⑴ 阿里雲是干什麼的
2009年9月,阿里巴巴集團在十周年慶典上宣布成立子公司「阿里雲」,該公司將專注於雲計算領域的研究和研發。「阿里雲」也成為繼阿里巴巴、淘寶、支付寶、阿里軟體、中國雅虎之後的阿里巴巴集團第八家子公司。
阿里雲服務著製造、金融、政務、交通、醫療、電信、能源等眾多領域的領軍企業,包括中國聯通、12306、中石化、中石油、飛利浦、華大基因等大型企業客戶,以及微博、知乎、錘子科技等明星互聯網公司。在天貓雙11全球狂歡節、12306春運購票等極富挑戰的應用場景中,阿里雲保持著良好的運行紀錄。
阿里雲在全球各地部署高效節能的綠色數據中心,利用清潔計算為萬物互聯的新世界提供源源不斷的能源動力,目前開服的區域包括中國(華北、華東、華南、香港)、新加坡、美國(美東、美西)、歐洲、中東、澳大利亞、日本。
⑵ 什麼是雲計算什麼是大數據二者有何聯系
雲計算的關鍵詞在於「整合」,無論你是通過現在已經很成熟的傳統的虛擬機切分型技術,還是通過google後來所使用的海量節點聚合型技術,他都是通過將海量的伺服器資源通過網路進行整合,調度分配給用戶,從而解決用戶因為存儲計算資源不足所帶來的問題。
大數據正是因為數據的爆發式增長帶來的一個新的課題內容,如何存儲如今互聯網時代所產生的海量數據,如何有效的利用分析這些數據等等。
他倆之間的關系你可以這樣來理解,雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。
(2)阿里雲計算與大數據擴展閱讀:
雲計算常與網格計算、效用計算、自主計算相混淆。
網格計算:分布式計算的一種,由一群鬆散耦合的計算機組成的一個超級虛擬計算機,常用來執行一些大型任務;
效用計算:IT資源的一種打包和計費方式,比如按照計算、存儲分別計量費用,像傳統的電力等公共設施一樣;
自主計算:具有自我管理功能的計算機系統。
事實上,許多雲計算部署依賴於計算機集群(但與網格的組成、體系結構、目的、工作方式大相徑庭),也吸收了自主計算和效用計算的特點。
被普遍接受的雲計算特點如下:
(1) 超大規模
「雲」具有相當的規模,Google雲計算已經擁有100多萬台伺服器, Amazon、IBM、微軟、Yahoo等的「雲」均擁有幾十萬台伺服器。企業私有雲一般擁有數百上千台伺服器。「雲」能賦予用戶前所未有的計算能力。
(2) 虛擬化
雲計算支持用戶在任意位置、使用各種終端獲取應用服務。所請求的資源來自「雲」,而不是固定的有形的實體。應用在「雲」中某處運行,但實際上用戶無需了解、也不用擔心應用運行的具體位置。只需要一台筆記本或者一個手機,就可以通過網路服務來實現我們需要的一切,甚至包括超級計算這樣的任務。
(3) 高可靠性
「雲」使用了數據多副本容錯、計算節點同構可互換等措施來保障服務的高可靠性,使用雲計算比使用本地計算機可靠。
(4) 通用性
雲計算不針對特定的應用,在「雲」的支撐下可以構造出千變萬化的應用,同一個「雲」可以同時支撐不同的應用運行。
(5) 高可擴展性
「雲」的規模可以動態伸縮,滿足應用和用戶規模增長的需要。
(6) 按需服務
「雲」是一個龐大的資源池,你按需購買;雲可以像自來水,電,煤氣那樣計費。
大數據特徵:
1 容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;
2 種類(Variety):數據類型的多樣性;
3 速度(Velocity):指獲得數據的速度;
4 可變性(Variability):妨礙了處理和有效地管理數據的過程。
5 真實性(Veracity):數據的質量
6 復雜性(Complexity):數據量巨大,來源多渠道
7 價值(value):合理運用大數據,以低成本創造高價值
想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
