❶ 如何利用工業大數據推動製造業轉型
什麼是工業大數據?
工業大數據,很難從內涵角度來作出一個定義,因為它涉及到很多各種各樣的數據。但從外延角度來看,比較容易。
大體上是3+3,第一個「3」是指3個層面——企業,企業上面的供應鏈、產業鏈和生態鏈,以及在這上面的行業管理和宏觀經濟。第二個「3」是指每個企業都有的3個過程——生產,使用,以及發展中的經營效益,所以,「3+3」基本上把工業大數據的脈絡圈起來了。
從企業的角度看,工業大數據是在一個企業的設計、創新、生產、經營和管理決策過程產生、使用和轉型升級過程需要的信息之和。所以最小的圈是企業,一個企業從開始到生產線到設計、到工藝過程、到人,一直到管理、決策、市場、服務,像這樣的環節都在使用。
從供應鏈、產業鏈和生態鏈的角度來看,工業大數據是供應鏈、產業鏈和生態鏈產生、使用和需求的各類信息之和。這三個鏈之間很難一刀斷開,因此,我也是從一個概念來看。所以,製造業也好、工業企業也好,整個過程是一個鏈環周。這個鏈不僅是一個企業,更重要的是政府機構、研究機構,需要把控和研究如何追求製造業前兩環的優化。所以我們看到了超越一個企業的生存、使用和發展需求的新工業數據。
從行業管理和宏觀調控的角度來看,工業大數據是工業行業管理和宏觀調控產生、使用和需求的各類信息之和。每一個行業的管理都需要工業大數據,在工業行業又生存了很多企業,做好工業數據管理需要這樣一個鏈條,所以「3+3」構成了工業大數據的外延,每一個環節,使用的和需求的中間是交集,這樣才對工業大數據的發展提供了基礎。
小結
首先,3+3加起來的組合就是工業大數據;
第二,產生、使用和進一步發展的需求的工業大數據是不同的,是交集;
第三,進一步發展需求的大數據最大;
最後一句話最重要,工業大數據,工業是主體。
為什麼要發展工業大數據?
同樣是三個層面,從三個由小到大的層面,加上一個需求,來看一下工業大數據的作用和意義。
首先,從最小的層面——企業來看,工業大數據為企業全過程設計、創新、生產、經營、管理、決策服務,為企業的發展戰略和目標的實現服務。
第二個層面,工業大數據服務於供應鏈的優化、產業鏈的完善、生態鏈的形成和優化。從供應鏈、產業鏈、生態鏈來看,不管是CSM的生產圈,還是一個特定產品製造過程的供應鏈,或是一個完整生產過程的分析,工業大數據都是為了它的形成和優化。
第三個層面,工業大數據要滿足行業和宏觀決策調控的實際需求,提高行業和宏觀經濟管理決策質量、能力。政府的行業管理對於供應鏈、產業鏈、生態鏈、商業鏈、價值鏈有著非常重要的作用,但是政府的宏觀調控超越了這樣的鏈環本身,我們要對經濟發展面臨的重大問題作出回應,甚至回答製造業如何來應對這樣的問題。所以從這個行業來看重要的是行業發展戰略,而到宏觀調控的時候,不但要從行業的發展戰略,還要從整個經濟發展去看這些問題怎麼解決?這就需要信息。
第四,從工業轉型升級的需求看,工業大數據是為了一個個企業、行業、裝備、工藝、生產線、供應鏈的轉型升級服務。先進製造業、工業4.0、智能製造,以兩化融合和智能製造為重點的中國製造2025,都是工業轉型升級模式的未來方向。原來我們的3.0工業,是以裝備和生產線為核心的自動化,而4.0的智能化是把這兩個過程自動化和數據自動化結合在一起。
小結:
工業大數據的研究和實踐要服務於加快製造業轉型升級、提升工業競爭力;
這個目標要落實到企業創新、設計、生產、經營、管理、決策的每一個具體環節;
這個目標要落實到供應鏈全局優化、產業鏈和生態鏈的形成和優化的每一個具體環節;
這個目標要落實到工業行業管理和宏觀經濟調控決策的每一個實際需求。
工業大數據怎麼推動製造業轉型升級?
