導航:首頁 > 網路數據 > 大數據時代的思維方式包括

大數據時代的思維方式包括

發布時間:2023-08-01 07:12:37

① 什麼是大數據時代的思維

什麼是大數據時代的思維

一百多年前,汽車行業是第一個真正引入大規模生產概念的行業。那些以前買不起車的美國工薪階層,突然承擔得起汽車這個富人的專屬玩具了。福特T型車讓成千上萬美國家庭擁有汽車。但大規模製造也有其局限性,福特先生說過,你可以買到各種色彩的車,但紅色、綠色都不可能,只能是黑色。大規模生產讓數以百計的人買得起商品,但商品本身卻是一模一樣的。

我們面臨這樣一個矛盾:手工製作的產品漂亮無比卻非常昂貴;與此同時,量產化的商品價格低廉,但無法完全滿足消費者的需求。

我認為下一波的改革是大規模定製,為大量客戶定製產品和服務,成本低、又兼具個性化。比如消費者希望他買的車有紅色、綠色,廠商有能力滿足要求,但價格又不至於像手工製作那般讓人無法承擔。

因此,在廠家可以負擔得起大規模定製帶去的高成本的前提下,要真正做到個性化產品和服務,就必須對客戶需求有很好的了解,這背後就需要依靠大數據技術。

數據能告訴我們,每一個客戶的消費傾向,他們想要什麼,喜歡什麼,每個人的需求有哪些區別,哪些又可以被集合到一起來進行分類。大數據是數據數量上的增加,以至於我們能夠實現從量變到質變的過程。舉例來說,這里有一張照片,照片里的人在騎馬。這張照片每一分鍾,每一秒都要拍一張,但隨著處理速度越來越快,從1分鍾一張到1秒鍾1張,突然到1秒鍾10張後,就產生了電影。當數量的增長實現質變時,就一張照片變成了一部電影。

讓我來告訴大家,美國有一家創新企業Decide.com。它可以幫助人們做購買決策,告訴消費者什麼時候買什麼產品,什麼時候買最便宜。預測產品的價格趨勢。這家公司背後的驅動力就是大數據。他們在全球各大網站上搜集數以十億計的數據,然後幫助數以十萬計的用戶省錢,為他們的采購找到最好的時間,提高生產率,降低交易成本,為終端的消費者帶去更多價值。

在這類模式下,盡管一些零售商的利潤會進一步受擠壓,但從商業本質上來講,可以把錢更多地放回到消費者的口袋裡,讓購物變得更理性。這是依靠大數據催生出的一項全新產業。這家為數以十萬計的客戶省錢的公司,在幾個星期前,被ebay以高價收購。

再舉一個例子,SWIFT是全球最大的支付平台,在該平台上的每一筆交易都可以進行大數據的分析。他們可以預測一個經濟體的健康性和增長性。比如,該公司現在為全球性客戶提供經濟指數,這又是一個大數據服務。

大數據有三大特點: 更多,更亂,但內部有關系可循。

如果拍一張照片,我需要對著某一個人,好比說拍陳部長的照片,如果焦點只對准他,那其他的人物在照片里就會模糊掉。我會得到陳部長的所有信息,但是其他觀眾的信息就過濾掉了。我們採集信息的時候也要做決策,到底要回答什麼問題,採集什麼數據,因為一旦數據採集完畢,就無法重新問另外的問題。

但今天我們已經擁有全新的照相技術了,一張照片里可以把對角所有事物,包括所有的數據、光線都會被拍攝進去。這樣,我任意點一個地方,它都能變得清晰。

為什麼要這么做呢?方便決策。

我可以在照片生成之後再決定我究竟要什麼,因為這些數據包含所有的答案。不要把自己限制於眼前的問題,要為有前瞻性,把其他有可能出現的問題也給囊括進去。這是一個非常創新的辦法,同時很清晰地告訴我們大數據能夠做什麼。我可以跟大家分享一個秘密,如果你把照相機拿出來仔細看,可以看到這是中國製造。