⑶ 大數據與雲計算應該怎麼學
大數據的基礎知識,科普類的,自己去買本書就行了,大數據時代這樣的書很專多屬介紹的大數據的。
另外大數據的技術,如數據採集,數據存取,基礎架構,數據處理,統計分析,數據挖掘,模型預測,結果呈現。
當然一些大數據的一些基礎知識,比如java和hadoop等等,這個基本得自學。大學裡面最接近這些的也就是計算機類專業。
雲計算的話,需要學習的知識應該包括但不限於:1、網路通信知識,包括互聯網基礎建設相關的所有知識;2、虛擬化知識,應該了解硬體運行原理以及虛擬化實現技術;3、資料庫技術;4、網路存儲技術;5、網路信息安全技術,最起碼得明白什麼是iso 17799;6、電子商務;7、容災及備份技術;8、JAVA編程技術;9、分布式軟體系統架構。。。
⑷ 雲計算大數據培訓需要學習什麼
雲計算大數據培訓需要學習的內容:
基礎階段:Linux、Docker、KVM、MySQL基礎專、Oracle基礎、MongoDB、redis。
hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、屬歷史,HDFS工作原理,YARN介紹及組件介紹。
大數據存儲階段:hbase、hive、sqoop。
大數據架構設計階段:Flume分布式、Zookeeper、Kafka。
大數據實時計算階段:Mahout、Spark、storm。
大數據數據採集階段:Python、Scala。
大數據商業實戰階段:實操企業大數據處理業務場景,分析需求、解決方案實施,綜合技術實戰應用。
學習大數據不是一朝一夕的事情,想要學好大數據可以看口扣丁學堂的視頻,希望對你有幫助。
⑸ 阿里雲做雲計算那麼艱難,為什麼後面其他公司很輕松就擁有了雲計算
因為阿里雲和其他雲有本質不同,但都是現實選擇。阿里雲,阿里巴巴集團旗下雲計算品牌,全球領先的雲計算技術和服務提供商。創立於2009年,在杭州、北京、矽谷等地設有研發中心和運營機構。2010年,阿里雲對外開放其在雲計算領域的技術服務能力。用戶通過阿里雲,用互聯網的方式即可遠程獲取海量計算、存儲資源和大數據處理能力。截至2014年6月,阿里雲服務的客戶數超過140萬,遍布互聯網、移動APP、音視頻、游戲、電商等各個領域。根據IDC調研報告,阿里雲是國內最大的公共雲計算服務提供商。基於新一代的雲平台遠程部署系統業務,已經成為互聯網公司和開發者的首選。2013年以來,對風險最為敏感的金融機構也紛紛開始上雲。阿里雲專門搭建了面向銀行、保險公司、券商的金融雲。隨著雲計算的安全性、穩定性不斷地被實踐證明,越來越多的政府機構、央企、大型民營企業紛紛開始擁抱雲計算和大數據。2014年12月,12306網站75%的余票查詢系統遷移至阿里雲計算平台,以分擔春運流量洪峰帶來的壓力。
兩種雲都是現實選擇。兩種雲的現實選擇。阿里是要站在技術制高點,華為、騰訊看到雲計算的變現潛力,才紛紛入局。說實話,OpenStack不太適應公有雲,有版本混亂、功能不全、兼容協調不足等問題,但是從技術角度實現商業化、建設生態、滿足需求,是最快捷、最直接的選擇。從零起步,華為、騰訊時間耗不起、市場等不起,OpenStack很難用,但就像一個二手車,改造一下先開起來,服務自己的戰略。拿來主義有硬傷。基於OpenStack的雲,缺乏核心技術支撐,難擴展、版本多、分支雜、穩定差、故障多,跨廠商遷移升級比較困難,軟體模塊出自多家,缺乏統一規劃和一致性,很多項目都成了“爛尾”。思科和 HP也拋棄OpenStack,退出公有雲或者自主研發。而華為雲、騰訊雲還是基於OpenStack建設公有雲,未來挑戰和機遇都很大。
⑹ 從IT到DT 阿里大數據背後的商業秘密
從IT到DT:阿里大數據背後的商業秘密
空氣污染究竟在多大程度上影響了人們的網購行為?有多少比重的線上消費屬於新增消費?為什麼中國的「電商百佳縣」中浙江有41個而廣東只有4個?