在回答怎麼辦之前,首先要知道存在著哪些主要問題:
1、在數據生成環節,主要存在跑冒滴漏和非標準的問題;
2、在數據利用環節,主要存在數據不足、質量不高、各個環節協同存在制度、核算、標准等大量障礙;
3、在發展需求環節,主要存在缺乏預見性、缺乏有效的模型和工具、缺乏制度和標准規范等問題。
要想建設好、應用好大數據,首先要解決這三個問題:
首先是建設,什麼是建設?我記得三年前說過,把大數據作探礦、采礦、煉礦、用礦,實際上探礦和采礦就是建設好信息,可以從三個緯度四個方面來建設好信息。三個緯度首先是發現,然後才可以按照應用需求結合起來。第二要有制度,要有標准,要實現系統之間的互操作。同時我們還要發現、收集、組織,來提升系統性、完整性、及時性、准確性。這是建設好、運用好。
利用好有三個方面或者三個層次和若干個關鍵環節。由於時間關系就不再展開討論了。
最後,要特別注重取得實效、最佳實踐和理論研究。
1、要特別注重實效。因為今天的大數據,每一個環節的形成都有它的實效,這件事情從開始到做完以後,效果究竟是什麼?有很多企業家,當你用大數據對你企業各個環節進行改善提升的時候,你首先第一條要把提高效率放在首位,這是關鍵,而且對於製造業來說,要永遠把利潤率放在最重要的位置。當然,工業大數據不能直接用錢來算,有的環節是企業老闆在管理上、服務上提效,但是這個效果必須是可測量的,不管是定性的還是定量的。
2、要特別注重最佳實踐。i5數控機床,從開始研發到今天位列智能數控機床試點領先的行列,花了十年的時間。為什麼前面幾年沒有成功?就是因為數據缺失。缺什麼數據?高端數控機床為什麼長期被國外控制?數控機床的技術為什麼那麼長時間沒有克服?因為不管是材料的發展,還是裝備的發展,都沒有數據,沒有實踐過程中的數據,它是發展不起來的。接下來是模型怎麼建,也需要數據來支撐,但是原來由於高端數控機床都由國外來控制,我們沒有數據。另外,它在這個過程裡面還倡導商業模式,這個機床是按服務鑰匙收費。所以它又變成了今天最新最熱門的製造行業分享。這顯然是一個最佳實踐,這裡面工業數據是極其重要的。
3、要注重理論的研究,注重方法、制度創新的研究。在這個過程中,需要對製造業發展的趨勢、特徵,工業大數據的內涵外延,工業大數據建設和利用的系統方法,工業大數據質量保證、協同發展、制度創新等等一系列問題進行研究。
❷ 工業大數據漫談15:工業大數據與工業4.0的關系
現在的世界,已經進入了一個概念滿天飛的年代。和工業大數據相關的概念非常多,包括工業4.0、物聯網、雲計算、人工智慧、智能製造等等,接下來,我會 追根溯源 ,把這些概念都理清楚,這樣,我們才能更好地理解工業大數據。今天先聊一聊工業4.0是怎麼回事。
工業4.0的概念來源比較清晰,不像大數據概念的來源,說不清,道不明。工業4.0是德國聯邦教研部與聯邦經濟技術部在2013年 漢諾威工業博覽會 上提出的概念。它實際上是德國人為了推廣他們的工業技術而提出的一個營銷概念。這個概念應該說提的非常成功,彷彿一夜之間,全世界都在講自己的產品符合工業4.0的理念。
當時德國人提的工業4.0概念中,主要是描繪了製造業的未來願景(注意,是製造業,而不是工業,德國人在這里其實偷換了概念,工業的范疇遠比製造業大得多),提出了繼蒸汽機、規模化生產、電子信息技術等三次工業革命後,人類即將迎來的以生產高度數字化、網路化、機器自組織為標志的第四次工業革命。