在擁有如此多的數據以後,接下來我們面對的數據質量問題。

為了避免混亂,我們需要找到數據之間的關聯性。

舉個實際生活中的例子,大約20年前,亞馬遜剛成立時,傑夫·貝索斯讓50個書評員來為他賣書,他意識到不僅僅可以請人來寫書評,還可以用數據技術來提供圖書推薦。起初他使用的是小數據,不是大數據,把客戶進行分類,比如說有人對中國旅遊或者是對園藝感興趣,系統會自動提供推薦。他的同事告訴他,剛剛開始使用這個數據推薦時,使用體驗並不好;在進一步分析後,亞馬遜決定不對人進行分類,而是對用戶的需求分類。這個做法做法非常成功,以至於到今天,推薦系統為亞馬遜帶去30%的銷售收入。

這就是數據收集和再處理。亞馬遜有交易數據,每買一本書就是一個交易,然後對這個數據進行分析。但今天我們已不再滿足於交易數據了,轉而收集起溝通數據。你看了某一個書評、某一個交流會給商家更多的信息和細節。

同時,大數據也重構了傳統零售業,是未來零售業變革的催化劑。比如使用谷歌眼鏡,消費者不需要屏幕了,因為下一代的眼鏡會更好地理解消費者看到什麼,知道如何更好地抓住人們的視線。對於零售商而言,消費者眼中看到的信息是極具價值的資產。賣家就可以了解大家在看什麼樣的廣告,什麼樣的產品,在路過櫥窗時究竟看了一些什麼。

數據的產生和收集本身並沒有直接產生服務,最具價值的部分在於:當這些數據在收集以後,會被用於不同的目的,數據被重新再次使用。

大數據的一大優點就是數據可以被重復使用。比方說這家公司實時車輛交通數據採集商Inrix,該公司目前有1億個手機端用戶。Inrix可以幫助你開車,避開堵車,為司機呈現路的熱量圖,紅的就表面堵車。如果只提供數據,這個產品沒什麼特色,

但值得一提的是,Inrix並沒有用交警的數據,這個軟體的每位用戶在使用過程中會給伺服器發送實時數據,比如走的多快,走到哪裡,這樣每個客戶都是探測器。

這里還有更大的秘密,Inrix可以重復使用數據。比如它了解到周末堵車時,哪裡有堵車哪裡有更好的銷售,他們就可以把這樣的數據提供給投資公司,投資公司根據這些數據對零售業再投資,這樣的服務以前是從來不存在的。

那麼,大數據可以如何為創新企業所用?

你覺得之前成立新公司需要大筆資金,但事實並非如此。Inrix一開始並沒有錢,如果你想在大數據時代獲得成功,你已經不需要大的生產基地,大的倉庫了。你只需數據,只要擁有數據,對其進行分析就可以了。有雲存儲的話,這個成本就更低。Inrix在成立之初根本沒有伺服器和電腦,他們只是租用了雲服務,也不需要很多的啟動資金,他們只是有這樣一個產品想法。

大數據時代的思維方式是:每天早上起來想一下,這么多數據我能用來干什麼,這些價值在哪裡可以找到,能不能找到一個別人以前都沒有做過的事情。你的想法和思路,是最重要的資產。

大數據的思維方式也可以幫助政府為大家提供更好更有效的服務,好比說我們可以通過大數據來確定哪些地方會有火災。以前防火檢查員只有13%的時間可以准備預測,現在他們找到火災隱患的概率達到了70%,比以前提高了6倍。將效率提高6倍是一個巨大無比的進步,未來的公共服務業可以由此獲得更多便利。

Target是一家非常大的美國零售公司,他們已有大數據的分析。

有一天,一個電話打進來,是一位非常生氣的客戶,這個客戶說公司送給他17歲的女兒一個折扣券,這個產品是尿布或者是避孕葯,這位客戶說:「我17歲的女孩子根本不需要,我需要你來道歉。」幾天以後,客戶自己跑來道歉,他說你說的很准,我的女兒真的懷孕了。因為懷孕的女性會有不同的生活習慣,會買不同的東西,我們自己有時候都不知道他們已經懷孕了,而Target反而知道了。

這家公司就用這些信息為客戶推薦產品,然後給折扣券。為什麼要講這個例子呢?因為美國很多客戶感到緊張,Target有這樣的能力來了解他們的生活中究竟發生了一些什麼。

這意味著大數據的另一個關鍵點,要提高客戶對你的信任。

舉個例子,大數據時代美國運通有這樣一個功能,你給他們打電話的話,他們會知道你是誰,好比說你的電話號碼跟你的姓名相關。如果在電話里說:你好嗎?維克托先生,我能為你做什麼,這會嚇著客戶,因為他不知道為什麼你知道他的名字。營造信任很重要。我相信你的過程中,也希望你們相信我,所以我們做大數據分析的時候,客戶需要能夠信任服務供應商,而服務供應商也需要表現出來為什麼他是值得信任的。

這樣一個信任也不應該被打碎,企業應該要知道哪些事情可以做,哪些事情不能做,客戶的信任將是最珍貴的資產。

什麼樣的服務行業會從大數據中獲益?

