㈠ 大數據的定義是什麼
大數據首先是一個非常大的數據集,可以達到TB(萬億位元組)甚至ZB(十萬億億位元組)。這裡面的數據可能既有結構化的數據,也有半結構化和非結構化的數據,而且來自於不同的數據源。
結構化的數據是什麼呢?對於接觸過關系型資料庫的小夥伴來說,應該一點都不陌生。對了,就是我們關系型資料庫中的一張表,每行都具有相同的屬性。如下面的一張表:
(子標簽的次序和個數不一定完全一致)
那什麼又是非結構化數據呢?這類數據沒有預定義完整的數據結構,在我們日常工作生活中可能更多接觸的就是這類數據,比如,圖片、圖像、音頻、視頻、辦公文檔等等。
知道了這三類結構的數據,我們再來看看大數據的數據源有哪些呢?歸納起來大致有五種數據源。
一是社交媒體平台。如有名氣的Facebook、Twitter、YouTube和Instagram等。媒體是比較受歡迎的大數據來源之一,因為它提供了關於消費者偏好和變化趨勢的寶貴依據。並且因為媒體是自我傳播的,可以跨越物理和人口障礙,因此它是企業深入了解目標受眾、得出模式和結論、增強決策能力的方式。
二是雲平台。公有的、私有的和第三方的雲平台。如今,越來越多的企業將數據轉移到雲上,超越了傳統的數據源。雲存儲支持結構化和非結構化數據,並為業務提供實時信息和隨需應變的依據。雲計算的主要特性是靈活性和可伸縮性。由於大數據可以通過網路和伺服器在公共或私有雲上存儲和獲取,因此雲是一種高效、經濟的數據源。
三是Web資源。公共網路構成了廣泛且易於訪問的大數據,個人和公司都可以從網上或「互聯網」上獲得數據。此外,國內的大型購物網站,淘寶、京東、阿里巴巴,更是雲集了海量的用戶數據。
四是IoT(Internet of Things)物聯網數據源。物聯網目前正處於迅猛發展勢頭。有了物聯網,我們不僅可以從電腦和智能手機獲取數據,還可以從醫療設備、車輛流程、視頻游戲、儀表、相機、家用電器等方面獲取數據。這些都構成了大數據寶貴的數據來源。
五是來自於資料庫的數據源。現今的企業都喜歡融合使用傳統和現代資料庫來獲取相關的大數據。這些數據都是企業驅動業務利潤的寶貴資源。常見的資料庫有MS Access、DB2、Oracle、MySQL以及大數據的資料庫Hbase、MongoDB等。
我們再來總結一下,什麼樣的數據就屬於大數據呢?通常來大數據有4個特點,這就是業內人士常說的4V,volume容量、 variety多樣性、velocity速度和veracity准確性。
㈡ 哪款大數據分析軟體比較好
1、spss
是一款用於統計學分析運算、數據挖掘、預測分析和決策支持任務的軟體產品;包括描述性統計、均值比較、一般線性模型、相關分析、回歸分析、對數線性模型、聚類分析、數據簡化、生存分析、時間序列分析、多重響應等幾大類。操作簡單,編程方便,數據介面。
2、tabelau
程序很容易上手,各公司可以用它將大量數據拖放到數字「畫布」上,轉眼間就能創建好各種圖表;不需任何編程。
3、SAS
是一個模塊化、集成化的大型應用軟體系統;SAS提供了從基本統計數的計算到各種試驗設計的方差分析,相關回歸分析以及多變數分析的多種統計分析過程。
4、PythonPandas
正如它的網站所述,Pandas是一個開咐蔽友源的Python數據分析庫,目前由專注於Python數據包開發的PyData開發團隊繼續開發和維護,屬於PyData項目的一部分。Pandas最初被作為金融數據分析工具而開發出來,因此,pandas為時間序列分析提供了很好的支持。
5、Paxata
Paxata是少數幾家專注於數據並拿清洗和預處理的組織之一,是一個易於使用的MSExcel類應用程序。它還提供了可視化的指導,可以輕松地將數據匯集在一起,查找並修復數據中衡槐混雜的噪音或缺失,以及在團隊之間共享和重復使用數據項目。與本文中提到的其他工具一樣,Paxata取消了編碼或腳本,從而克服了處理數據所涉及的技術障礙。
㈢ mssql 想了解一下大數據性能