在德國人描述的四次工業革命中,第一次是以蒸汽機為動力的機械生產設備導致的第一次工業革命,該次工業革命與18世紀末基本結束。第二次是基於勞動力分工(即流水線),以電為動力的大規模生產為核心的第二次工業革命,該次革命始於20世紀初, 第三次工業革命 始於20世紀70年代,其標志是電子信息技術的大規模使用使得工業自動化程度大為提高,現在,德國人認為我們進入了第四次工業革命,在本次工業革命中,軟體不再僅僅是為了控制儀器或者執行具體的工作而編寫的,也不再僅僅被嵌入到產品和生產系統中。產品和服務藉助於互聯網和其他網路服務,通過軟體、電子及環境的結合,生產處全新的產品和服務。越來越多的產品功能無需操作人員介入,而是可以自主進行生產。
從這個概念可以看出,工業4.0實際上是德國等先進製造業發達國家在進行一次大的製造業升級,以期保持其在國際競爭中的地位。因此,工業4.0概念提出之後,各國紛紛跟進,美國提出了工業物聯網,中國提出了工業2025,其實都是想在這一次工業革命中保持或者進一步佔領國際市場,獲得競爭優勢。
工業4.0中涉及到的技術概念有很多,大致可以通過下面這張圖來進行描述。
從底層看,工業4.0包括互聯網時代的三大底層基礎設施,工業物聯網(這是美國人的概念)、雲計算、工業大數據,在具體應用上,包括兩大硬體技術3D列印和工業機器人,兩大軟體技術工業網路和工作自動化,同時還囊括了未來的兩大技術虛擬現實和人工智慧。這些技術構成了工業4.0的技術圖譜。
由此可以看出,工業大數據是工業4.0的一部分,它是為工業4.0提供軟體技術支撐的,也是工業4.0的核心部分。由於工業4.0的最終目的是提高企業的生產力、生產效率及生產的靈活性,但又受制於生產的復雜性和復雜生產帶來的超高難度的管理,因此,現代化的生產要求從產品、工具、運輸、設備的每一個環節都配備感測器,並更夠通過標准協議彼此通訊,在這種情況下,企業生產就必須依賴全新的軟體系統,它可以覆蓋整個產品生命周期,它可以協調海量的數據流程,它可以自主控制設備進行復雜化的、自定義的生產作業,而這和核心的一切,就是工業大數據。
到今天,工業大數據的概念已將慢慢的超越了工業4.0,工業大數據既是工業4.0的核心,也在獨立的發展,既有重合的部分,也有超越的部分。
不管概念如何發展,以人工智慧、大數據為標志的第四次工業革命已經在我們的身邊展開了,通過這一次的工業革命,我們可以進行超級復雜流程的管理、大規模生產過程的優化和決策的快速執行,實現復雜生產和個性商業活動的高度整合,使人類的生產效率再上升一個數量級,使生產力得到進一步的釋放。
❸ 工業大數據特徵有哪些 大數據工程師來告訴你
【導語】工業大數據是智能製造的核心,以「大數據+工業互聯網」為基礎,用雲計算、大數據、物聯網、人工智慧等技術引領工業生產方式的變革,拉動工業經濟的創新發展,那麼工業大數據特徵有哪些呢?下面大數據工程師來告訴你吧。
1、准確性(accuracy):
主要指數據的真實性、完整性和可靠性,更加關注數據質量以及處理、分析技術和方法的可靠性。對數據分析的置信度要求較高,僅依靠統計相關性分析不足以支撐故障診斷、預測預警等工業應用,需要將物理模型與數據模型結合,挖掘因果關系。
2、閉環性(closed-loop):
包括產品全生命周期橫向過程中數據鏈條的封閉和關聯以及智能製造縱向數據採集和處理過程中,需要支撐狀態感知、分析、反饋、控制等閉環場景下的動態持續調整和優化。
3、多樣(variety):
指數據類型的多樣性和來源廣泛。工業數據分布廣泛,分布於機器設備、工業產品、管理系統、互聯網等各個環節,並且結構復雜,既有結構化和半結構化的感測數據,也有非結構化數據。
4、數據容量大(volume):
數據的大小決定所考慮的數據的價值和潛在的信息。工業數據體量比較大,大量機器設備的高頻數據和互聯網數據持續湧入,大型工業企業的數據集將達到PB級甚至EB級別。
5、快速(velocity):
