A. 大數據開發需要掌握哪些技術
大數據開發需要掌握java,Scala,Python等技術。
首先在學習真正的大數據技術之前,要熟練掌握一門編程語言,比如java等,在學習大數據期間還會接觸到其他的編程語言,比如說Scala、Python等編程語言,不過這些語言都是相通的,掌握了一門編程語言其他的就很好學習了。
B. 大數據的核心技術有哪些
大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據版預處理、分布權式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等。
1、數據採集與預處理:
Flume NG實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據;
Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。
2、數據存儲:
Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。
HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。
3、數據清洗:MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算
4、數據查詢分析:
Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。
Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。
5、數據可視化:對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。
C. 大數據技術的發展方向如何
1、在大數據採集與預處理方向
這方向最常見的問題是數據的多源和多樣性,導致數據的質量存在差異,嚴重影響到數據的可用性。針對這些問題,目前很多公司已經推出了多種數據清洗和質量控制工具(如IBM的Data Stage)。
2、在大數據存儲與管理方向
這方向最常見的挑戰是存儲規模大,存儲管理復雜,需要兼顧結構化、非結構化和半結構化的數據。分布式文件系統和分布式資料庫相關技術的發展正在有效的解決這些方面的問題。在大數據存儲和管理方向,尤其值得我們關注的是大數據索引和查詢技術、實時及流式大數據存儲與處理的發展。
3、大數據計算模式方向
由於大數據處理多樣性的需求,目前出現了多種典型的計算模式,包括大數據查詢分析計算(如Hive)、批處理計算(如Hadoop MapRece)、流式計算(如Storm)、迭代計算(如HaLoop)、圖計算(如Pregel)和內存計算(如Hana),而這些計算模式的混合計算模式將成為滿足多樣性大數據處理和應用需求的有效手段。
4、大數據分析與挖掘方向
在數據量迅速膨脹的同時,還要進行深度的數據深度分析和挖掘,並且對自動化分析要求越來越高,越來越多的大數據數據分析工具和產品應運而生,如用於大數據挖掘的R Hadoop版、基於MapRece開發的數據挖掘演算法等。
5、大數據可視化分析方向
通過可視化方式來幫助人們探索和解釋復雜的數據,有利於決策者挖掘數據的商業價值,進而有助於大數據的發展。很多公司也在開展相應的研究,試圖把可視化引入其不同的數據分析和展示的產品中,各種可能相關的商品也將會不斷出現。可視化工具Tabealu的成功上市反映了大數據可視化的需求。
關於大數據技術的發展方向如何,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
D. 想轉行到大數據開發需要學習哪些技術
如果要學習大數據,不管你是零基礎,還是有一定的基礎,都是要懂至少一種計算機編程專語言,因屬為大數據的開發離不開編程語言,不僅要懂,還要精通!但這門編程語言不一定是java。
比如說,如果你主攻Hadoop開發方向,是一定要學習java的,因為Hadoop是由java來開發的。
如果你想要主攻spark方向,是要學習Scala語言的,每個方向要求的編程語言是不同的。
如果你是想要走數據分析方向,那你就要從python編程語言下手,這個也是看自己未來的需求的。
大數據是需要一定的編程基礎的,但具體學習哪一門編程,自己可以選擇的。其實只要學會了一門編程語言,其他編程語言也是不在話下的。
E. 從業大數據方向,需要掌握哪些技能,具體學習路線是什麼
你好,大數據學習路線有8個階段的內容,你可以按照順序學習,祝你早日學有所成!
