導航:首頁 > 網路數據 > 大數據分析知識

大數據分析知識

發布時間:2023-07-31 13:37:52

1. 什麼是大數據分析

1、大數據分析是指對規模巨大的數據進行分析。
2、Analytic Visualizations(可視化分析
3、Data Mining Algorithms(數據挖掘演算法)
4、Predictive Analytic Capabilities(預測性分析能力)
5、Semantic Engines(語義引擎)
6、Data Quality and Master Data Management(數據質量和數據管理)數據質量和數據管理是一些管理方面的最佳實踐。
1. 大數據分析是指對規模巨大的數據進行分析。大數據可以概括為4個V, 數據量大(Volume)、速度快(Velocity)、類型多(Variety)、真實性(Veracity)。大數據作為時下最火熱的IT行業的詞彙,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等等圍繞大數據的商業價值的利用逐漸成為高信行業人士爭相追捧的利潤焦點。隨著大數據時代的來臨,大數據分析也應運而生。大數據技術挖掘訓練,王道海。下面是大數據分析的五個基本方面
2. Analytic Visualizations(可視化分析),管是對數據分析專家還是普通用戶枝老,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數戚搭輪據自己說話,讓觀眾聽到結果。
3. Data Mining Algorithms(數據挖掘演算法)可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
4. Predictive Analytic Capabilities(預測性分析能力)數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
5. Semantic Engines(語義引擎)我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
6. Data Quality and Master Data Management(數據質量和數據管理)數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。

2. 大數據分析應該掌握哪些基礎知識

大數據分析師應該要學的知識有,統計概率理論基礎,軟體操作結合分析模型進行實際運用,數據挖掘或者數據分析方向性選擇,數據分析業務應用。
1、統計概率理論基礎
這是重中之重,千里之台,起於壘土,最重要的就是最下面的那幾層。統計思維,統計方法,這里首先是市場調研數據的獲取與整理,然後是最簡單的描述性分析,其次是常用的推斷性分析,方差分析,到高級的相關,回歸等多元統計分析,掌握了這些原理,才能進行下一步。
2、軟體操作結合分析模型進行實際運用
關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,Stata,R,SAS等。首先是學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
3、數據挖掘或者數據分析方向性選擇
其實數據分析也包含數據挖掘,但在工作中做到後面會細分到分析方向和挖掘方向,兩者已有區別,關於數據挖掘也涉及到許多模型演算法,如:關聯法則、神經網路、決策樹、遺傳演算法、可視技術等。
4、數據分析業務應用
這一步也是最難學習的一步,行業有別,業務不同,業務的不同所運用的分析方法亦有區分,實際工作是解決業務問題,因此對業務的洞察能力非常重要。(2)大數據分析知識擴展閱讀
分析工作內容
1、搜索引擎分析師(Search Engine Optimization Strategy Analyst,簡稱SEO分析師)是一項新興信息技術職業,主要關注搜索引擎動態,修建網站,拓展網路營銷渠道,網站內部優化,流量數據分析,策劃外鏈執行方案,負責競價推廣。
2、SEO分析師需要精通商業搜索引擎相關知識與市場運作。通過編程,HTML,CSS,javaScript,MicrosoftASP.NET,Perl,PHP,Python等建立網站進行各種以用戶體驗為主同時帶給公司盈利但可能失敗的項目嘗試。

3. 大數據分析應該掌握哪些基礎知識

Java基礎、 NIO 、MySQL、 JDBC、 HTML5與CSS3、 jQuery 、AJAX&JSON、 Servlet、 JSP 、Cookie&Session、 Spring 、SpringMVC、 MyBatis 、Maven、 Redis 、Git/Git Hub、 Shell 、linux、 Hadoop 、Hive、Zookeeper、 Java8 、Scala、 Spark Core、 Spark SQL 、Spark Streaming 、ElasticSearch、 Kafka、HBase 、Java9 、Java10、 MySQL優化 、JVM原理 、JUC多線程 、CDH版Hadoop、 Impala、Flume 、Sqoop、 Azkaban、 Oozie 、HUE、 Kettle 、Kylin、 Spark Mllib機器學習、 Flink、 Python、 SpringBoot、 Hadoop3.x新特性 、ClickHouse、Ku、 Presto 、Druid 、Ambari、 DataX、 Logstash 、Kibanna、 數據結構......

4. 大數據分析需要哪些知識

數據分析需要掌握的知識:
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。

5. 大數據分析學習什麼內容

大數據分析工具介紹 
前端展現 
用於展現分析的前端開源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。 用於展現分析商用分析工具有Style Intelligence、RapidMiner Radoop、Cognos, BO, Microsoft Power BI, Oracle,Microstrategy,QlikVie、 Tableau 。
國內的有BDP,國雲數據(大數據魔鏡),思邁特,FineBI等等。
數據倉庫 
有Teradata AsterData, EMC GreenPlum, HP Vertica 等等。
數據集市 
有QlikView、 Tableau 、Style Intelligence等等。
大數據分析步驟 
大數據分析的六個基本方面 
1. Analytic Visualizations(可視化分析) 
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數據挖掘演算法) 
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. Predictive Analytic Capabilities(預測性分析能力) 
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎) 
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
 5.Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
6.數據存儲,數據倉庫 
數據倉庫是為了便於多維分析和多角度展示數據按特定模式進行存儲所建立起來的關系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的基礎,承擔對業務系統數據整合的任務,為商業智能系統提供數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和訪問,為聯機數據分析和數據挖掘提供數據平台。