指獲得和處理數據的速度。工業數據處理速度需求多樣,生產現場級要求分析時限達到毫秒級,管理與決策應用需要支持互動式或批量數據分析。
6、強關聯性(strong-relevance):
一方面,產品生命周期同一階段的數據具有強關聯性,如產品零部件組成、工況、設備狀態、維修情況、零部件補充采購等;另一方面,產品生命周期的研發設計、生產、服務等不同環節的數據之間需要進行關聯。
7、價值密度低(value):
工業大數據更強調用戶價值驅動和數據本身的可用性,包括:提升創新能力和生產經營效率及促進個性化定製、服務化轉型等智能製造新模式變革。
8、時序性(sequence):
工業大數據具有較強的時序性,如訂單、設備狀態數據等。
關於工業大數據特徵,就和大家分享到這里了,中國社會發展至今,大數據的應用正在逐漸普及,所以未來前景不可估量,希望想從事此行業的人員能夠合理選擇。
❹ 物聯網時代的八大工業大數據應用場景
物聯網時代的八大工業大數據應用場景
工業大數據是一個全新的概念,從字面上理解,工業大數據是指在工業領域信息化應用中所產生的大數據。
隨著信息化與工業化的深度融合,信息技術滲透到了工業企業產業鏈的各個環節,條形碼、二維碼、RFID、工業感測器、工業自動控制系統、工業物聯網、ERP、CAD/CAM/CAE/CAI等技術在工業企業中得到廣泛應用,尤其是互聯網、移動互聯網、物聯網等新一代信息技術在工業領域的應用,工業企業也進入了互聯網工業的新的發展階段,工業企業所擁有的數據也日益豐富。工業企業中生產線處於高速運轉,由工業設備所產生、採集和處理的數據量遠大於企業中計算機和人工產生的數據,從數據類型看也多是非結構化數據,生產線的高速運轉則對數據的實時性要求也更高。因此,工業大數據應用所面臨的問題和挑戰並不比互聯網行業的大數據應用少,某些情況下甚至更為復雜。
工業大數據應用將帶來工業企業創新和變革的新時代。通過互聯網、移動物聯網等帶來的低成本感知、高速移動連接、分布式計算和高級分析,信息技術和全球工業系統正在深入融合,給全球工業帶來深刻的變革,創新企業的研發、生產、運營、營銷和管理方式。這些創新不同行業的工業企業帶來了更快的速度、更高的效率和更高的洞察力。工業大數據的典型應用包括產品創新、產品故障診斷與預測、工業生產線物聯網分析、工業企業供應鏈優化和產品精準營銷等諸多方面。本文將對工業大數據在製造企業的應用場景進行逐一梳理。
1.加速產品創新
客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。福特公司是這方面的表率,他們將大數據技術應用到了福特福克斯電動車的產品創新和優化中,這款車成為了一款名副其實的「大數據電動車」。第一代福特福克斯電動車在駕駛和停車時產生大量數據。在行駛中,司機持續地更新車輛的加速度、剎車、電池充電和位置信息。這對於司機很有用,但數據也傳回福特工程師那裡,以了解客戶的駕駛習慣,包括如何、何時以及何處充電。即使車輛處於靜止狀態,它也會持續將車輛胎壓和電池系統的數據傳送給最近的智能電話。
這種以客戶為中心的大數據應用場景具有多方面的好處,因為大數據實現了寶貴的新型產品創新和協作方式。司機獲得有用的最新信息,而位於底特律的工程師匯總關於駕駛行為的信息,以了解客戶,制訂產品改進計劃,並實施新產品創新。而且,電力公司和其他第三方供應商也可以分析數百萬英里的駕駛數據,以決定在何處建立新的充電站,以及如何防止脆弱的電網超負荷運轉。
2.產品故障診斷與預測