這些電商的秘密就隱藏在阿里巴巴商業生態的「大數據」中。
「未來製造業的最大能源不是石油,而是數據。」阿里巴巴董事局主席馬雲如此形容「數據」的重要意義。
在他看來,阿里巴巴本質上是一家數據公司,做淘寶的目的是為了獲得零售的數據和製造業的數據;做螞蟻金服的目的是建立信用體系;做物流不是為了送包裹,而是這些數據合在一起,「電腦會比你更了解你」。與此同時,產業的發展也正在從IT時代走向以大數據技術為代表的DT時代。
而在阿里巴巴內部,由電子商務、互聯網金融、電商物流、雲計算與大數據等構成的阿里巴巴互聯網商業生態圈,也正是阿里研究院所紮根的「土壤」。
具體而言,阿里巴巴平台的所有海量數據來自於數百萬充滿活力的小微企業、個人創業者以及數億消費者,阿里研究院通過對他們的商務活動和消費行為等進行研究分析,從某種程度上可以反映出一個地方乃至宏觀經濟的結構和發展趨勢。
而隨著阿里巴巴生態體系的不斷拓展和延伸,阿里巴巴的數據資源一定程度上將能夠有效補充傳統經濟指標在衡量經濟冷暖方面存在的滯後性,幫助政府更全面、及時、准確地掌握微觀經濟的運行情況。
從IT到DT
不同於一些企業以技術研究為導向的研究院,阿里研究院副院長宋斐告訴《第一財經日報》記者,阿里研究院定位於面向研究者和智庫機構,主要的研究方向包括未來研究(如信息經濟)、微觀層面上的模式創新研究(如C2B模式、雲端制組織模式)、中觀層面上的產業互聯網化研究(如電商物流、互聯網金融、農村電商等)、宏觀層面上新經濟與傳統經濟的互動研究(如互聯網與就業、消費、進出口等)、互聯網治理研究(如網規、電商立法)等。
具體到數據領域,就是在阿里巴巴互聯網商業生態基礎上,從企業數據、就業數據、消費數據、商品數據和區域數據等入手,通過大數據挖掘和建模,開發若干數據產品與服務。
例如,將互聯網數據與宏觀經濟統計標准對接的互聯網經濟數據統計標准,包括了中國城市分級標准;網路消費結構分類標准;網上商品與服務分類標准等。
而按經濟主題劃分的經濟信息統計資料庫則包括商品信息統計資料庫;網購用戶消費信息統計資料庫;小企業與就業統計資料庫;區域經濟統計資料庫。
還有反映電商經濟發展的「晴雨表」——阿里巴巴互聯網經濟系列指數。其中包括反映網民消費意願的阿里巴巴消費者信心指數aCCI、反映網購商品價格走勢的阿里巴巴全網網購價格指數aSPI和固定籃子的網購核心價格指數aSPI-core、反映網店經營狀態的阿里巴巴小企業活躍度指數aBAI、反映區域電子商務發展水平的阿里巴巴電子商務發展指數aEDI等等。其中,現有aSPI按月呈報給國家統計局。
而面向地方政府決策與分析部門的數據產品「阿里經濟雲圖」,則將分階段地推出地方經濟總覽、全景分析、監測預警以及知識服務等功能。宋斐告訴記者,其數據可覆蓋全國各省、市、區縣各級行政單位,地方政府用戶經過授權後,可以通過阿里經濟雲圖看到當地在阿里巴巴平台上產生的電子商務交易規模、結構特徵及發展趨勢。
「藉助數據可視化和多維分析功能,用戶可以對當地優勢產業進行挖掘、對消費趨勢與結構變動進行監測、與周邊地區進行對比等等。」宋斐表示,該產品未來還可以提供API服務模式,以整合更多的宏觀經濟數據和社會公開數據,為當地經濟全貌進行畫像,給大數據時代的政府決策體系帶來新的視角和工具。
數據會「說話」
對於如何利用「大數據」,馬雲在公司內部演講中曾提到:「未來幾年內,要把一切業務數據化,一切數據業務化。」
其中,後半句話可以理解為,讓阿里巴巴各項業務所產生、積累的大數據來豐富阿里的生態,同時讓生態蘊含的數據產生新的價值,再反哺生態,這是一個相輔相成的循環邏輯。