6. 大數據分析是指的什麼

大數據分析是指對規模宏彎巨大的數據進行分析。

對大數據bigdata進行採集、清洗、挖掘、分析等,大數據主要有數據採集、數據存儲、數據管理和數據分析與挖掘技術等:

數據處理:自然語言處理技術。

統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、多元回歸分析、逐步回歸、回歸預測與殘差分析等。

數據挖掘:分類(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或悉鍵關聯規則()、聚類(Clustering)、描述和可視化、DescriptionandVisualization)、復雜數據類型挖掘(Text,Web,圖形圖像,視頻,音頻等)。

隨著大數據的發展,大數據分析廣泛應用在各行各業,其中金融與零售行業應用較為廣泛。

大數據分析方法:

大數據挖掘:定義目標,並分析問題

開始大數據處理前,應該定好處理數據的目標,然後才能開始數據挖掘。

大數據挖掘:建立模型,採集數據

可以通過網路爬蟲,或者歷年的數據資料,建立對應的數據挖掘模型,然後採集數據,獲取到大量的原始數據。

大數據挖掘:導入並准備數據

在通過工具或者腳本,將原始轉換成可以處理的數據,

大數據分析演算法:機器學習

通過使用機器學習的方法,處理採集到的數據。根據具體的問題來定。這里的方法就特別多。

大數據分析目標:語義引擎蔽陸悶

處理大數據的時候,經常會使用很多時間和花費,所以每次生成的報告後,應該支持語音引擎功能。

大數據分析目標:產生可視化報告,便於人工分析

通過軟體,對大量的數據進行處理,將結果可視化。

大數據分析目標:預測性

通過大數據分析演算法,應該對於數據進行一定的推斷,這樣的數據才更有指導性。

7. 什麼叫做大數據分析

大數據分析就是指對規模巨大的數據進行數據分析,大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,而數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。

8. 大數據分析應該掌握哪些基礎知識呢

前言,學大數據要先換電腦:

保證電腦4核8G內存64位操作系統,盡量有ssd做系統盤,否則卡到你喪失信心。硬碟越大越好。
1,語言要求

java剛入門的時候要求javase。

scala是學習spark要用的基本使用即可。

後期深入要求:
java NIO,netty,多線程,ClassLoader,jvm底層及調優等,rpc。
2,操作系統要求
linux 基本的shell腳本的使用。

crontab的使用,最多。

cpu,內存,網路,磁碟等瓶頸分析及狀態查看的工具。

scp,ssh,hosts的配置使用。

telnet,ping等網路排查命令的使用
3,sql基本使用
sql是基礎,hive,sparksql等都需要用到,況且大部分企業也還是以數據倉庫為中心,少不了sql。

sql統計,排序,join,group等,然後就是sql語句調優,表設計等。

4,大數據基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等這些框架的作用及基本環境的搭建,要熟練,要會運維,瓶頸分析。

5,maprece及相關框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件輸入格式,map數目,rece數目,調優等。
6,hive和hbase等倉庫
hive和hbase基本是大數據倉庫的標配。要回用,懂調優,故障排查。

hbase看浪尖hbase系列文章。hive後期更新。

7,消息隊列的使用
kafka基本概念,使用,瓶頸分析。看浪尖kafka系列文章。

8,實時處理系統
storm和spark Streaming

9,spark core和sparksql
spark用於離線分析的兩個重要功能。

10,最終方向決策
a),運維。(精通整套系統及故障排查,會寫運維腳本啥的。)

b),數據分析。(演算法精通)

c),平台開發。(源碼精通)

自學還是培訓?
無基礎的同學,培訓之前先搞到視頻通學一遍,防止盲目培訓跟不上講師節奏,浪費時間,精力,金錢。
有基礎的盡量搞點視頻學基礎,然後跟群里大牛交流,前提是人家願意,
想辦法跟大牛做朋友才是王道。

閱讀全文

與大數據分析知識相關的資料

熱點內容
備份到網盤里的文件在哪裡查 瀏覽:807
鴻蒙系統帶病毒的app怎麼安裝 瀏覽:35
iphone6sp發貨問題 瀏覽:197
手機迅雷BT文件已移除 瀏覽:766
文泰保存文件怎麼找不到 瀏覽:608
蘋果賬號沒有充值買了東西嗎 瀏覽:358
匯編中數據在內存中如何分布 瀏覽:308
資料庫單用戶模式 瀏覽:681
c生成utf8格式文件 瀏覽:40
電腦什麼app可以免費看電視 瀏覽:573
手機文件的後綴名 瀏覽:81
excel如何找到獲取數據按鈕 瀏覽:688
本電腦的所有共享文件夾在哪裡 瀏覽:444
網路營銷投資管理有哪些 瀏覽:665
手機java插件 瀏覽:598
mac編程文件為什麼文件位置找不到 瀏覽:273
手術教程APP有哪些 瀏覽:488
10歲女孩qq名字可愛 瀏覽:496
微信轉賬中轉專用帳戶5 瀏覽:355
vb獲取系統文件夾 瀏覽:345

友情鏈接