這可以被用於產品售後服務與產品改進。無所不在的感測器、互聯網技術的引入使得產品故障實時診斷變為現實,大數據應用、建模與模擬技術則使得預測動態性成為可能。在馬航MH370失聯客機搜尋過程中,波音公司獲取的發動機運轉數據對於確定飛機的失聯路徑起到了關鍵作用。我們就拿波音公司飛機系統作為案例,看看大數據應用在產品故障診斷中如何發揮作用。在波音的飛機上,發動機、燃油系統、液壓和電力系統等數以百計的變數組成了在航狀態,這些數據不到幾微秒就被測量和發送一次。以波音737為例,發動機在飛行中每30分鍾就能產生10TB數據。
這些數據不僅僅是未來某個時間點能夠分析的工程遙測數據,而且還促進了實時自適應控制、燃油使用、零件故障預測和飛行員通報,能有效實現故障診斷和預測。再看一個通用電氣(GE)的例子,位於美國亞特蘭大的GE能源監測和診斷(M&D)中心,收集全球50多個國家上千台GE燃氣輪機的數據,每天就能為客戶收集10G的數據,通過分析來自系統內的感測器振動和溫度信號的恆定大數據流,這些大數據分析將為GE公司對燃氣輪機故障診斷和預警提供支撐。風力渦輪機製造商Vestas也通過對天氣數據及期渦輪儀表數據進行交叉分析,從而對風力渦輪機布局進行改善,由此增加了風力渦輪機的電力輸出水平並延長了服務壽命。
3.工業物聯網生產線的大數據應用
現代化工業製造生產線安裝有數以千計的小型感測器,來探測溫度、壓力、熱能、振動和雜訊。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。一旦有某個流程偏離了標准工藝,就會產生一個報警信號,能更快速地發現錯誤或者瓶頸所在,也就能更容易解決問題。利用大數據技術,還可以對工業產品的生產過程建立虛擬模型,模擬並優化生產流程,當所有流程和績效數據都能在系統中重建時,這種透明度將有助於製造商改進其生產流程。再如,在能耗分析方面,在設備生產過程中利用感測器集中監控所有的生產流程,能夠發現能耗的異常或峰值情形,由此便可在生產過程中優化能源的消耗,對所有流程進行分析將會大大降低能耗。
4.工業供應鏈的分析和優化
當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。
以海爾公司為例,海爾公司供應鏈體系很完善,它以市場鏈為紐帶,以訂單信息流為中心,帶動物流和資金流的運動,整合全球供應鏈資源和全球用戶資源。在海爾供應鏈的各個環節,客戶數據、企業內部數據、供應商數據被匯總到供應鏈體系中,通過供應鏈上的大數據採集和分析,海爾公司能夠持續進行供應鏈改進和優化,保證了海爾對客戶的敏捷響應。美國較大的OEM供應商超過千家,為製造企業提供超過1萬種不同的產品,每家廠商都依靠市場預測和其他不同的變數,如銷售數據、市場信息、展會、新聞、競爭對手的數據,甚至天氣預報等來銷售自己的產品。
利用銷售數據、產品的感測器數據和出自供應商資料庫的數據,工業製造企業便可准確地預測全球不同區域的需求。由於可以跟蹤庫存和銷售價格,可以在價格下跌時買進,所以製造企業便可節約大量的成本。如果再利用產品中感測器所產生的數據,知道產品出了什麼故障,哪裡需要配件,他們還可以預測何處以及何時需要零件。這將會極大地減少庫存,優化供應鏈。
5.產品銷售預測與需求管理
通過大數據來分析當前需求變化和組合形式。大數據是一個很好的銷售分析工具,通過歷史數據的多維度組合,可以看出區域性需求佔比和變化、產品品類的市場受歡迎程度以及最常見的組合形式、消費者的層次等,以此來調整產品策略和鋪貨策略。在某些分析中我們可以發現,在開學季高校較多的城市對文具的需求會高很多,這樣我們可以加大對這些城市經銷商的促銷,吸引他們在開學季多訂貨,同時在開學季之前一兩個月開始產能規劃,以滿足促銷需求。對產品開發方面,通過消費人群的關注點進行產品功能、性能的調整,如幾年前大家喜歡用音樂手機,而現在大家更傾向於用手機上網、拍照分享等,手機的拍照功能提升就是一個趨勢,4G手機也占據更大的市場份額。通過大數據對一些市場細節的分析,可以找到更多的潛在銷售機會。