其實所有的服務行業都可能從中獲益,即便是你覺得和大數據沒有關系的也可以從中獲益,好比說醫療服務、教育、學習。

我正在寫一本新的書,明年的上半年會出版,還是大數據以及相關的服務業。明年你就知道了,這本書裡面會提到大數據對服務業很重要,因為服務業將會面對巨大的改變,這不僅僅是效率,大數據會為各行各業帶來效率,而大數據對於服務業來說不僅僅是效率,我們更多看到將是創新。我們會有越來越多的創新想法,來提供新的產品和服務,這樣的話可以讓經濟更好地發展,我們以前是從來沒有看到過的。

以上是小編為大家分享的關於什麼是大數據時代的思維的相關內容,更多信息可以關注環球青藤分享更多干貨

② 大數據時代,大學生應該具備什麼樣的大數據思維

在大數據時代,身為一個大學生應該具有的大數據思想如下:
1.要學會利用所有的數據,而不是部分數據,要知道這是全體數據,而不是隨機抽樣
2.接受不準確性,唯有接受不準確性,才能打開另一扇門,就是不是准確性,而是混合的,混雜的
3.不是所有的都要知道現象背後的原因,而是要讓數據它自己「發言」,這種關系既不是因果關系,也不是必然關系
大數據是當下比較高級的一種技術,而且發展越來越全面,涉及了很多的領域。它的實質是收集,整理海量數據,當代大學生身處大數據時代,應該具有收集整理數據的思維,通過對於收集、運算,推動新興技術的產生與發展,為造福人類而不斷努力奮斗。

③ 大數據對人們思維模式的影響有哪些

大數據對人們思維模式的影響內容包括:

總之,大數據對人們思維模式的影響包括但不限於上述幾點,它需要人們具備更強的數學和統計學知識、編程能力、資料庫知識、可視化能力、統計思維、模型思維、數據挖掘能力和協同思維等。

④ 大數據思維包括哪些主要內容

一、數據核心原理

從「流程」核心轉變為「數據」核心

大數據時代,計算模式也發生了轉變,從「流程」核心轉變為「數據」核心。hadoop體系的分布式計算框架已經是「數據」為核心的範式。非結構化數據及分析需求,將改變IT系統的升級方式:從簡單增量到架構變化。大數據下的新思維——計算模式的轉變。

例如:IBM將使用以數據為中心的設計,目的是降低在超級計算機之間進行大量數據交換的必要性。大數據下,雲計算找到了破繭重生的機會,在存儲和計算上都體現了數據為核心的理念。大數據和雲計算的關系:雲計算為大數據提供了有力的工具和途徑,大數據為雲計算提供了很有價值的用武之地。而大數據比雲計算更為落地,可有效利用已大量建設的雲計算資源,最後加以利用。

科學進步越來越多地由數據來推動,海量數據給數據分析既帶來了機遇,也構成了新的挑戰。大數據往往是利用眾多技術和方法,綜合源自多個渠道、不同時間的信息而獲得的。為了應對大數據帶來的挑戰,我們需要新的統計思路和計算方法。
二、數據價值原理

由功能是價值轉變為數據是價值

大數據真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。

例如:大數據的真正價值在於創造,在於填補無數個還未實現過的空白。有人把數據比喻為蘊藏能量的煤礦,煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」,價值含量、挖掘成本比數量更為重要。不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
三、全樣本原理

從抽樣轉變為需要全部數據樣本

需要全部數據樣本而不是抽樣,你不知道的事情比你知道的事情更重要,但如果現在數據足夠多,它會讓人能夠看得見、摸得著規律。數據這么大、這么多,所以人們覺得有足夠的能力把握未來,對不確定狀態的一種判斷,從而做出自己的決定。這些東西我們聽起來都是非常原始的,但是實際上背後的思維方式,和我們今天所講的大數據是非常像的。

