Ⅰ 什麼是大數據,大數據時代有哪些趨勢
行業主要上市公司:易華錄(300212)、美亞柏科(300188)、海量數據(603138)、同有科技(300302)、海康威視(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科創信息(300730)、神州泰岳(300002)、藍色游標(300058)等
本文核心數據:大數據產業鏈、產業規模、應用市場結構、競爭格局、發展前景預測等
產業概況
1、定義:大數據產業覆蓋范圍廣
根據中國信通院發布的《大數據白皮書》,大數據產業是以數據及數據所蘊含的信息價值為核心生產要素,通過數據技術、數據產品、數據服務等形式,使數據與信息價值在各行業經濟活動中得到充分釋放的賦能型產業。不同機構對大數據的定義也有所不同,具體如下:
2、產業鏈剖析:大數據產業鏈龐大
大數據產業鏈覆蓋范圍廣,上游是基礎支撐層,主要包括網路設備、計算機設備、存儲設備等硬體供應,此外,相關雲計算資源管理平台、大數據平台建設也屬於產業鏈上游;
大數據產業中游立足海量數據資源,圍繞各類應用和市場需求,提供輔助性的服務,包括數據交易、數據資產管理、數據採集、數據加工分析、數據安全,以及基於數據的IT運維等;
大數據產業下游則是大數據應用市場,隨著我國大數據研究技術水平的不斷提升,目前,我國大數據已廣泛應用於政務、工業、金融、交通、電信和空間地理等行業。
大數據產業上游基礎設施具體包括IT設備、電源設備、基礎運營商及其他設備,相關代表企業華為、中興通訊、艾默生、三大運營商等。
中游大數據領域可以細分為數據中心、大數據分析、大數據交易與大數據安全等子行業,相關代表企業包括寶信軟體、數據港、久其軟體、拓爾思、上海數據交易中心、貴陽大數據交易所與華雲數據等。
在下游應用市場,我國大數據應用范圍正在快速向各行各業延伸,除發展較早的政務大數據、交通大數據外,在工業、金融、健康醫療等眾多領域大數據應用均初見成效。
產業發展歷程:十年來大數據產業高速增長,信息智能化程度得到顯著提升
我國大數據產業布局相對較早,2011年,工信部就把信息處理技術作為四項關鍵技術創新工程之一,為大數據產業發展奠定了一定的政策基礎。自2014年起,「大數據」首次被寫進我國政府工作報告,大數據產業上升至國家戰略層面,此後,國家大數據綜合試驗區逐漸建立起來,相關政策與標准體系不斷被完善,到2020年,我國大數據解決方案已經發展成熟,信息社會智能化程度得到顯著提升。
產業政策背景:優化升級數字基礎設施,鼓勵大數據產業發展
2014年,大數據首次寫入政府工作報告,大數據逐漸成為各級政府關注的熱點,政府數據開放共享、數據流通與交易、利用大數據保障和改善民生等概念深入人心。此後國家相關部門出台了一系列政策,鼓勵大數據產業發展。
當前,隨著5G、雲計算、人工智慧等新一代信息技術快速發展,信息技術與傳統產業加速融合,數字經濟蓬勃發展,數據中心作為各個行業信息系統運行的物理載體,已成為經濟社會運行不可或缺的關鍵基礎設施,在數字經濟發展中扮演至關重要的角色。數據中心作為大數據產業重要的基礎設施,其快速發展極大程度地推動了大數據產業的進步。在2021年3月發布的「十四五」規劃中,大數據標准體系的完善成為發展重點。
產業發展現狀
1、行業整體情況:大數據產業規模維持高速增長 主要應用於金融和政府領域
——大數據產業規模:2021年超過800億元
近年來我國大數據行業取得快速發展,賽迪CCID統計,我國大數據市場規模由2019年的619.7億元增長至2021年的863.1億元,復合年增長率達到18.0%,大數據市場規模包含了大數據相關硬體、軟體、服務市場收入。
——大數據市場結構:產業整體以大數據服務為主,應用領域以金融和政府領域為主
從產業結構來看,目前,我國的大數據產業進入高質量發展階段,大數據軟體和大數據服務的需求開始不斷提升,大數據硬體佔比有所下降但仍占據主導地位,
CCID統計,2021年我國大數據市場結構中,大數據硬體、大數據軟體和大數據服務的市場佔比分別為40.5%、25.7%和33.8%。近幾年大數據硬體的佔比在逐漸下降,大數據軟體和大數據服務的佔比在逐步提高。未來我國大數據軟體和服務市場相比硬體市場將呈現更好的發展態勢。