6.生產計劃與排程
製造業面對多品種小批量的生產模式,數據的精細化自動及時方便的採集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,對於需要快速響應的APS來說,是一個巨大的挑戰。大數據可以給予我們更詳細的數據信息,發現歷史預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態的調整計劃排產。幫我們規避「畫像」的缺陷,直接將群體特徵直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析並監控它,我們就能計劃未來。雖然,大數據略有瑕疵,只要得到合理的應用,大數據會變成我們強大的武器。當年,福特問大數據的客戶需求是什麼?而回答是「一匹更快的馬」,而不是現在已經普及的汽車。所以,在大數據的世界裡,創意、直覺、冒險精神和知識野心尤為重要。
7.產品質量管理與分析
傳統的製造業正面臨著大數據的沖擊,在產品研發、工藝設計、質量管理、生產運營等各方面都迫切期待著有創新方法的誕生,來應對工業背景下的大數據挑戰。例如在半導體行業,晶元在生產過程中會經歷許多次摻雜、增層、光刻和熱處理等復雜的工藝製程,每一步都必須達到極其苛刻的物理特性要求,高度自動化的設備在加工產品的同時,也同步生成了龐大的檢測結果。這些海量數據究竟是企業的包袱,還是企業的金礦呢?如果說是後者的話,那麼又該如何快速地撥雲見日,從「金礦」中准確地發現產品良率波動的關鍵原因呢?這是一個已經困擾半導體工程師們多年的技術難題。
某半導體科技公司生產的晶圓在經過測試環節後,每天都會產生包含一百多個測試項目、長度達幾百萬行測試記錄的數據集。按照質量管理的基本要求,一個必不可少的工作就是需要針對這些技術規格要求各異的一百多個測試項目分別進行一次過程能力分析。如果按照傳統的工作模式,我們需要按部就班地分別計算一百多個過程能力指數,對各項質量特性一一考核。這里暫且不論工作量的龐大與繁瑣,哪怕有人能夠解決了計算量的問題,但也很難從這一百多個過程能力指數中看出它們之間的關聯性,更難對產品的總體質量性能有一個全面的認識與總結。然而,如果我們利用大數據質量管理分析平台,除了可以快速地得到一個長長的傳統單一指標的過程能力分析報表之外,更重要的是,還可以從同樣的大數據集中得到很多嶄新的分析結果。
8.工業污染與環保檢測
《穹頂之下》令人印象深刻的一點是通過可視化報表,柴靜團隊向觀眾傳遞霧霾問題的嚴峻性、霧霾的成因等等。
這給我們帶來的一個啟示,即大數據對環保具有巨大價值。《穹頂之下》圖表的原生數據哪裡來的呢?其實並非都是憑借高層關系獲取,不少數據都是公開可查,在中國政府網、各部委網站、中石油中石化官網、環保組織官網以及一些特殊機構,可查詢的公益環保數據越來越多,包括全國空氣、水文等數據,氣象數據,工廠分布及污染排放達標情況等數據等等。只不過這些數據太分散、太專業、缺少分析、沒有可視化,普通人看不懂。如果能夠看懂並保持關注,大數據將成為社會監督環保的重要手段。近日網路上線《全國污染監測地圖》就是一個很好的方式,結合開放的環保大數據,網路地圖加入了污染檢測圖層,任何人都可以通過它查看全國及自己所在區域省市,所有的在環保局監控之下的排放機構(包括各類火電廠、國控工業企業和污水處理廠等)的位置信息、機構名稱、排放污染源的種類,最近一次環保局公布的污染排放達標情況等。可查看距離自己最近的污染源,出現提醒,該監測點檢測項目,哪些超標,超標多少倍。這些信息可以實時分享到社交媒體平台,告知好友,提醒大家一同注意污染源情況及個人安全健康。