舉例:在大數據時代,無論是商家還是信息的搜集者,會比我們自己更知道你可能會想干什麼。現在的數據還沒有被真正挖掘,如果真正挖掘的話,通過信用卡消費的記錄,可以成功預測未來5年內的情況。統計學里頭最基本的一個概念就是,全部樣本才能找出規律。為什麼能夠找出行為規律?一個更深層的概念是人和人是一樣的,如果是一個人特例出來,可能很有個性,但當人口樣本數量足夠大時,就會發現其實每個人都是一模一樣的。

⑤ DT時代,大數據的基本思維主要體現在哪幾個方面

1 大數據思維的整體性
隨著科技的不斷創新,進入大數據時代的同時必然帶動著大數據思維由一元思維升級至二元思維,目前根據人類思維的轉變模式進行分析,其依然進行至多元思維狀態,即追求和諧穩定社會的模式,但是研究大數據思維的發展進程發現,大數據的二元思維模式是一種高效率並適合現今社會發展的思維模式,其追求效率性、相關性、概率性,為創新發展提高了效率。根據當下社會的需求及其社會的快節奏發展,大數據思維已然在各領域發展處於主導地位,由其基本特徵層面分析,大數據思維主要特徵為整體性,整體性的理論基礎在於人類認識世界的能力在自然觀中的不斷變革而體現,現今社會通過人類對於整體數據的整合及分析能力進行體現,大數據時代,整體性大數據思維模式成為解決問題的首選為必然趨勢及結果,其原因在於整體性思維模式能夠更加高效的完成復雜的數據統計及分析。以我國人口普查為例,我國近三次人口普查時間間隔為十年,而面對我國龐大的人口數量,大數據思維在數據統計中佔領了絕對優勢,據悉我國人口普查總投入超過六億元人民幣,以2010年進行的人口普查數據分析,我國耗費了巨大的人力財力以及時間,倘若運用大數據進行人口普查,以其優勢進行僅使用百分之一的抽樣調查進行數據分析,將大大減少人口普查為政府帶來的難題。
2 大數據思維的互聯性
「一切皆可量化。」道格拉斯。相對微觀層面分析大數據思維特徵,較為典型的為切合現今社會及科技發展的量化互聯思維,量化為具體或明確目標的一種表述,而互聯代表著兩種事物間的連接,其作為大數據思維微觀層面的一種表達方式,更加說明大數據思維的重要性,知名投資人孫正義對於大數據時代的發展提出:「要麼數字化,要麼死亡。」直接地表達出大數據思維目前所處的地位,研究發現,數字信息成為時代發展的代表已成為必然趨勢,而量化思維為數字化特徵帶來的必然思維結果,換言之,量化可以解釋為共性語言描述和解釋世界的一種方式,其體現在於充分運用最新技術手段,對於各個領域進行信息全面定量採集以及信息互通,打通信息間隔閡,並進行全新的信息整合,實現分析實用性及數據科學性,創造更據價值的數據應用和信息資產。目前,大數據的運用不僅體現在網路平台當中,同時在人們的細微生活中、就業環境以及生態保護范圍內都做到了廣泛適用,gartner公司於2015年運用大數據分析出當下及未來人們就業環境,其調查結果表明,2015年全球范圍內數據崗位的需求量高達440萬,而2018年全球范圍內僅大數據就業背景管理人員的缺乏將高達150萬人,案例表明,全球范圍的人才緊缺將成為必然趨勢並不斷增加,該案列清晰的體現出大數據環境下大數據思維的量化互聯性,並且為未來就業環境做出了精準的預測。
3 大數據思維的價值性
由大數據思維的本質進行分析,大數據思維具有價值化特徵,大數據時代信息的不斷整合及分析已然使得信息及數據量化及互聯轉變為多維度的發展狀態,換言之,大數據思維滲透至各個領域及行業的不同維度是大數據發展的初始動機和直接目的,現今社會看待其價值化特徵將其價值性總結為大數據思維的本質,同時,萬物的量化互聯性及其整體性使得其價值性影響了多維度的發展,由此凸顯了數據及大數據思維的創造性及重要性。通過對於事實的研究證明,大數據時代背景下,其價值化特徵及其價值性的意義正在不斷演進並處於不斷被挖掘的狀態,各個領域大數據思維模式相繼被接受和適用也是大數據發展帶來的益處之一,隨著大數據思維的不斷開發和研究,其運用不僅在處理數據分析上實行了高效率,也對於事件及數據的預測上實現了精準並具有概率性的分析結果,google公司於2008年運用大數據思維對於流感爆發地點及人數進行准確預測的經典案列分析,大數據思維對於社會發展體現出其必要的價值性,並且改變了社會對於大數據的看法,可謂大數據的運用成功到達了一個全新的高度,Google公司通過對於數十億網路搜索請求的數據整合,對世界各地區的流感做出預測,該項目的成功引起了各國對於大數據的使用,同時帶動了人們的大數據思維及思考模式,將大數據思維上升至被社會認可的高度。
根據現今社會發展現狀分析,客觀角度說明我國以基本進入大數據時代,大數據思維的特徵已然體現在社會各領域當中,並且伴隨著多維度的運用,因此大數據思維全面運用指日可待,高級思維帶動我國科技及經濟的發展勢在必行。隨著人工智慧的不斷推出以及數據分析的不斷升級,並且基於大數據思維為社會帶來的發展前景研究,大數據思維引領我國科技發展已成為未來的必然趨勢。