從應用領域來看,大數據分析產品及服務已經從最早的為電信領域客戶提供經營分析、為銀行領域客戶提供風控管理等輔助性經營決策,發展到目前的為金融、電信、政府、互聯網、工業、健康醫療、電力等多個行業領域客戶提供預測性分析、自主與持續性分析等,以實現企業決策與行動最優化。大數據分析產品及服務應用已經十分廣泛,但由於各下游領域業務特點的不同,決定了其對大數據分析產品及服務的具體需求存在一定差異。
CCID統計,2021年我國大數據分析市場下遊行業中,金融、政府、電信和互聯網位居應用領域前四名,市場佔比分別為19.1%、16.5%、15.2%和13.9%,合計超過60%;其他重點應用領域主要包括健康醫療、交通運輸、工業、電力等。
2、細分市場一:金融大數據
——金融大數據需求:金融業務規模不斷擴大,帶動大數據需求提升
從金融領域需求來看,近年來,中國金融領域業務規模不斷擴大,其中中國銀行業金融機構不斷積極擁抱金融科技,推動數字化轉型,整體行業規模擴大;保險業和證券業的收入也隨著市場經濟的發展而提升。
近年來,隨著新一代信息技術加速突破應用,以移動金融、互聯網金融、智能金融等為代表的金融新業態、新應用、新模式正蓬勃興起,我國金融業開始步入一個與信息社會和數字經濟相對應的數字化新時代,金融數字化轉型成為金融行業轉型發展的焦點。2019年,人民銀行印發《金融科技發展規劃(2019-2021年)》,構建起金融科技「四梁八柱」的頂層設計,明確了金融科技發展方向和任務、路徑和邊界。2022年1月,人民銀行再次發布《金融科技發展規劃(2022-2025年)》明確提出,從戰略、組織、管理、目標、路徑以及考評等方面將金融數字化打造成金融機構的「第二發展曲線」。隨著金融業務規模不斷擴大,加之新一代信息技術的發展,大數據在金融領域的需求將不斷提升。
——金融大數據應用場景
過去幾年,金融大數據帶來了重大的技術創新,為行業提供了便捷、個性化和安全的解決方案。目前,中國金融大數據典型的應用場景包括股票洞察、欺詐檢測和預防、風險分析與金融服務領域。
3、細分市場二:政府大數據
——政府大數據需求:互聯網政務服務用戶規模不斷提升
從政府領域需求來看,根據中國互聯網路信息中心(CNNIC)發布的第49次《中國互聯網路發展狀況統計報告》數據顯示,互聯網政務服務發展展現出了巨大潛能。截至2021年12月,我國互聯網政務服務用戶規模達9.21億,較2020年12月增長9.2%,占網民整體的89.2%。「十四五」規劃綱要提出要「推進網路強國建設,加快建設數字經濟、數字社會、數字政府,以數字化轉型整體驅動生產方式、生活方式和治理方式變革」。2021年,我國各省市積極探索、持續推進互聯網政務服務建設發展,努力提升公共服務、社會治理等數字化、智能化水平。截至2021年11月,全國已有20多個省(區、市)相繼出台數字政府建設的有關規劃,為我國互聯網政務服務發展注入新的活力。
——政府大數據應用場景
中國政府大數據主要應用於信息共享、政務數據管理、城市網路管理與社會管理幾大領域。加強電子政務建設,管理好政府的數據資產,完善政府決策流程,將是未來數年大數據在公共管理領域發展的重要方向。大數據將對政府部門的精細化管理和科學決策發揮重要作用,從而提高政府的服務水平。輿情監測、交通安防、醫療服務等將是公共管理領域重點應用領域。
4、細分市場三:互聯網大數據
——互聯網大數據需求:互聯網行業規模不斷提升
在人工智慧、雲計算、大數據等信息技術和資本力量的助推和國家各項政策的扶持下,2021年,互聯網和相關服務業發展態勢平穩向好。企業業務收入和營業利潤保持較快增長;互聯網平台服務和數據業務實現快速發展,信息服務收入較快增長;多省份保持增長態勢。2021年我國規模以上互聯網和相關服務企業完成業務收入15500億元,同比增長21.2%。
2022年上半年,我國規模以上互聯網和相關服務企業完成互聯網業務收入7170億元,同比增長0.1%。
註:2021年及以前年份,規模以上互聯網和相關服務企業,指獲得《增值電信業務經營許可證》在中國大陸境內經營全國或區域性增值電信業務、上年度互聯網業務收入500萬元及以上的企業。2022年,規模以上互聯網和相關服務企業口徑由互聯網和相關服務收入500萬元以上調整為2000萬元及以上。
——互聯網大數據應用場景