總結工業大數據應用的價值潛力巨大。但是,實現這些價值還有很多工作要做。一個是大數據意識建立的問題。過去,也有這些大數據,但由於沒有大數據的意識,數據分析手段也不足,很多實時數據被丟棄或束之高閣,大量數據的潛在價值被埋沒。還有一個重要問題是數據孤島的問題。很多工業企業的數據分布於企業中的各個孤島中,特別是在大型跨國公司內,要想在整個企業內提取這些數據相當困難。因此,工業大數據應用一個重要議題是集成應用。
以上是小編為大家分享的關於物聯網時代的八大工業大數據應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨
❺ 什麼是真正的工業領域大數據分析
數據分析思維和業務的理解,是分析師賴以生存的技能。很多時候,工具是錦上添花專的作用。掌握Excel+SQL/hive,了解描屬述統計學,知道常見的可視化表達,足夠完成大部分任務。機器學習這類能力,對此類數據分析師不是必須的,Python也一樣,只是加分項。畢竟為什麼下跌,你無法用數據挖掘解答。
❻ 工業大數據是什麼
工業大數據的本質來是數據驅源動。就象我們以前說大數據一樣,並不是一個名詞,而是一個技術代名詞,指的是基於大數據的分析、可視化,模型等大數據相關的技術和應用。在大數據技術日益成熟的前提下,與產業的深度整合成為大數據發展的下一個重要方向,埃睿迪的iReadyInsights平台,就是與產業深度融合的大數據平台。其被應用於工業、環保、金融等產業,並且有諸多典型客戶。
❼ 智能製造:工業製造中的大數據分析
搞清出工業大數據分析,第一步我們應該如何定義製造業的大數據?這里我和大家通過大數據的三個特性,來經一步了解大數據的特性。
1
關注#1 -工業大數據數據來源
工業大數據的主要來源有兩個,第一類數據來源與智能設備。普適計算有很大的空間,現代工人可以帶一個普適感應器等設備來參加生產和管理。所以工業數據源是280億左右大量設備之間的關聯,這個是我們未來需要去採納的數據源之一。
第二個數據來源於人類軌跡產生的數據,包括在現代工業製造鏈中,從采購,生產,物流與銷售市場的內部流程以及外部互聯網訊息等,都是此類大數據的戰場。通過行為軌跡數據與設備數據的結合,大數據可以幫助我們實現客戶的分析和挖掘,它的應用場景包括了實時核心,交易,服務,後台服務等。
2
關注#2 -數據的關系
數據必須要放到相應的環境中一起分析,這樣才能了解數據之間的關系,可以分析出問題的根本原因(root cause)。譬如,每一款新機型在交付給航空公司之前都會接受一系列殘酷的飛行測試。極端天氣測試就是多項嚴酷的測試之一。該測試的目的是為了確保飛機的發動機、材料和控制系統能在極端天氣條件下正常運行。
問題的處理關鍵在於找到產生問題的根源,而以知錯誤的消除,關鍵在於解決方案的可靠有效。一旦找到並確定了根本原因,同時產生了可接受的應急措施,就可把問題當成一個已知錯誤來處理。問題調查的過程一定需要收集所有可用,與事件相關的信息來確定並消除引起事件和問題的根本原因。數據採集與分析必須要事件/問題發生的環境數據結合。
3
關注#3 -數據的收益
對於數字化轉型的其他方面而言,大數據不僅要關注實際數據量的多少,而最重要的是關注在大數據的處理方法在特定的場合的應用,讓數據產生巨大的創新價值。如果離開了收益考慮或投資回報的設計,一味尋求大數據既無法落地也無法為企業創造價值。
工業大數據分析的定義