⑥ 大數據所帶來的四種思維方式的轉變

隨著近年來大數據技術的快速發展,大數據所創造的價值深刻改變了我們的生活、工作和思維方式。大數據研究專家舍恩伯格指出,大數據時代,人們對待數據的思維方式會發生如下三個變化:

事實上,大數據時代帶給人們的思維方式的深刻轉變遠不止上述三個方面。大數據思維最關鍵的轉變在於從自然思維轉向智能思維,使得大數據像具有生命力一樣,獲得類似於「人腦」的智能,甚至智慧。

以下將介紹大數據技術所帶來的四種思維方式的轉變。

社會科學研究社會現象的總體特徵,以往的采樣方法一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴於采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。

在大數據時代,隨著數據收集、處理、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不採用樣本研究方法,相應地,思維方式也應該從之前的樣本思維轉向總體性思維,從而能夠更加直觀、全面、立體、系統地認識總體狀況。

在大數據時代之前,由於收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會「南轅北轍」的現象,導致數據的准確性大大降低,從而造成分析的結論與實際情況背道而馳,因此,就必須十分注重數據樣本的精確思維。

然而,在大數據時代,得益於大數據技術的突破,大量的結構化、非結構化、異構化的數據能夠得到儲存、處理、計算和分析,這一方面提升了我們從海量數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。

在大數據時代,思維方式要從精確思維轉向容錯性思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。

在大數據世界未出現時,人們往往執著於現象背後的因果關系,試圖通過有限樣本數據來剖析其中的內在關聯關系。數據量小的另一個缺陷就是有限的樣本數據無法反映出事物之間的普遍性的關聯關系。而在大數據時代,人們可以通過大數據挖掘技術挖掘與分析出事物之間隱蔽的關聯關系,獲得更多的認知與洞見,運用這些認知與洞見就可以幫助我們捕捉現在和預測未來,而建立在關聯關系分析基礎上的預測分析正是大數據的核心議題之一。通過關注線性的關聯關系及復雜的非線性關聯關系,可以幫助人們看到很多以前不曾注意的數據之間存在的某些聯系,還可以掌握以前無法理解的復雜技術和社會動態,關聯性關系甚至可以超越因果關系,成為我們了解這個世界的更好視角。

在大數據時代,思維方式要從因果思維轉向相關思維,努力顛覆千百年來人類形成的傳統思維模式和固有偏見,才能更好地分享大數據帶來的深刻洞見。

不斷提高機器的自動化、智能化水平始終是人類社會長期不懈努力的方向。計算機的出現極大地推動了自動控制、人工智慧和機器學習等新技術的發展,「智能機器人」技術研發也取得了突飛猛進的成果並開始一定應用。應該說,自進入到信息社會以來,人類社會的自動化、智能化水平已得到明顯提升,但始終面臨瓶頸而無法取得突破性進展,機器的思維方式仍屬於線性、簡單、物理的自然思維,智能化水平仍不盡如人意。但是,大數據時代的到來,可以為提升機器智能帶來契機,通過機器學習可以從數據中獲取有價值的學習數據,大數據將有效的推進機器思維方式由自然思維轉向智能化思維,這才是大數據思維轉變的關鍵所在、核心內容。