在互聯網行業,除了社交、B2C業務之外,像在線音視頻業務、廣告監測、精準營銷等等,也是未來潛在應用場景。
產業競爭格局
1、區域競爭:中國大數據企業主要分布在華南和華東沿海地區
根據企查貓數據,截止2022年9月23日,全國大數據產業中「存續」及「在業」的企業多集中分布在華南和華東沿海地區。其中,廣東省的大數據企業最多。
2、企業競爭:技術領域創新和經驗是關鍵,融合應用領域行業龍頭更能獲得青睞
根據大數據產業聯盟調研和發布的2022大數據企業投資價值百強榜單來看,榜單共選取了10個細分領域,涉及大數據基礎軟體、數據治理與分析、數據安全、商業智能、營銷大數據5個通用領域,以及政府大數據、金融大數據、工業大數據、健康醫療大數據、空間地理信息大數據5個融合應用領域。
大數據基礎軟體、數據治理與分析、數據安全、數據可視化等,是所有細分行業應用場景的基礎支撐,體現了大數據技術價值和作用。在這些細分領域提供技術解決方案的企業中,技術創新能力較強、在各自的細分領域有較長時間技術積累的廠商是投資機構的關注重點。
政府大數據、金融大數據發展相對成熟,落地實踐案例多和品牌知名度高的企業受市場關注程度較高。工業大數據、健康醫療大數據、空間地理信息大數據等市場仍處於待爆發階段,在各自細分領域建立競爭優勢的企業容易獲得投資機構的青睞。
註:2022年大數據企業投資價值百強榜是從企業估值/市值、營收狀況、創新投入、產品競爭力、細分市場潛力、領導層能力等多個維度進行綜合評比,同時結合行業專家打分,評選出2022年度大數據領域最具投資價值的100家企業。
產業發展前景:大數據將繼續保持高速增長
大數據作為新一代信息技術的重要標志,對生產製造、流通、分配、消費活動以及經濟運行機制、社會生活方式和國家治理能力均產生重要影響。伴隨國家快速推動數字經濟、數字中國、智慧城市等發展建設,未來大數據行業對經濟社會的數字化創新驅動、融合帶動作用將進一步增強,應用范圍將得到進一步拓寬,大數據市場也將保持持續快速的增長態勢。預計2027年我國大數據市場規模將達到2930.9億元,未來六年復合年增長率為22.6%。
更多本行業研究分析詳見前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》。
Ⅱ 大數據分析與大數據開發是什麼
.大數據分析比較側重於在千萬復雜的數據當中提取精華,也就是提取本身平台或需求指定相關的數據。2.大數據開發可以理解為數據的採集和數據的獲得
Ⅲ 「大數據」與「海量數據」有哪些區別
1、范圍不同
」大數據」包含了」海量數據」,大數據 = 海量數據 + 復雜類型的數據。
2、內容不同
大數據在內容上超越了海量數據,大數據包括交易和交互數據集在內的所有數據集,其規模或復雜程度超出了常用技術按照合理的成本和時限捕捉、管理及處理這些數據集的能力。
(3)海量設備維護大數據擴展閱讀:
大數據是由三項主要技術趨勢匯聚組成:
1、海量交易數據:在從 ERP應用程序到數據倉庫應用程序的在線交易處理(OLTP)與分析系統中,傳統的關系數據以及非結構化和半結構化信息仍在繼續增長。隨著企業將更多的數據和業務流程移向公共和私有雲,這一局面變得更加復雜。
2、海量交互數據:這一新生力量由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成。它包括了呼叫詳細記錄(CDR)、設備和感測器信息、GPS和地理定位映射數據、通過管理文件傳輸(Manage File Transfer)協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。
3、海量數據處理:大數據的涌現已經催生出了設計用於數據密集型處理的架構,例如具有開放源碼、在商品硬體群中運行的 Apache Hadoop。對於企業來說,難題在於以具備成本效益的方式快速可靠地從 Hadoop 中存取數據。
Ⅳ 智能設備運行與維護和大數據應用哪個好
大數據應用。
智能化運維工程師的工資一般低於大數據運維工程師。
目前大數據相關技術已經趨於成熟,相關的理論體系已經逐步完善,而智能設備運維尚處在行業發展的初期,理論體系依然有巨大的發展空間。從學習的角度來說,如果從大數據開始學習是個不錯的選擇,從大數據過渡到智能設備運維也會相對比較容易。