差距不大,但是對於列數量過大的就有影響了,主要是數據導出和處理時,前者要佔用更大量內存和緩存,並且會有文件容量超出上限問題。
㈣ mssql大數據檢索問題
我是來混分的
我的意見是
創建索引, 移除歷史數據到備份表中
下面的內容來自別人總結的, 呵呵
1、1、調整數據結構的設計。這一部分在開發信息系統之前完成,程序員需要考慮是否使用ORACLE資料庫的分區功能,對於經常訪問的資料庫表是否需要建立索引等。
2、2、調整應用程序結構設計。這一部分也是在開發信息系統之前完成,程序員在這一步需要考慮應用程序使用什麼樣的體系結構,是使用傳統的Client/Server兩層體系結構,還是使用Browser/Web/Database的三層體系結構。不同的應用程序體系結構要求的資料庫資源是不同的。
3、3、調整資料庫SQL語句。應用程序的執行最終將歸結為資料庫中的SQL語句執行,因此SQL語句的執行效率最終決定了ORACLE資料庫的性能。ORACLE公司推薦使用ORACLE語句優化器(Oracle Optimizer)和行鎖管理器(row-level manager)來調整優化SQL語句。
4、4、調整伺服器內存分配。內存分配是在信息系統運行過程中優化配置的,資料庫管理員可以根據資料庫運行狀況調整資料庫系統全局區(SGA區)的數據緩沖區、日誌緩沖區和共享池的大小;還可以調整程序全局區(PGA區)的大小。需要注意的是,SGA區不是越大越好,SGA區過大會佔用操作系統使用的內存而引起虛擬內存的頁面交換,這樣反而會降低系統。
5、5、調整硬碟I/O,這一步是在信息系統開發之前完成的。資料庫管理員可以將組成同一個表空間的數據文件放在不同的硬碟上,做到硬碟之間I/O負載均衡。
6、6、調整操作系統參數,例如:運行在UNIX操作系統上的ORACLE資料庫,可以調整UNIX數據緩沖池的大小,每個進程所能使用的內存大小等參數。
實際上,上述資料庫優化措施之間是相互聯系的。ORACLE資料庫性能惡化表現基本上都是用戶響應時間比較長,需要用戶長時間的等待。但性能惡化的原因卻是多種多樣的,有時是多個因素共同造成了性能惡化的結果,這就需要資料庫管理員有比較全面的計算機知識,能夠敏感地察覺到影響資料庫性能的主要原因所在。另外,良好的資料庫管理工具對於優化資料庫性能也是很重要的。
ORACLE資料庫性能優化工具
常用的資料庫性能優化工具有:
1、1、ORACLE資料庫在線數據字典,ORACLE在線數據字典能夠反映出ORACLE動態運行情況,對於調整資料庫性能是很有幫助的。
2、2、操作系統工具,例如UNIX操作系統的vmstat,iostat等命令可以查看到系統系統級內存和硬碟I/O的使用情況,這些工具對於管理員弄清出系統瓶頸出現在什麼地方有時候很有用。
3、3、SQL語言跟蹤工具(SQL TRACE FACILITY),SQL語言跟蹤工具可以記錄SQL語句的執行情況,管理員可以使用虛擬表來調整實例,使用SQL語句跟蹤文件調整應用程序性能。SQL語言跟蹤工具將結果輸出成一個操作系統的文件,管理員可以使用TKPROF工具查看這些文件。
4、4、ORACLE Enterprise Manager(OEM),這是一個圖形的用戶管理界面,用戶可以使用它方便地進行資料庫管理而不必記住復雜的ORACLE資料庫管理的命令。
5、5、EXPLAIN PLAN——SQL語言優化命令,使用這個命令可以幫助程序員寫出高效的SQL語言。
ORACLE資料庫的系統性能評估
信息系統的類型不同,需要關注的資料庫參數也是不同的。資料庫管理員需要根據自己的信息系統的類型著重考慮不同的資料庫參數。
1、1、在線事務處理信息系統(OLTP),這種類型的信息系統一般需要有大量的Insert、Update操作,典型的系統包括民航機票發售系統、銀行儲蓄系統等。OLTP系統需要保證資料庫的並發性、可靠性和最終用戶的速度,這類系統使用的ORACLE資料庫需要主要考慮下述參數:
l l 資料庫回滾段是否足夠?