眾所周知,人腦之所以具有智能、智慧,就在於它能夠對周遭的數據信息進行全面收集、邏輯判斷和歸納總結,獲得有關事物或現象的認識與見解。同樣,在大數據時代,隨著物聯網、雲計算、社會計算、可視技術等的突破發展,大數據系統也能夠自動地搜索所有相關的數據信息,並進而類似「人腦」一樣主動、立體、邏輯地分析數據、做出判斷、提供洞見,那麼,無疑也就具有了類似人類的智能思維能力和預測未來的能力。「智能、智慧」是大數據時代的顯著特徵,大數據時代的思維方式也要求從自然思維轉向智能思維,不斷提升機器或系統的社會計算能力和智能化水平,從而獲得具有洞察力和新價值的東西,甚至類似於人類的「智慧」。

大數據開啟了一個重大的時代轉型。大數據技術正在改變我們傳統的生活以及理解世界的方式,成為新發明和新服務的源泉,而更多的改變正蓄勢待發。大數據時代將帶來深刻的思維轉變,大數據不僅將改變每個人的日常生活和工作方式,改變商業組織和社會組織的運行方式,而且將從根本上奠定國家和社會治理的基礎數據,徹底改變長期以來國家與社會諸多領域存在的「不可治理」狀況,使得國家和社會治理更加透明、有效和智慧。

⑦ 數據驅動的思維方式包含哪五個方面

每日干貨好文分享丨請點擊+關注

歡迎關注天善智能微信公眾號,我們是專注於商業智能BI,大數據,數據分析領域的垂直社區。

對商業智能BI、數據分析挖掘、大數據、機器學習,python,R感興趣同學加微信:fridaybifly,邀請你進入頭條數據愛好者交流群,數據愛好者們都在這兒。

本文作者:天善智能聯合創始人&運營總監 呂品,微信:tianshanlvpin,原文發表於天善智能服務號,歡迎討論交流。

開篇語

看過不少講解大數據思維的文章,文章的一些觀點能夠帶給我很多的啟發,很有見地也很受用。在跟一些企業的負責人聊起大數據項目規劃和建設的時候,發現大家對大數據並不缺少自己的認識和看法,只是這些認識和看法沒有被系統性的組織起來,形成一個比較有深度的思考問題、解決問題的套路。

這篇文章結合我在和一些朋友溝通過程中看到的一些問題,將大數據思維和價值做了一些聚焦和分解。我來拋磚引玉,希望這篇文章能夠讓大家從另外的一個角度去了解和思考一下到底什麼是大數據思維和價值。

這篇文章適合企業高層、即將或者正在規劃大數據項目、思考如何對大數據進行頂層設計、大數據項目管理人員一讀。作為補充,我在此也推薦幾篇文章以豐富大家思考問題的維度(角度):

【概念篇】大數據思維十大核心原理

【分析篇】趨勢 | 大數據應用落地分析

【案例篇】深入解讀民生銀行阿拉丁大數據生態圈如何養成

【案例篇】大數據如何聚焦業務價值,美的大數據建設的啟發

本文作者:呂品 天善智能聯合創始人

本文整理自 2017年3月3日 美雲智數新品發布會數據雲分論壇呂品的演講內容

人人必談大數據

說到大數據,大家並不陌生,從各種自媒體、線上線下沙龍,包括生活中大家經常提起。早在 2010 年之前,國內的很多互聯網公司都已經在處理 「大數據」,只不過那時對大數據還沒有一個清晰的定義。2013 年起,我們注意到在國內大數據這個詞開始火了,火到什麼程度? 舉個例子:我每次回家,家裡的親人朋友都在問我是做什麼的,我說我們是搞商業智能 BI 的,基本上聽不懂。什麼把數據變為信息、信息產生決策,什麼 ETL、報表,幾乎是懵圈的。後來提了一句,我們有一個技術網站,裡面都是玩數據的,比如大數據、數據分析、數據挖掘...。「大數據啊!大數據我知道!」,我問什麼是大數據,回答很簡潔乾脆:「大數據就是數據大唄!」。

其實這種理解不能說錯,只能說不全面,但是從某種角度上來說大數據還是比較深入人心的,「大數據」這三個字起到了一個很好的名詞普及作用,至少不會像商業智能 BI 那樣很難用一句或者幾句話讓大家有個哪怕是很基礎的概念。

