1. 2015年隨著什麼文件的發布中國正式啟動大數據國家戰略
法律分析:2015年,隨著《促進大數據發展行動綱要》的發布,中國開始正式啟動大數據國家戰略,這一事件標志著發展大數據已經成為中國構建數據強國、推動大數據治國的一個必然選擇。
法律依據:《促進大數據發展行動綱要》 一、發展形勢和重要意義 全球范圍內,運用大數據推動經濟發展、完善社會治理、提升政府服務和監管能力正成為趨勢,有關發達國家相繼制定實施大數據戰略性文件,大力推動大數據發展和應用。目前,我國互聯網、移動互聯網用戶規模居全球第一,擁有豐富的數據資源和應用市場優勢,大數據部分關鍵技術研發取得突破,涌現出一批互聯網創新企業和創新應用,一些地方政府已啟動大數據相關工作。堅持創新驅動發展,加快大數據部署,深化大數據應用,已成為穩增長、促改革、調結構、惠民生和推動政府治理能力現代化的內在需要和必然選擇。
2. 大數據行業2015年年終總結_大數據工作人員年終總結
可參考下文
9個關鍵字寫寫大數據行業2015年年終總結
2015年,大數據市場的發展迅猛,放眼國際,總體市場規模持續增加,隨著人工智慧、物聯網的發展,幾乎所有人將目光瞄準了「數據」產生的價值。行業廠商Cloudera、DataStax以及DataGravity等大數據公司已經投入大量資金研發相灶配關技術,Hadoop供應商Hortonworks與數據分析公司NewRelic甚至已經上市。而國內,國家也將大數據納入國策。
我們邀請數夢工場的專家妹子和你來聊聊2015年大數據行業九大關鍵詞,管窺這一年行業內的發展。
戰略:國家政策
今年中國政府對於大數據發展不斷發文並推進,這標志著大數據已被國家政府納入創新戰略層面,成為亂斗國家戰略計劃的核心任務之一:
2015年9月,國務院發布《促進大數據發展行動綱要》,大力促進中國數據技術的發展,數據將被作為戰略性資源加以重視;
2015年10月26日,在國家「十三五」規劃中具體提到實施國家大數據戰略。
挑戰:BI(商業智能)
2015年對於商業智能(BI)分析市場來說,正隱陪指由傳統的商業智能分析快速進入到敏捷型商業智能時代。以QlikView、Tableau和SpotView為代表的敏捷商業智能產品正在挑戰傳統的IBMCognos、SAPBusinessObjects等以IT為中心的BI分析平台。敏捷商業智能產品也正在進一步細化功能以達到更敏捷、更方便、適用范圍更廣的目的。
崛起:深度學習/機器學習
人工智慧如今已變得異常火熱,作為機器學習中最接近AI(人工智慧)的一個領域,深度學習在2015年不再高高在上,很多創新企業已經將其實用化:Facebook開源深度學習工具「Torch」、PayPal使用深度學習監測並對抗詐騙、亞馬遜啟動機器學習平台、蘋果收購機器學習公司Perceptio同時在國內,網路、阿里,科大訊飛也在迅速布局和發展深度學習領域的技術。
共存:Spark/Hadoop
Spark近幾年來越來越受人關注,2015年6月15日,IBM宣布投入超過3500名研究和開發人員在全球十餘個實驗室開展與Spark相關的項目。
與Hadoop相比,Spark具有速度方面的優勢,但是它本身沒有一個分布式存儲系統,因此越來越多的企業選擇Hadoop做大數據平台,而Spark是運行於Hadoop頂層的內存處理方案。Hadoop最大的用戶(包括eBay和雅虎)都在Hadoop集群中運行著Spark。Cloudera和Hortonworks將Spark列為他們Hadoop發行的一部分。Spark對於Hadoop來說不是挑戰和取代相反,Hadoop是Spark成長發展的基礎。
火爆:DBaaS
隨著Oracle12cR2的推出,甲骨文以全新的多租戶架構開啟了DBaaS(資料庫即服務Database-as-a-Service)新時代,新的資料庫讓企業可以在單一實體機器中部署多個資料庫。在2015年,除了趨勢火爆,12c多租戶也在運營商、電信等行業投入生產應用。
據分析機構Gartner預測,2012年至2016年公有資料庫雲的年復合增長率將高達86%,而到2019年資料庫雲市場規模將達到140億美元。與傳統資料庫相比,DBaaS能提供低成本、高敏捷性和高可擴展性等雲計算特有的優點。