宋斐對記者舉例稱,螞蟻金服旗下的芝麻信用已獲得人民銀行個人徵信牌照批准籌備,未來將通過分析大量的網路交易及行為數據,如用戶信用歷史、行為偏好、履約能力、身份特質、人脈等信息,對用戶進行信用評估,這些信用評估可以幫助互聯網金融企業對用戶的還款意願及還款能力做出結論,繼而為用戶提供快速授信及現金分期服務。本質上來說,「芝麻信用」是一套徵信系統,該系統收集來自政府、金融系統的數據,還會充分分析用戶在淘寶、支付寶等平台的行為記錄。
再如,對於如火如荼的農村電商領域,阿里研究院從2010年就已開始對「沙集模式」個案進行研究,後續一系列基於數據和案例調研所驅動的農村電商研究成果,對於地方政府科學決策,推動當地農村電子商務發展、創造就業和發展地方經濟起到了助力作用。到2014年底,全國已經涌現了212個淘寶村,而阿里巴巴也在這一年啟動千縣萬村計劃,將在三至五年內投資100億元,在農村建立起電子商務服務體系。
除了通過數據分析去助力業務外,宋斐告訴記者,有時候大數據報告可能會與傳統的印象結論差異很大。
以區域電子商務為例,在阿里研究院發布的2014年中國電商百強縣排行榜中,浙江有41個縣入圍,福建有16個,而廣東只有4個,這個結果與傳統的印象相差比較大。而事實上,這是因為浙江和廣東兩省電商發展在地理分布、產業結構等方面的明顯不同而帶來的。
再如,外界常常認為網路零售替代了線下零售,但事實上,麥肯錫《中國網路零售革命:線上購物助推經濟增長》的研究報告,通過借鑒阿里研究中心(阿里研究院前身)和淘寶網UED用戶研究團隊的大量報告與數據,最後發現:「約60%的線上消費確實取代了線下零售;但剩餘的40%則是如果沒有網路零售就不會產生的新增消費。」
「這一研究成果,有助於社會各界准確認識網路零售與線下零售的關系,共同探索和建設良好的商業發展環境。」
⑺ 大數據雲計算好不好學習
隨著互聯網的不斷發展,無論是大數據技術還是雲計算技術都得到了廣泛的應用,而本文我們就通過案例分析來了解一下,大數據與雲計算技術的關系分析。
1.什麼是雲計算
為便於表述,我把傳統的集中化的雲計算系統(包括計算和存儲)稱為雲計算中心,相對而言,邊緣計算節點可並非一定部署在客戶側或者終端。從概念上講,將數據的存儲和計算部署在雲計算中央節點之外的,都是邊緣計算的范疇,因此數據採集點(如探頭)、集成處理設備(如自動駕駛汽車)、屬地部署的系統(如企業的內部IT系統)或數據中心(如根據安全要求建立的本地數據存儲系統)等,都可以作為邊緣計算的節點。
邊緣計算節點與雲計算中心是一個邏輯的整體。邊緣計算節點可以在雲計算中心的統一管控下,對數據或者部分數據進行處理和存儲,用以節約資源,降低成本,以及提高效率和業務連續性,滿足數據本地存儲與處理等安全合規的要求。
2.雲計算的應用過程
一是邊緣計算節點進行數據的初步處理,處理程序相對固定,主要目的是降低傳輸成本,提高運營效率。在本地將圖像等非結構化數據轉化為結構化信息,甚至引入人工智慧等技術,將很多工作都部署在本地,既可以大大減少對傳輸資源的依賴和消耗,還能大幅提高本地的數據響應速度。
二是由雲計算中心將演算法下發到邊緣計算節點,由邊緣技術節點提供算力對本地的數據進行處理,結果也存放在本地。這樣主要是滿足安全管控隱私保護方面的要求,同時又能夠發揮雲服務快速迭代刷新的優勢,確保數據處理的規則可以及時更新。
⑻ 大數據、雲計算技術的發展對網路營銷有何影響請舉例說明。
?請舉例說明。