大數據 4V

我們經常提到的大數據四大特徵:4個V

Volume 數據容量大:數據量從 GB 到 TB 到 PB 或以上的級別。
Variety 數據類型多:企業在解決好內部數據之後,開始向外部數據擴充。同時,從以往處理結構化的數據到現在需要處理大量非結構化的數據。社交網路數據採集分析、各種日誌文本、視頻圖片等等。
Value 價值高,密度低:數據總量很大,但真正有價值的數據可能只有那麼一部分,有價值的數據所佔比例很小。就需要通過從大量不相關的、各種類型的數據中去挖掘對未來趨勢和模型預測分析有價值的數據,發現新的規律和新的價值。
Velocity 快速化:數據需要快速處理和分析。2010年前後做過一個美國醫療保險的數據遷移項目,有一個 ETL 需要處理該公司幾十年的歷史文件和歷史數據,文件數據量很大,並且邏輯非常復雜,一個流程幾十個包,一趟下來 35 個小時執行完畢。這種情形如果放在現在的互聯網比如電商平台很顯然是不允許的。比如像電商促銷、或者要打促銷價格戰,實時處理傳統的 BI 是無法完成的。對有這種實時處理實時分析要求的企業來說,數據就是金錢,時間就是生命。
我相信上面提到的大數據的四個 V、核心特徵還是比較容易理解的。如果我們不是站在技術層面去聊的話,大家對大數據或多或少都會有一些比較接近和類似的看法,並且在理解和認識上基本也不會有太大的偏差。

但是當我們談到大數據,大家真正關心的問題在哪裡呢? 從技術角度大家可能關心的是大數據的架構、大數據處理用到了什麼樣的技術。但是站在一個企業層面,特別是在著手考察或者規劃大數據項目建設的負責人、企業高層來說,更多關心的應該是下面這幾個問題:

1. 大數據到底能幫我們企業做什麼,或者說能夠帶給我們企業什麼變化。上了大數據對我們有什麼用,會有什麼樣的改變,是經營成本下降、還是幫我們把產品賣的更多?

2. 我們的企業現在能不能上大數據?如果不能上大數據,為什麼,那又需要怎麼做?

3. 我們企業也想跟隨潮流上大數據,問題是要怎麼做。需要准備什麼,關於投入、人才、還缺什麼、需要用到什麼樣的技術?

4. 我們怎麼驗證這個大數據項目是成功還是失敗,我們判斷的標準是什麼?

我相信這些問題都是大家比較關心的一些點,包括我自己。我們目前還是以 BI 分析為主,但我們也會去爬一些外部的數據,後面也在規劃大數據相關的一些項目和開發。

當然大數據這個話題是非常大的,我們很難從一個或者兩個角度把這些問題回答的非常全面。但是我覺得有一點是我們的企業高層或者決策者可以注意的:在規劃和考慮大數據的時候需要具備一定的大數據思維,或者說是面對大數據時我們所要具備的考慮問題和看問題的角度。

大數據思維方式

大數據思維方式我簡單概括為兩個方面:第一個是以數據為核心、數據驅動的思維方式。第二個是業務核心,業務場景化的思維方式。

以數據為核心、數據驅動的思維方式包含這幾個方面:

1. 盡可能完善自己的數據資源。我們手上握有什麼樣的數據資源,我們數據資源的質量如何?

企業需要關注和梳理我們有什麼樣的數據,以前是關注企業的流程,IT的流程、業務流程再造。現在大多數企業這些 IT 基礎和應用的建設都已經完成了,更加關心的應該是在我們的企業里到底握有什麼樣的數據資源,在不同的行業我們的數據主題是不一樣的。

比如電商零售行業,我們考慮更多的可能是消費數據、涉及到用戶、產品、消費記錄。因為我們可以圍繞這些數據比如做用戶畫像、精準營銷、定製化的產品、產品的市場定位分析等等。

比如製造生產行業,我們涉及更多的數據可能是產品本身、我們的生產流程、供應商等。因為我們可以圍繞這些數據比如做我們的生產質量檢查、降低生產成本、工藝流程再造等。

只有了解我們目前自身的數據資源,才能知道我們還缺少哪些數據資源。而這些缺少的數據資源從哪裡來,如何獲得,就是我們在規劃大數據項目的時候是需要解決的。如果缺乏這種意識,等在規劃和上大數據項目的時候你的大數據資源非常有限的。

2. 增加數據觸點、盡可能多的去收集數據,增加數據收集和採集渠道。大數據的建設和大數據分析它是一個迭代的過程,很多的分析場景都是在不斷的探索中找出來的,它有一定的不確定性。正是因為這種不確定性所以才需要我們盡可能收集更多的數據。