大數據學習路線
F. 常用的大數據技術有哪些
大數據技術包括數據收集、數據存取、基礎架構、數據處理、統計分析、數據挖掘、模型預測、結果呈現。
1、數據收集:在大數據的生命周期中,數據採集處於第一個環節。根據MapRece產生數據的應用系統分類,大數據的採集主要有4種來源:管理信息系統、Web信息系統、物理信息系統、科學實驗系統。
2、數據存取:大數據的存去採用不同的技術路線,大致可以分為3類。第1類主要面對的是大規模的結構化數據。第2類主要面對的是半結構化和非結構化數據。第3類面對的是結構化和非結構化混合的大數據,
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:對於採集到的不同的數據集,可能存在不同的結構和模式,如文件、XML 樹、關系表等,表現為數據的異構性。對多個異構的數據集,需要做進一步集成處理或整合處理,將來自不同數據集的數據收集、整理、清洗、轉換後,生成到一個新的數據集,為後續查詢和分析處理提供統一的數據視圖。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:目前,還需要改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
G. 大數據學習路線是什麼
主要分為 7 個階段:入門知識 → Java 基礎 → Scala 基礎 → Hadoop 技術模塊 → Hadoop 項目實戰 → Spark 技術模塊 → 大數據項目實戰。
階段一:學習入門知識
這一部分主要針對的是新手,在學習之前需要先掌握基本的資料庫知識。MySQL 是一個 DBMS(資料庫管理系統),是最流行的關系型資料庫管理系統(關系資料庫,是建立在關系資料庫模型基礎上的資料庫,藉助於集合代數等概念和方法來處理資料庫中的數據)。
MongoDB 是 IT 行業非常流行的一種非關系型資料庫(NoSQL),其靈活的數據存儲方式備受當前 IT 從業人員的青睞。
而 Redis 是一個開源、支持網路、基於內存、鍵值對存儲資料庫。兩者都非常有必要了解。
1、Linux 基礎入門(新版)
2、Vim編輯器
3、Git 實戰教程
4、MySQL 基礎課程
5、MongoDB 基礎教程
6、Redis基礎教程
階段二:Java基礎
Java 是目前使用最為廣泛的編程語言,它具有的眾多特性,特別適合作為大數據應用的開發語言。
Java 語言具有功能強大和簡單易用兩個特徵,跨平台應用能力比 C、C++ 更易用,更容易上手。同時還具有簡單性、面向對象、分布式、健壯性、安全性、平台獨立與可移植性、多線程、動態性等特點。最重要的一點是 Hadoop 是用 Java 編寫的。
1、Java編程語言(新版)
2、Java進階之設計模式
3、J2SE核心開發實戰
4、JDK 核心 API
5、JDBC 入門教程
6、Java 8 新特性指南
階段三:Scala基礎
Scala 是一種多範式的編程語言,其設計的初衷是要集成面向對象編程和函數式編程的各種特性。由於 Scala 運行於 Java 平台(Java 虛擬機),並兼容現有的Java 程序,所以 Scala 可以和大數據相關的基於 JVM 的系統很好的集成。
1、Scala 開發教程
2、Scala 專題教程 - Case Class和模式匹配
3、Scala 專題教程 - 隱式變換和隱式參數
4、Scala 專題教程 - 抽象成員
5、Scala 專題教程 - Extractor
6、Scala 開發二十四點游戲
階段四:Hadoop技術模塊
Hadoop 是一款支持數據密集型分布式應用並以 Apache 2.0 許可協議發布的開源軟體框架,它能搭建大型數據倉庫,PB 級別數據的存儲、處理、分析、統計等業務。編程語言你可以選,但 Hadoop 一定是大數據必學內容。
1、Hadoop入門進階課程
2、Hadoop部署及管理
3、HBASE 教程
4、Hadoop 分布式文件系統--導入和導出數據
5、使用 Flume 收集數據
階段五:Hadoop項目實戰
當然,學完理論就要進行動手實戰了,Hadoop 項目實戰可以幫助加深對內容的理解,並鍛煉動手能力。
1、Hadoop 圖處理--《hadoop應用框架》
階段六:Spark技術模塊
Spark 和 Hadoop 都是大數據框架。Hadoop 提供了 Spark 所沒有的功能特性,比如分布式文件系統,而 Spark 為需要它的那些數據集提供了實時內存處理。所以學習 Spark 也非常必要。
1、Spark
2、x 快速入門教程
2、Spark 大數據動手實驗
3、Spark 基礎之 GraphX 圖計算框架學習
4、Spark 基礎之 DataFrame 基本概念學習