Ⅳ 大數據與海量數據的區別
大數據與海量數據的區別
如果僅僅是海量的結構性數據,那麼解決的辦法就比較的單一,用戶通過購買更多的存儲設備,提高存儲設備的效率等解決此類問題。然而,當人們發現資料庫中的數據可以分為三種類型:結構性數據、非結構性數據以及半結構性數據等復雜情況時,問題似乎就沒有那麼簡單了。
大數據洶涌來襲
當類型復雜的數據洶涌襲來,那麼對於用戶IT系統的沖擊又會是另外一種處理方式。很多業內專家和第三方調查機構通過一些市場調查數據發現,大數據時代即將到來。有調查發現,這些復雜數據中有85%的數據屬於廣泛存在於社交網路、物聯網、電子商務等之中的非結構化數據。這些非結構化數據的產生往往伴隨著社交網路、移動計算和感測器等新的渠道和技術的不斷涌現和應用。
如今大數據的概念也存在著很多的炒作和大量的不確定性。為此,編者詳細向一些業內專家詳細了解有關方面的問題,請他們談一談,大數據是什麼和不是什麼,以及如何應對大數據等問題,將系列文章的形式與網友見面。
有人將多TB數據集也稱作」大數據」。據市場研究公司IDC統計,數據使用預計將增長44倍,全球數據使用量將達到大約35.2ZB(1ZB = 10億TB)。然而,單個數據集的文件尺寸也將增加,導致對更大處理能力的需求以便分析和理解這些數據集。
EMC曾經表示,它的1000多個客戶在其陣列中使用1PB(千兆兆)以上的數據數據,這個數字到2020年將增長到10萬。一些客戶在一兩年內還將開始使用數千倍多的數據,1EB(1艾位元組 = 10億GB)或者更多的數據。
對大企業而言,大數據的興起部分是因為計算能力可用更低的成本獲得,且各類系統如今已能夠執行多任務處理。其次,內存的成本也在直線下降,企業可以在內存中處理比以往更多的數據,另外是把計算機聚合成伺服器集群越來越簡單。IDC認為,這三大因素的結合便催生了大數據。同時,IDC還表示,某項技術要想成為大數據技術,首先必須是成本可承受的,其次是必須滿足IBM所描述的三個」V」判據中的兩個:多樣性(variety)、體量(volume)和速度(velocity)。
多樣性是指,數據應包含結構化的和非結構化的數據。
體量是指聚合在一起供分析的數據量必須是非常龐大的。
而速度則是指數據處理的速度必須很快。
大數據」並非總是說有數百個TB才算得上。根據實際使用情況,有時候數百個GB的數據也可稱為大數據,這主要要看它的第三個維度,也就是速度或者時間維度。
Garter表示,全球信息量正在以59%以上的年增長率增長,而量是在管理數據、業務方面的顯著挑戰,IT領袖必須側重在信息量、種類和速度上。
量:企業系統內部的數據量的增加是由交易量、其它傳統數據類型和新的數據類型引發的。過多的量是一個存儲的問題,但過多的數據也是一個大量分析的問題。
種類:IT領袖在將大量的交易信息轉化為決策上一直存在困擾 – 現在有更多類型的信息需要分析 – 主要來自社交媒體和移動(情景感知)。種類包括表格數據(資料庫)、分層數據、文件、電子郵件、計量數據、視頻、靜態圖像、音頻、股票行情數據、金融交易和其它更多種類。
速度:這涉及到數據流、結構化記錄的創建,以及訪問和交付的可用性。速度意味著正在被生成的數據有多快和數據必須被多快地處理以滿足需求。
雖然大數據是一個重大問題,Gartner分析師表示,真正的問題是讓大數據更有意義,在大數據裡面尋找模式幫助組織機構做出更好的商業決策。
諸子百家談如何定義」大數據」
盡管」Big Data」可以翻譯成大數據或者海量數據,但大數據和海量數據是有區別的。
定義一:大數據 = 海量數據 + 復雜類型的數據
Informatica中國區首席產品顧問但彬認為:」大數據」包含了」海量數據」的含義,而且在內容上超越了海量數據,簡而言之,」大數據」是」海量數據」+復雜類型的數據。
但彬進一步指出:大數據包括交易和交互數據集在內的所有數據集,其規模或復雜程度超出了常用技術按照合理的成本和時限捕捉、管理及處理這些數據集的能力。
大數據是由三項主要技術趨勢匯聚組成:
海量交易數據:在從 ERP應用程序到數據倉庫應用程序的在線交易處理(OLTP)與分析系統中,傳統的關系數據以及非結構化和半結構化信息仍在繼續增長。隨著企業將更多的數據和業務流程移向公共和私有雲,這一局面變得更加復雜。海量交互數據:這一新生力量由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成。它包括了呼叫詳細記錄(CDR)、設備和感測器信息、GPS和地理定位映射數據、通過管理文件傳輸(Manage File Transfer)協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。海量數據處理:大數據的涌現已經催生出了設計用於數據密集型處理的架構,例如具有開放源碼、在商品硬體群中運行的 Apache Hadoop。對於企業來說,難題在於以具備成本效益的方式快速可靠地從 Hadoop 中存取數據。定義二:大數據包括A、B、C三個要素
如何理解大數據?NetApp 大中華區總經理陳文認為,大數據意味著通過更快獲取信息來使做事情的方式變得與眾不同,並因此實現突破。大數據被定義為大量數據(通常是非結構化的),它要求我們重新思考如何存儲、管理和恢復數據。那麼,多大才算大呢?考慮這個問題的一種方式就是,它是如此之大,以至於我們今天所使用的任何工具都無法處理它,因此,如何消化數據並把它轉化成有價值的洞見和信息,這其中的關鍵就是轉變。
基於從客戶那裡了解的工作負載要求,NetApp所理解的大數據包括A、B、C三個要素:分析(Analytic),帶寬(Bandwidth)和內容(Content)。
1. 大分析(Big Analytics),幫助獲得洞見 – 指的是對巨大數據集進行實時分析的要求,它能帶來新的業務模式,更好的客戶服務,並實現更好的結果。
2. 高帶寬(Big Bandwidth),幫助走得更快 – 指的是處理極端高速的關鍵數據的要求。它支持快速有效地消化和處理大型數據集。
3. 大內容(Big Content),不丟失任何信息- 指的是對於安全性要求極高的高可擴展的數據存儲,並能夠輕松實現恢復。它支持可管理的信息內容存儲庫、而不只是存放過久的數據,並且能夠跨越不同的大陸板塊。
大數據是一股突破性的經濟和技術力量,它為 IT 支持引入了新的基礎架構。大數據解決方案消除了傳統的計算和存儲的局限。藉助於不斷增長的私密和公開數據,一種劃時代的新商業模式正在興起,它有望為大數據客戶帶來新的實質性的收入增長點以及富於競爭力的優勢。
以上是小編為大家分享的關於大數據與海量數據的區別的相關內容,更多信息可以關注環球青藤分享更多干貨
Ⅵ 大數據具體是做什麼有哪些應用
大數據即海量的數據,一般至少要達到TB級別才能算得上大數據,相比於傳統的企業內數據,大數據的內容和結構要更加多樣化,數值、文本、視頻、語音、圖像、文檔、XML、HTML等都可以作為大數據的內容。
提到大數據,最常見的應用就是大數據分析,大數據分析的數據來源不僅是局限於企業內部的信息化系統,還包括各種外部系統、機器設備、感測器、資料庫的逗吵渣數據,如:政府、銀行、國計民生、行業產業、社交網站等數據,通過大數據分析技術及工具將海量數據進行統計匯總後,以圖形圖表的方式進行數據展現,實現數據的可視化,在此基礎上結合機器學習演算法,對數據進行深度挖掘,發掘數據的潛在價值。
應用部分,大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合,大數據分析的應用場景具有行業性,不同行業所呈現碰肢的內容與分析維度各不相同,具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。
1.互聯網行業大數據的應用代表為電商、社交、網路檢索領域,可以根據銷售數據、客戶行為(活躍度、商品偏好、購買率等)數據、交易數據、商品收藏數據、售後數據等、搜索數據刻畫用戶畫像,根據客戶的喜好為其推薦對應的產品。
2.政府行業在大數據分析部分包括質檢部門、公安部門、氣象部門、醫療部門等,質檢部門包括對商品生產、加工、物流、貿易、消費全過程的信息進行採集、驗證、檢查,保證食品物品安全;氣象部門通過構建大氣運動規律評估模型、氣象變化關聯性分析等路徑,精準地預測氣象變化,尋找最佳的解決方案,規劃應急、救災工作。
3.金融行業的大數據分析多應用於銀行、證券、保險等細分領域,在大山悄數據分析方面結合多種渠道數據進行分析,客戶在社交媒體上的行為數據、在網站上消費的交易數據、客戶辦理業務的預留數據,結合客戶年齡、資產規模、消費偏好等對客戶群進行精準定位,分析其在金融業的需求等。
