得出來的結論顛覆了常識。但個人覺得,這只是統計學的終極目標——並沒有非常大的跨越,可能終結了回歸分析,有效性驗證等手段,但依舊還是統計。而革命性在於關注相關關系而非因果關系。現場討論從神學角度挑戰了因果關系的不可能——或者說人類用簡單思考的邏輯來定義因果,以及用之前小數據演繹出大概率事件來推導因果,都是不正確的。真正的因果關系應該屬於上帝的范疇,人類如果真的完全掌握之後,會統治整個宇宙。但我覺得,無需從神學觀點來討論,而可以借鑒量子力學對經典力學的顛覆——在原子層面上,經典力學會失效——那麼在大數據層面上,普通的抽樣調查直觀反映會失效。而且從量子力學角度是很難推導經典力學的公式,那麼從現在的慣有思維,也難以推導出大數據的因果關系。
大數據時代讀後感2
書中雖只是闡述了大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,並未提及會對我們 教育 教學產生什麼影響,但在這樣的大環境之中,我們同樣可以獲得啟示,尋求大數據在教育工作中可實現的價值。
1.教師角度:從基於 經驗 到基於數據的教學轉型
「經驗主義」是指形而上學的思想 方法 和工作作風,其特點是在觀察和處理問題的時候,從狹隘的個人經驗出發,不是採用聯系、發展、全面的觀點,而是採取鼓勵、精緻、片面的觀點。在教學中,我們有時會憑藉以往經驗認定本節課學生的起點,從而制定教學目標、重難點以及教學過程。這往往忽略了上屆學生和這屆學生是有差異的,這班學生和另一班學生也是存在差異的,那如何准確把握學生的起點呢?我想可以藉助前測數據,它可以為有效教學指明了方向。
如教學「復式統計表」時,前期查找資料的時候就發現早在一年級上冊P96的時候學生就見過復式統計表,意讓學生初步認識統計表,滲透統計思想。而二三年級的書中練習也多有涉及,就是這種復式統計表沒有「表頭」,生活中的復式統計表也很多。既然在以前練習時碰到這么多次復式統計表,學生對復式統計表到底認識多少呢?我們對157名學生進行這樣的調查(如下圖),第1題:像上表這樣的統計表以前見過嗎?見過約佔65%,沒見過約佔35%,學生在練習中碰到過、生活中也經常看見,但還是約35%的學生回答自己沒見過,說明學生平時在看這個復式統計表的時候就浮於表面,所以這節課我們重點應該讓學生經歷復式統計表的產生過程,加深學生對復式統計表的印象。第2題:上表中的16表示什麼意思?能完整表達出二班身高在130~139厘米的學生有16人,約佔41%;表達一半,如二班16人,或130~139厘米16人,約佔22%,其他約佔37%,真正能正確讀懂復式統計表的學生一半不到,需要在課中進行讀圖方法的指導。而知道這個表叫做復式統計表的學生不到20%。
大數據時代讀後感3
這一章節,利用馬修莫里導航圖的例子引出了大數據的實踐方式,奇人莫里通過整理航海相關的邊角數據,把整個大西洋按照經緯度劃分了出來,並標注出了溫度、風速和風向,從而發現了洋流,也為船員提供了有效的航海路線,這就是數據的價值體現了。書中也提到了,量化我們周圍的一切,是數據化的核心,將文字變成數據、將方位變成數據,將溝通、情感變成數據,通過大數據,我們會意識到,世界在本質上是由信息構成的。
在工作中,這點也可以作為啟發點,通過對數據的整理,或者說以某種方式採集到相關數據,將數據整理出有價值的信息後,不斷的改善到工作流程、效率、服務方面,也是工作上的創新點。
筆者在書中提到了,數據的潛在價值,並提出了數據創新應用的方法,第一是數據的再利用,數據信息被採集用作特定分析後,在另一個領域或者角色立場下,或許會開發出新的有價值的信息;第二是數據的重組,將不同類別、類型的數據進行重組,產生一個新的數據集合出來,尋找其中的關聯性;第三是數據的擴展,這就需要在記錄數據的同時設計好他的可擴展性;第四是數據的折舊值,數據將會貶值,但是仍會有其潛在價值;第五是數據廢氣,即數據採集時的離散量、離散交互信號,舉例是谷歌與微軟的拼寫檢查;第六是開放數據,數據的開放將會有利於各行各業的使用,並促進全行業數據時代的發展。這其中又提到了數據估值的概念,在數據使用時價值才會體現出來,而不是在佔有本身。
根據所提供價值的不同來源,分別出現三種大數據公司,基於數據本身(採集大量數據的公司)、基於技能(提取用戶的需求,給出數據分析結果的公司)、基於思維(挖掘數據新的價值的公司)。
大數據時代讀後感4
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作--舍恩佰格的《大數據時代》。維克托.邁爾--舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家"的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,如果能做足功課又具備相應的理論功底,就能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分"大數據時代的思維變革"中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
大數據時代讀後感5
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出"不是因果關系,而是相關關系。"這一論斷時,他在書中還說道:"在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道「是什麼」時,我們就會繼續向更深層次研究的因果關系,找出背後的「為什麼」。"[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可"量化",大數據的定量分析有力地回答"是什麼"這一問題,但仍然無法完全回答"為什麼"。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節"掌控"中試圖回答,但基本上屬於老生常談。我想,或許凱文.凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:"大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。"謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。
大數據時代讀後感5篇600字相關 文章 :
★ 走進網路時代作文600字:互聯網時代不應是「忽老」時代