生產執行系統(MES)與飛機發動機 健康 管理系統如出一轍。我們可以從工廠的生產中,實時採集到海量的流程,變數,測量結果等數據。這些數據來源的原因都是因為在製造環境中,設備或資產連接後所產生的現象。然而基於大量數據集而生成的報表,或是基礎統計的分析並不足以稱之為製造業的大數據分析。
所以如果製造業大數據分析不僅僅意味著數據的量,作為一個行業,我們應該如何定義製造業的大數據分析?「大數據不僅僅是大量的數據」這句話裡麵包含了多重涵義。
當代大數據處理技術的價值在於技術進步,同時也是因為技術進步,使大數據成為商業中有價值的核心驅動因素。作為智能製造的三駕馬車之一,工業大數據分析已經被多數的製造企業所認知並接受。許多製造業企業認為自己在生產運營方面也累積了大量的數據,是時候可以用到大數據了。
數據類型的多樣性
大數據不僅僅是大量的數據的堆積。大數據的重要屬性之一,便是,人們設法收集,並弄清楚,不斷變化的數據類型。如果只是大量採集同一類型的數據的話,再大的數據量都不能稱之為大數據。
數據必須包括高度可變性和種類多樣性。製造工廠中存在無數的大數據應用,但並不包括簡單地分類和展示一連串的流程測量結果,這些工作基本的統計展現就可以完成。一些大數據資料庫或數據湖的構成部分數據類型也是文本信息、圖像數據、地理或地質信息和非結構信息,例如,通過社交媒體或其他協作平台獲得的數據類型。
製造業信息結構概括起來分為兩層,一個是管理層,一個是自動化層。從經營管理,生產執行與控制三個緯度來實現決策支持、管理、生產執行、過程式控制制以及設備的連接與感測。製造業中大數據分析是指利用通用的數據模型,將管理層與自動化層的結構性系統數據與非結構性數據結合,進而通過先進的分析工具發現新的洞見。
大數據分析對生產的意義
製造業的創新的核心就是要依託大量的前沿 科技 。先進的技術是創新的手段。在新技術的支持下,可以通過一體化的製造運作管理系統MOM將企業管理應用系統,例如ERP,MES等系統與工業自動化的相關系統整合為一體。
從兩化融合的角度來看,信息系統供應商要從企業的主信息系統提供商定位來做好規劃、標准、功能設計、實施策略的統一性工作。協助企業做好風險控制,降低投資,降低操作維護成本,實現企業信息系統全集成。
❽ 工業大數據是什麼
工業大數據是工業化所產生的所有費用。
❾ 工業大數據是什麼工業大數據公司如何選擇
工業大數據是指涵蓋工業領域中整個產品的全生命周期
❿ 工業大數據是什麼,及其對企業未來發展的作用
1、工業大數據是什麼?
工業大數據是指涵蓋工業領域中整個產品的全生命周期,所產生的各類數據及相關技術和應用的總稱。
2、這些數據對未來企業的作用
在這里就舉兩個例子來說明,當然也是鑒於篇幅的關系,不能把所有的工業數據的應用都分享出來。
首先是產品的生產流程和進度的工業數據,這個工業數據主要是提供給生產計劃部門和銷售部門使用的,例如生產計劃部門可以根據一個產品的生產流程制定詳細的生產結合,並評估每個流程節點的生產周期,生產成本等等,以便快速的協調生產計劃,合理控制生產周期。
而生產進度的工業數據可以讓銷售部門的銷售人員更加對客戶的產品形成控制力,同時也可以實時的將這些生產進度數據分享給客戶知悉,從而堅定客戶對我們的信心,這對於生產訂單的實施和後續訂單的吸引都有非常大的好處。
再例如產品質量的工業數據,我們可以通過對每個產品,以及產品對應的工藝流程來分門別類的統計與質量相關的合格率,廢品率,不合格類型,報廢類型等等,通過這些數據來提升企業生產能力,從而提升企業的產品質量和縮短企業的產品生產周期,甚至大幅度的降低企業生產成本。
而如果是傳統的製造企業的話,雖然很多企業也在對一些工業數據進行手工採集和製表歸類,但是如何更好的去應用就是一個非常大是問題了,甚至根本就從來都沒有使用過。