4.傳統行業包括:能源、電信、地產、零售、製造等。電信行業藉助大數據應用分析感測器數據異常情況,預測設備故障,提高用戶滿意度;能源行業利用大數據分析挖掘客戶行為特徵、消費規律,提高能源需求准確性;地產行業通過內外部數據的挖掘分析,使管理者掌握和了解房地產行業潛在的市場需求,掌握商情和動態,針對細分市場實施動態定價和差別定價等;製造行業通過大數據分析實現設備預測維護、優化生產流程、能源消耗管控、發現潛在問題並及時預警等。
伴隨著信息化的快速發展、數據量加大,已經進入數據時代,相信各行業間日後對於大數據的應用會更多、更深入。
Ⅶ 大數據是做什麼的
問題一:大數據能做什麼 如果說砍樹是一個職業,那你手中的斧頭就是大數據。大數據是一種覆蓋政商等領域的超大型平台,你可以用大數據來瞄準你所關心領域的長短點並很快很准地得出預判,升華概念,你能通過數據預測未來,行業的未來你能掌握了,就能賺錢。
問題二:大數據可以做什麼 用處太多了
首先,精準化定製。
主要是針對供需兩方的,獲取需方的個性化需求,幫助供方定準定位目標,然後依據需求提 *** 品,最終實現供需雙方的最佳匹配。
具體應用舉例,也可以歸納為三類。
一是個性化產品,比如智能化的搜索引擎,搜索同樣的內容,每個人的結果都不同。或者是一些定製化的新聞服務,或者是網游等。
第二種是精準營銷,現在已經比較常見的互聯網營銷,網路的推廣,淘寶的網頁推廣等,或者是基於地理位置的信息推送,當我到達某個地方,會自動推送周邊的消費設施等。
第三種是選址定位,包括零售店面的選址,或者是公共基礎設施的選址。
這些全都是通過對用戶需求的氏鬧大數據分析,然後供方提供相對定製化的服務。
應用的第二個方向,預測。
預測主要是圍繞目標對象,基於它過去、未來的一些相關因素和數據分析,從而提前做出預警,或者是實時動態的優化。
從具體的應用上,也大概可以分為三類。
一是決策支持類的,小到企業的運營決策,證券投資決策,醫療行業的臨床診療支持,以及電子政務等。
二是風險預警類的,比如疫情預測,日常健康管理的疾病預測,設備設施的運營維護,公共安全,以及金融業的信用風險管理等。
第三種是實時優化類的,比如智能線路規劃,實時定價等。
問題三:什麼是大數據,大數據可以做什麼 大數據,指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據可以對;數據進行收集和存儲,在這基礎上,再進行分析和應用,形成我們的產品和服務,而產品和服務也會產生新的數據,這些新數據會循環進入我們的流程中。
當這整個循環體系成為一個智能化的體系,通過機器可以實現自動化,那也許就會成為一種新的模式,不管是商業的,或者是其他。
問題四:大數據是做什麼的 大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據 *** 。」帆配業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB,而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。
數據類型繁多(Variety)。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
價值密度低(Value)。價值密度的高低與數據總量的大小成反比。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
處理速度快(Velocity)。大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。
-------------------------------------------
社交網路,讓我們越來越多地從數據中觀察到人類社會的復雜行為模式。社交網路,為大數據提供了信息匯集、分析的第一手資料。從龐雜的數據背後挖掘、分析用戶的行為習慣和喜好,找出更符合用戶「口味」的產品和服務,並結合用戶需求有針對性地調整和優化自身,就是大數據的價值。