3. 此次的國慶小長假,西安的遊客多嗎
今年中秋、假日期間,西安共接待遊客1474.81萬人次,較去年同比恢復近八成;旅遊收入111.40億元,較去年同比恢復近七成。沉寂了大半年的西安文旅,不僅在這個黃金周迎來了強勢復甦,日新月異的城市形象更具吸引力、更顯生機勃勃。
另外,假日期間的疫情防控、交通秩序、治安維護、環境整治、市場監管、消費引導和應急處置等各項工作一點也沒有放鬆,經過精心部署和強力運行,使得西安文化和旅遊市場呈現出“安全、秩序、質量、效益、文明”的城市秩序,全市未發生重大旅遊安全事故,亦無重大旅遊投訴。
4. 中國大數據產業和企業的問題觀察
中國大數據產業和企業的問題觀察
大數據作為一個新興的產業,一直在處於輿論的風口浪尖。就像互聯網+的概念一樣,大數據被神話了,被送上了「宗教」的神壇。大數據企業總是有一個擔心,生怕大數據被捧得的太高,將來可能會被摔的很慘。2015年中國大數據產業的熱度從貴陽大數據交易所開始,到9月國務院的2015第50號文《促進大數據發展行動綱要》進入高峰。大數據論壇上,數據產品和解決方案被介紹的很多。數據給企業帶來的具體價值、數據應用場景、大數據產業的痛點介紹的很少。中國大數據產業經歷著很多痛苦,大數據產業前景很好,但是大數據企業卻很難做大,很難實現質的飛躍。中國大數據產業的痛點和困難如下。大數據企業眾多而弱小,很難實現產業優勢中國大數據企業大概有200多家,將近60%集中在北京,以小微企業為主,年銷售額達到十億人民幣的企業幾乎沒有。大數據產業處於春秋時代早期,各家諸侯割地而立,每家佔領了一塊小的細分領域,很難做大,都面臨著同行的激烈競爭,有的領域例如輿情監控已成為紅海。大數據企業人數大多在幾十人到幾百人,少有千人以上的企業。沒有一家大數據企業可以統領一個行業,沒有一家企業佔有細分市場10%的份額,沒有一家大數據企業建立了行業標准,領導行業發展。
中國大數據產業處於極度分散狀態,優秀的人才分布在不同企業,很難形成人才合力。各家企業規模小,很難在企業做深做大,很難利用大數據幫助企業實現業務提升。大多數企業的工具和數據很難滿足企業整體的數據要求,中國的數據挖掘和分析產品也很難和國外的產品進行競爭。大數據產業如果要形成產業優勢,必須需要一批領軍企業。參考國外大數據產業,中國在大數據基礎架構,數據產品,數據工具、數據清洗和數據挖掘、數據分析、數據人才都需要產生一批標桿企業。每個領軍企業都規模應該在千人以上,銷售額應該在百億以上,否則很難形成技術和人才優勢,也很難利用大數據幫助客戶實現業務提升。貴陽大數據交易所《2015年中國大數據交易白皮書》提到2014年中國大數據市場規模為767億元。這個數字看上去不錯,估計其實真正和大數據工具和大數據產品相關的不足20%(業務價值提升)。大多數的經費都用於大數據基礎平台(存儲和計算)、咨詢、報告等和業務價值提升相關度不大的領域。中國大數據市場銷售額大多數集中在傳統的IT企業例如IBM,Oracle,EMC,Intel,華為,聯想等。真正大數據企業所有市場份額加起來可能就在百億元左右。中國大數據企業規模過小,領軍企業缺少,行業過於分散,這些都是制約中國大數據產業發展的因素,也是產業做大的一個痛點。外部數據是一個個孤島,數據價值低數據是大數據產業發展的基礎,具有商業價值的數據可以幫助企業洞察客戶、數字化運營、風險管控、精準營銷、預測和決策等。具有商業價值的數據和商業分析真正能夠幫助企業提升業務,創造出新的價值。中國的大數據市場還不成熟,很多大數據企業擁的數據都是片段的數據,很難形成完整的,具有商業價值的數據。大數據市場的數據質量和企業的數據需求有較大的差距。外部數據大多處於孤島狀態,數據之間很少流動和整合;孤立、不流動、沒有整合的數據很難幫到企業,很多需要數據的企業不得不從多個大數據企業采購數據,效率很低,采購來的數據價值不高,數據整合的難度較大,數據采購的整體費用過高。大家都看到了數據分散的弊端,於是很多地方都建立了大數據交易市場,幫助大家進行數據交易和數據采購。由於缺少法律保護,很多企業不太想在交易市場進行數據交易,往往還是採用一對一的數據交易,這種交易方式可以保護交易雙方的利益。具有商業價值的數據還在開發中,大數據交易市場,缺少大量可以進行交易的數據。大數據交易市場這種商業模式,還需要用很長的時間去證明。中國質量最好的數據在金融行業、BAT、電信運營商,這些企業比較謹慎,很難向外部輸出數據。這三大行業自身的主營業務也不在數據,其數據產品生產和輸出的願望也不強烈。政府的數據正在逐步開放,但是其數據質量、集中度、輸出方式等多存在很大多挑戰。在中國大規模的數據開放,至少需要3年時間才能達到商業應用要求。大多數企業客戶,對數據商業應用敏感度低