5、Spark 基礎之 DataFrame 高階應用技巧
6、Spark 基礎之 Streaming 快速上手
7、Spark 基礎之 SQL 快速上手
8、Spark 基礎之使用機器學習庫 MLlib
9、Spark 基礎之 SparkR 快速上手
10、流式實時日誌分析系統--《Spark 最佳實踐》
11、使用 Spark 和 D3.js 分析航班大數據
階段七:大數據項目實戰
最後階段提供了大數據實戰項目,這是對常用技能的系統運用,例如使用常用的機器學習進行建模、分析和運算,這是成為大數據工程師過程中的重要一步。
1、Ebay 在線拍賣數據分析
2、流式實時日誌分析系統--《Spark 最佳實踐》
3、大數據帶你挖掘打車的秘籍
4、Twitter數據情感分析
5、使用 Spark 進行流量日誌分析
6、Spark流式計算電商商品關注度
7、Spark的模式挖掘-FPGrowth演算法
(7)大數據開發的技術路線擴展閱讀:
大數據技術的具體內容:
分布式存儲計算架構(強烈推薦:Hadoop)
分布式程序設計(包含:Apache Pig或者Hive)
分布式文件系統(比如:Google GFS)
多種存儲模型,主要包含文檔,圖,鍵值,時間序列這幾種存儲模型(比如:BigTable,Apollo,DynamoDB等)
數據收集架構(比如:Kinesis,Kafla)
集成開發環境(比如:R-Studio)
程序開發輔助工具(比如:大量的第三方開發輔助工具)
調度協調架構工具(比如:Apache Aurora)
機器學習(常用的有Apache Mahout 或 H2O)
託管管理(比如:Apache Hadoop Benchmarking)
安全管理(常用的有Gateway)
大數據系統部署(可以看下Apache Ambari)
搜索引擎架構(學習或者企業都建議使用Lucene搜索引擎)
多種資料庫的演變(MySQL/Memcached)
商業智能(大力推薦:Jaspersoft)
數據可視化(這個工具就很多了,可以根據實際需要來選擇)
大數據處理演算法(10大經典演算法)
H. 大數據存儲與應用特點及技術路線分析
大數據存儲與應用特點及技術路線分析
大數據時代,數據呈爆炸式增長。從存儲服務的發展趨勢來看,一方面,對數據的存儲量的需求越來越大;另一方面,對數據的有效管理提出了更高的要求。大數據對存儲設備的容量、讀寫性能、可靠性、擴展性等都提出了更高的要求,需要充分考慮功能集成度、數據安全性、數據穩定性,系統可擴展性、性能及成本各方面因素。
大數據存儲與應用的特點分析
「大數據」是由數量巨大、結構復雜、類型眾多數據構成的數據集合,是基於雲計算的數據處理與應用模式,通過數據的整合共享,交叉復用形成的智力資源和知識服務能力。其常見特點可以概括為3V:Volume、Velocity、Variety(規模大、速度快、多樣性)。
大數據具有數據規模大(Volume)且增長速度快的特性,其數據規模已經從PB級別增長到EB級別,並且仍在不斷地根據實際應用的需求和企業的再發展繼續擴容,飛速向著ZB(ZETA-BYTE)的規模進軍。以國內最大的電子商務企業淘寶為例,根據淘寶網的數據顯示,至2011年底,淘寶網最高單日獨立用戶訪問量超過1.2億人,比2010年同期增長120%,注冊用戶數量超過4億,在線商品數量達到8億,頁面瀏覽量達到20億規模,淘寶網每天產生4億條產品信息,每天活躍數據量已經超過50TB.所以大數據的存儲或者處理系統不僅能夠滿足當前數據規模需求,更需要有很強的可擴展性以滿足快速增長的需求。
(1)大數據的存儲及處理不僅在於規模之大,更加要求其傳輸及處理的響應速度快(Velocity)。
相對於以往較小規模的數據處理,在數據中心處理大規模數據時,需要服務集群有很高的吞吐量才能夠讓巨量的數據在應用開發人員「可接受」的時間內完成任務。這不僅是對於各種應用層面的計算性能要求,更加是對大數據存儲管理系統的讀寫吞吐量的要求。例如個人用戶在網站選購自己感興趣的貨物,網站則根據用戶的購買或者瀏覽網頁行為實時進行相關廣告的推薦,這需要應用的實時反饋;又例如電子商務網站的數據分析師根據購物者在當季搜索較為熱門的關鍵詞,為商家提供推薦的貨物關鍵字,面對每日上億的訪問記錄要求機器學習演算法在幾天內給出較為准確的推薦,否則就丟失了其失效性;更或者是計程車行駛在城市的道路上,通過GPS反饋的信息及監控設備實時路況信息,大數據處理系統需要不斷地給出較為便捷路徑的選擇。這些都要求大數據的應用層可以最快的速度,最高的帶寬從存儲介質中獲得相關海量的數據。另外一方面,海量數據存儲管理系統與傳統的資料庫管理系統,或者基於磁帶的備份系統之間也在發生數據交換,雖然這種交換實時性不高可以離線完成,但是由於數據規模的龐大,較低的數據傳輸帶寬也會降低數據傳輸的效率,而造成數據遷移瓶頸。因此大數據的存儲與處理的速度或是帶寬是其性能上的重要指標。