所以,建立在上述的概念上我們可以看到大數據的產業變化:
1 大數據飛輪效應所帶來的產業融合和新產業驅動
2 信息獲取方式的完全變化帶來的新式信息聚合
3 信息推送方式的完全變化帶來的新式信息推廣
4 精準營銷
5 第三方支付 ―― 小微信貸,線上眾籌為代表的互聯網金融帶殲轎罩來的全面互聯網金融改革
6 產業垂直整合趨勢以及隨之帶來的產業生態重構
7 企業改革以及企業內部價值鏈重塑,擴大的產業外部邊界
8 *** 及各級機構開放,透明化,以及隨之帶來的集中管控和內部機制調整
9 數據創新帶來的新服務
問題五:大數據是什麼?大數據可以做什麼?大數據實際做了什麼?大數據要怎麼做 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 大數據分析的標配是商業智能(BI)軟體,傳統數據分析的繁雜之處主要體現在兩個方面,一是技術人員需要花費大量時間准備數據;二是業務人員基於數據偶得的一些分析需求實現過程復雜。 FineBI的Data Service模塊,特有的分析設計模式和指標影響因素智能分析模塊,能夠幫助用戶解決傳統BI數據准備時間長,偶得數據分析過程復雜等問題,讓技術人員准備數據時無需任何代碼和復雜的設置過程,讓非IT人員能夠輕松自在得進行分析。
問題六:大數據可以做什麼 可以用幾個關鍵詞對大數據做一個界定。
首先,「規模大」,這種規模可以從兩個維度來衡量,一是從時間序列累積大量的數據,二是在深度上更加細化的數據。
其次,「多樣化」,可以是不同的數據格式,如文字、圖片、視頻等,可以是不同的數據類別,如人口數據,經濟數據等,還可以有不同的數據來源,如互聯網、感測器等。
第三,「動態化」。數據是不停地變化的,可以隨著時間快速增加大量數據,也可以是在空間上不斷移動變化的數據。
這三個關鍵詞對大數據從形象上做了界定。
但還需要一個關鍵能力,就是「處理速度快」。如果這么大規模、多樣化又動態變化的數據有了,但需要很長的時間去處理分析,那不叫大數據。從另一個角度,要實現這些數據快速處理,靠人工肯定是沒辦法實現的,因此,需要藉助於機器實現。
最終,我們藉助機器,通過對這些數據進行快速的處理分析,獲取想要的信息或者應用的整套體系,才能稱為大數據。
問題七:大數據公司具體做什麼? 主要業務包括數據採集,數據存儲,數據分析,數據可視化以及數據安全等,這些是依託已有數據的基礎上展開的業務模式,其他大數據公司是依靠大數據工具,對市場需求,為市場帶來創新方案並推動技 術發展。這類公司里天雲大數據在市場應用里更加廣泛
問題八:大數據應用到底是做什麼的? 對於「大數據」,研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。 *** 的定義,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。隨著雲時代的來臨,大數據也吸引了越來越多的關注。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
問題九:在未來大數據能做什麼? 是的,通過網路進行收集數據,將採集到的數據進行加工處理、分析,前提是 要通信的,大數據是指 一個 當今現代化的一個流行化概念名詞,二三十年前就有人提出來了,特指 海量信息,可以永久性存儲在伺服器中,誰採集到的數據,誰管理,數據是在變化的,隨著人類的活動,國內 掀起一場互聯網金融,每個行業 都有自己 獨特的 數據 分類信息,進行數據挖掘,有用的數據 撈取出來 ,那麼它就是有意義 的
問題十:大數據營銷具體是什麼呢? 大數據營銷是基於多平台的大量數據,依託大數據技術的基礎上,應用於互聯網廣告行業的營銷方式。陽眾互動認為大數據營銷真正的核心在於讓網路廣告在合適的時間,通過合適的載體,以合適的方式,投給合適的人,說到底就是以自身掌握的數據或者說信息對客戶進行精準的定位,以最好、最快的滿足目標群體的需求。
Ⅷ 「大數據」與「海量數據」有哪些區別
」大數據」包含了」海量數據」的含義,而且在內容上超越了海量數據,簡而言之,」回大數據」答是」海量數據」+復雜類型的數據。大數據包括交易和交互數據集在內的所有數據集,其規模或復雜程度超出了常用技術按照合理的成本和時限捕捉、管理及處理這些數據集的能力。