現在是移動互聯網時代,人人都是數據的生產者和製造者。比如每天的社交數據、互聯網點擊網路的數據、刷卡消費的數據、電信運營、互聯網運營數據。像我們的製造和生產行業,有自動化的感測器、生產流水線、自動設施的數據等。有些數據放在以前可能不值錢,但是現在看呢?這些數據現在或者在將來的某一天就會變得很有價值。

比如像我最開始提到的那家美國醫療保險公司,我看過他們的 COBOL 代碼注釋都有是七幾年、八幾年前的。他們積累了幾十年的數據,突然在 2010 年前後開始意識到數據的價值了,開始通過數據進行一些變現了。之前知道這些數據的價值嗎?不知道,但是嘗試到數據的甜頭,比如做自己的數據分析,咨詢機構購買一些脫敏的數據,或者給咨詢機構提供數據做市場研究用途。

所以大數據的構建不會是一天兩天的,這個過程會持續很長的時間,我們需要為將來做准備。所以如果你的公司連個最簡單的業務系統,IT 應用系統都沒有,數據連存放的地方都沒有,怎麼能夠上大數據呢?不合理。

數據越多,數據種類越豐富,我們觀察數據的角度維度就越豐富,我們利用大數據從中就能夠發掘出以前更多沒有看到的東西。

3. 數據開放和共享思維。這一點在我們國內其實說起來很容易,但是實際上很難。

去年的時候我去看了一個市公安局的大數據項目(可參看這篇文章 政府大數據面臨的問題和阻力在哪裡?),他們有兩點意識非常好:

1)非常清楚的知道自己擁有哪些數據資源。比如市公安局以及下屬分局、各個支隊各個應用系統的數據:基礎的人口管理、信訪、犯罪信息、情報。包括數據監控所涉及到的鐵路、網吧、民航購票、ETC 卡口等。

2)為了納入更多的社會化數據資源、實現全行業的數據覆蓋,他們准備接入交通、服務、科技信息化、教育、社保、民政等各個行業的數據。包括他們給下面的單位下了數據的指標,每個單位或者每個民警都有這種收集數據的指標,比如哪個單位今天上傳了什麼樣的多少數據,每個月哪個單位上傳的最多,這都是很好的數據收集的意識。

但問題在哪裡?問題在於很多機構比如銀行受國家政策限制很多數據是沒有辦法共享的、還有像教育機構,我憑什麼把數據給你,在行政上大家是並級的機構。

所以這個時候就需要考慮數據開放和共享的思維,在滿足數據安全性的基礎之上我們可以不可以考慮數據互換共享的可能。公安局有的數據一定是教育機構沒有的數據,那麼同樣的教育機構有的數據,公安機構也不一定有。如果兩者數據在某種程度上形成共享,在保證數據安全和不沖突的情況下是可以創造出更多的社會價值的。比如公安局可以提供教育機構關於各個地區犯罪率的信息,包括交通安全事故多發地等,教育機構可以針對

⑧ 大數據思維方式主要有

主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等,它們分別從不同的角度對數據進行挖掘。
分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。
回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。

閱讀全文

與大數據時代的思維方式包括相關的資料

熱點內容
備份到網盤里的文件在哪裡查 瀏覽:807
鴻蒙系統帶病毒的app怎麼安裝 瀏覽:35
iphone6sp發貨問題 瀏覽:197
手機迅雷BT文件已移除 瀏覽:766
文泰保存文件怎麼找不到 瀏覽:608
蘋果賬號沒有充值買了東西嗎 瀏覽:358
匯編中數據在內存中如何分布 瀏覽:308
資料庫單用戶模式 瀏覽:681
c生成utf8格式文件 瀏覽:40
電腦什麼app可以免費看電視 瀏覽:573
手機文件的後綴名 瀏覽:81
excel如何找到獲取數據按鈕 瀏覽:688
本電腦的所有共享文件夾在哪裡 瀏覽:444
網路營銷投資管理有哪些 瀏覽:665
手機java插件 瀏覽:598
mac編程文件為什麼文件位置找不到 瀏覽:273
手術教程APP有哪些 瀏覽:488
10歲女孩qq名字可愛 瀏覽:496
微信轉賬中轉專用帳戶5 瀏覽:355
vb獲取系統文件夾 瀏覽:345

友情鏈接