(2)大數據由於其來源的不同,具有數據多樣性的特點。
所謂多樣性,一是指數據結構化程度,二是指存儲格式,三是存儲介質多樣性。對於傳統的資料庫,其存儲的數據都是結構化數據,格式規整,相反大數據來源於日誌、歷史數據、用戶行為記錄等等,有的是結構化數據,而更多的是半結構化或者非結構化數據,這也正是傳統資料庫存儲技術無法適應大數據存儲的重要原因之一。所謂存儲格式,也正是由於其數據來源不同,應用演算法繁多,數據結構化程度不同,其格式也多種多樣。例如有的是以文本文件格式存儲,有的則是網頁文件,有的是一些被序列化後的比特流文件等等。所謂存儲介質多樣性是指硬體的兼容,大數據應用需要滿足不同的響應速度需求,因此其數據管理提倡分層管理機制,例如較為實時或者流數據的響應可以直接從內存或者Flash(SSD)中存取,而離線的批處理可以建立在帶有多塊磁碟的存儲伺服器上,有的可以存放在傳統的SAN或者NAS網路存儲設備上,而備份數據甚至可以存放在磁帶機上。因而大數據的存儲或者處理系統必須對多種數據及軟硬體平台有較好的兼容性來適應各種應用演算法或者數據提取轉換與載入(ETL)。
大數據存儲技術路線最典型的共有三種:
第一種是採用MPP架構的新型資料庫集群,重點面向行業大數據,採用Shared Nothing架構,通過列存儲、粗粒度索引等多項大數據處理技術,再結合MPP架構高效的分布式計算模式,完成對分析類應用的支撐,運行環境多為低成本 PC Server,具有高性能和高擴展性的特點,在企業分析類應用領域獲得極其廣泛的應用。
這類MPP產品可以有效支撐PB級別的結構化數據分析,這是傳統資料庫技術無法勝任的。對於企業新一代的數據倉庫和結構化數據分析,目前最佳選擇是MPP資料庫。
第二種是基於Hadoop的技術擴展和封裝,圍繞Hadoop衍生出相關的大數據技術,應對傳統關系型資料庫較難處理的數據和場景,例如針對非結構化數據的存儲和計算等,充分利用Hadoop開源的優勢,伴隨相關技術的不斷進步,其應用場景也將逐步擴大,目前最為典型的應用場景就是通過擴展和封裝 Hadoop來實現對互聯網大數據存儲、分析的支撐。這裡面有幾十種NoSQL技術,也在進一步的細分。對於非結構、半結構化數據處理、復雜的ETL流程、復雜的數據挖掘和計算模型,Hadoop平台更擅長。
第三種是大數據一體機,這是一種專為大數據的分析處理而設計的軟、硬體結合的產品,由一組集成的伺服器、存儲設備、操作系統、資料庫管理系統以及為數據查詢、處理、分析用途而特別預先安裝及優化的軟體組成,高性能大數據一體機具有良好的穩定性和縱向擴展性。
以上是小編為大家分享的關於大數據存儲與應用特點及技術路線分析的相關內容,更多信息可以關注環球青藤分享更多干貨
I. 大數據開發工程師要掌握哪些技術
1. Java編程技術
Java編程技術是大數據學習的基礎,Java是一種強類型語言,擁有極高的跨平台能力,可以編寫桌面應用程序、Web應用程序、分布式系統和嵌入式系統應用程序等,是大數據工程師最喜歡的編程工具,因此,想學好大數據,掌握Java基礎是必不可少的。
2.Linux命令
對於大數據開發通常是在Linux環境下進行的,相比Linux操作系統,Windows操作系統是封閉的操作系統,開源的大數據軟體很受限制,因此,想從事大數據開發相關工作,還需掌握Linux基礎操作命令。
3. Hadoop
Hadoop是大數據開發的重要框架,其核心是HDFS和MapRece,HDFS為海量的數據提供了存儲,MapRece為海量的數據提供了計算,因此,需要重點掌握,除此之外,還需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高級管理等相關技術與操作!
4. Hive
Hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,並提供簡單的sql查詢功能,可以將sql語句轉換為MapRece任務進行運行,十分適合數據倉庫的統計分析。對於Hive需掌握其安裝、應用及高級操作等。
5. Avro與Protobuf
Avro與Protobuf均是數據序列化系統,可以提供豐富的數據結構類型,十分適合做數據存儲,還可進行不同語言之間相互通信的數據交換格式,學習大數據,需掌握其具體用法。
6.ZooKeeper
ZooKeeper是Hadoop和Hbase的重要組件,是一個為分布式應用提供一致性服務的軟體,提供的功能包括:配置維護、域名服務、分布式同步、組件服務等,在大數據開發中要掌握ZooKeeper的常用命令及功能的實現方法。
關於大數據開發工程師要掌握哪些技術,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。