l l 是否需要建立ORACLE資料庫索引、聚集、散列?
l l 系統全局區(SGA)大小是否足夠?
l l SQL語句是否高效?
2、2、數據倉庫系統(Data Warehousing),這種信息系統的主要任務是從ORACLE的海量數據中進行查詢,得到數據之間的某些規律。資料庫管理員需要為這種類型的ORACLE資料庫著重考慮下述參數:
l l 是否採用B*-索引或者bitmap索引?
l l 是否採用並行SQL查詢以提高查詢效率?
l l 是否採用PL/SQL函數編寫存儲過程?
l l 有必要的話,需要建立並行資料庫提高資料庫的查詢效率
SQL語句的調整原則
SQL語言是一種靈活的語言,相同的功能可以使用不同的語句來實現,但是語句的執行效率是很不相同的。程序員可以使用EXPLAIN PLAN語句來比較各種實現方案,並選出最優的實現方案。總得來講,程序員寫SQL語句需要滿足考慮如下規則:
1、1、盡量使用索引。試比較下面兩條SQL語句:
語句A:SELECT dname, deptno FROM dept WHERE deptno NOT IN
(SELECT deptno FROM emp);
語句B:SELECT dname, deptno FROM dept WHERE NOT EXISTS
(SELECT deptno FROM emp WHERE dept.deptno = emp.deptno);
這兩條查詢語句實現的結果是相同的,但是執行語句A的時候,ORACLE會對整個emp表進行掃描,沒有使用建立在emp表上的deptno索引,執行語句B的時候,由於在子查詢中使用了聯合查詢,ORACLE只是對emp表進行的部分數據掃描,並利用了deptno列的索引,所以語句B的效率要比語句A的效率高一些。
2、2、選擇聯合查詢的聯合次序。考慮下面的例子:
SELECT stuff FROM taba a, tabb b, tabc c
WHERE a.acol between :alow and :ahigh
AND b.bcol between :blow and :bhigh
AND c.ccol between :clow and :chigh
AND a.key1 = b.key1
AMD a.key2 = c.key2;
這個SQL例子中,程序員首先需要選擇要查詢的主表,因為主表要進行整個表數據的掃描,所以主表應該數據量最小,所以例子中表A的acol列的范圍應該比表B和表C相應列的范圍小。
3、3、在子查詢中慎重使用IN或者NOT IN語句,使用where (NOT) exists的效果要好的多。
4、4、慎重使用視圖的聯合查詢,尤其是比較復雜的視圖之間的聯合查詢。一般對視圖的查詢最好都分解為對數據表的直接查詢效果要好一些。
5、5、可以在參數文件中設置SHARED_POOL_RESERVED_SIZE參數,這個參數在SGA共享池中保留一個連續的內存空間,連續的內存空間有益於存放大的SQL程序包。
6、6、ORACLE公司提供的DBMS_SHARED_POOL程序可以幫助程序員將某些經常使用的存儲過程「釘」在SQL區中而不被換出內存,程序員對於經常使用並且佔用內存很多的存儲過程「釘」到內存中有利於提高最終用戶的響應時間。
CPU參數的調整
CPU是伺服器的一項重要資源,伺服器良好的工作狀態是在工作高峰時CPU的使用率在90%以上。如果空閑時間CPU使用率就在90%以上,說明伺服器缺乏CPU資源,如果工作高峰時CPU使用率仍然很低,說明伺服器CPU資源還比較富餘。
使用操作相同命令可以看到CPU的使用情況,一般UNIX操作系統的伺服器,可以使用sar –u命令查看CPU的使用率,NT操作系統的伺服器,可以使用NT的性能管理器來查看CPU的使用率。
資料庫管理員可以通過查看v$sysstat數據字典中「CPU used by this session」統計項得知ORACLE資料庫使用的CPU時間,查看「OS User level CPU time」統計項得知操作系統用戶態下的CPU時間,查看「OS System call CPU time」統計項得知操作系統系統態下的CPU時間,操作系統總的CPU時間就是用戶態和系統態時間之和,如果ORACLE資料庫使用的CPU時間占操作系統總的CPU時間90%以上,說明伺服器CPU基本上被ORACLE資料庫使用著,這是合理,反之,說明伺服器CPU被其它程序佔用過多,ORACLE資料庫無法得到更多的CPU時間。
資料庫管理員還可以通過查看v$sesstat數據字典來獲得當前連接ORACLE資料庫各個會話佔用的CPU時間,從而得知什麼會話耗用伺服器CPU比較多。
出現CPU資源不足的情況是很多的:SQL語句的重解析、低效率的SQL語句、鎖沖突都會引起CPU資源不足。
1、資料庫管理員可以執行下述語句來查看SQL語句的解析情況:
SELECT * FROM V$SYSSTAT
WHERE NAME IN
('parse time cpu', 'parse time elapsed', 'parse count (hard)');
這里parse time cpu是系統服務時間,parse time elapsed是響應時間,用戶等待時間
waite time = parse time elapsed – parse time cpu
由此可以得到用戶SQL語句平均解析等待時間=waite time / parse count。這個平均等待時間應該接近於0,如果平均解析等待時間過長,資料庫管理員可以通過下述語句
SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS FROM V$SQLAREA
ORDER BY PARSE_CALLS;
來發現是什麼SQL語句解析效率比較低。程序員可以優化這些語句,或者增加ORACLE參數SESSION_CACHED_CURSORS的值。
2、資料庫管理員還可以通過下述語句:
SELECT BUFFER_GETS, EXECUTIONS, SQL_TEXT FROM V$SQLAREA;
查看低效率的SQL語句,優化這些語句也有助於提高CPU的利用率。
3、3、資料庫管理員可以通過v$system_event數據字典中的「latch free」統計項查看ORACLE資料庫的沖突情況,如果沒有沖突的話,latch free查詢出來沒有結果。如果沖突太大的話,資料庫管理員可以降低spin_count參數值,來消除高的CPU使用率。
內存參數的調整
內存參數的調整主要是指ORACLE資料庫的系統全局區(SGA)的調整。SGA主要由三部分構成:共享池、數據緩沖區、日誌緩沖區。
1、 1、 共享池由兩部分構成:共享SQL區和數據字典緩沖區,共享SQL區是存放用戶SQL命令的區域,數據字典緩沖區存放資料庫運行的動態信息。資料庫管理員通過執行下述語句:
select (sum(pins - reloads)) / sum(pins) "Lib Cache" from v$librarycache;
來查看共享SQL區的使用率。這個使用率應該在90%以上,否則需要增加共享池的大小。資料庫管理員還可以執行下述語句:
select (sum(gets - getmisses - usage - fixed)) / sum(gets) "Row Cache" from v$rowcache;
查看數據字典緩沖區的使用率,這個使用率也應該在90%以上,否則需要增加共享池的大小。
2、 2、 數據緩沖區。資料庫管理員可以通過下述語句:
SELECT name, value FROM v$sysstat WHERE name IN ('db block gets', 'consistent gets','physical reads');
來查看資料庫數據緩沖區的使用情況。查詢出來的結果可以計算出來數據緩沖區的使用命中率=1 - ( physical reads / (db block gets + consistent gets) )。
這個命中率應該在90%以上,否則需要增加數據緩沖區的大小。
3、 3、 日誌緩沖區。資料庫管理員可以通過執行下述語句:
select name,value from v$sysstat where name in ('redo entries','redo log space requests');查看日誌緩沖區的使用情況。查詢出的結果可以計算出日誌緩沖區的申請失敗率:
申請失敗率=requests/entries,申請失敗率應該接近於0,否則說明日誌緩沖區開設太小,需要增加ORACLE資料庫的日誌緩沖區。