大多數企業對數據有需求,但是其對數據商業敏感度很低。對數據商業應用的場景以及數據技術了解很少。即使是數據商業敏感度較高的銀行,至少要溝通三次以上,其才能夠建立起數據價值理念。其他行業例如製造業,房地產業,零售業,他們的數據商業敏感度更低。甚至萬科的王石也大聲疾呼,不要和房地產業談大數據應用,房產行業數據還不全,很多還是手工數據。於是某個領先的電商開始幫助萬科進行數據規劃建設,研究大數據在房地產行業的應用。
已有的大數據企業商業案例中,大部分都是大數據企業主動去找客戶談合作,為企業提供數據產品、數據工具或數據技術,目的是幫助企業提升業務。但是這種商業模式很累,市場很難被引爆,被動的數據商業應用,往往和業務結合較弱,無法迅速幫助企業利用數據提升業務,同時也無法解決業務發展瓶頸。
大數據產業的發展,不僅僅是大數據企業自身的事情,也是各家企業自身的事情。企業客戶也應該依據業務需要,主動到市場尋找數據和解決方案,提升數據商業敏感度,從業務場景出發,尋找具有價值的數據。大數據技術和產品同業務結合深度不夠市場上所有大數據企業和客戶都面臨一個難題,就是數據解決方案同客戶業務結合的深度不夠,數據對業務整體推動效果不如期望,這也是大數據產業爆發的一個痛點。由於外部數據質量、企業用戶數據敏感度、企業管理方式、商業數據人才等問題,大數據解決方案很難和業務深度結合。大數據核心價值就是揭示事務發展規律,幫助企業利用數據進行科學決策。目前大數據的商業應用領域主要集中在數據採集、數據存儲、數據計算、用戶畫像、精準營銷等領域。大數據最具商業價值的預測和輔助決策功能並沒有被充分利用。特別是在重大戰略決策方面,大數據的作用並不明顯。企業的產品開發,市場策略,戰略決策還是依靠過去的精英決策和經驗主義。未來社會只有兩類企業,一種是利用數據發展的企業,另外一種是不重視數據被淘汰的企業。大數據企業如果想發展壯大,如果想成為行業領先的企業,其必須放棄短期利益,深入到客戶的運營中去,了解客戶的數據,了解客戶的業務,了解客戶的商業需求。同時利用數據了解客戶,了解市場,了解業務場景。數據和業務深度結合的核心是掌握正確的數據、正確的方法、正確的工具。業務人員要懂數據,技術人員要懂業務。復合型數據人才是數據生意的關鍵,業務人員掌握數據技術的門檻較高,但是技術人員了解業務的門檻很低,復合性人才傾向於從技術人才培養開始。企業內部的數據人才和大數據企業的數據人才需要互相學習,了解對方環境和需求,在同一個平台上進行對話和溝通。數據團隊需要深入了解業務場景和背後的規律,從業務出發,從場景出發,從數據出發,將大數據解決方案同業務深度結合,利用數據推動業務發展,發揮大數據預測規律的核心價值。專業數據挖掘工具和人才缺失傳統的數據挖掘工具和BI系統存在很久了,通過各類報表展示,讓管理層了解企業運營信息,過去的確幫助企業提高管理水平,達到了預期目的。在大數據時代,企業需要的是實時數據,需要的是高效工具,需要的是決策支持和預測。傳統的數據挖掘工具的性能和靈活性已經不能滿足企業的需要,另外非機構化數據的應用也對傳統數據工具提出了挑戰。BI領域中的SAS,SPSS,TD等數據工具越來越被邊緣化,R語言正在成為數據統計和可視化的新寵。數據的時間價值正在得到重視,特別是金融企業,所有的業務部門都期望在最短的時間里,看到資金使用情況,客戶交易情況,風險管控情況。企業越早了解信息,就會越早進行決策,時間就是Money。過去數據需求可能是T+5或者T+30,現在的數據需求往往是T+1或者T+0,數據實時性、准確性、相關度被提到了一個非常重要的地位。業務的需求已經很明顯了,但是數據工具和人才卻是一個很大的挑戰。中國200多家大數據企業,看到了大數據產業的曙光,看到了大數據產業的價值,同時也在經歷著大數據企業的痛苦。大數據產業發展很快,市場正在逐步變大,但是其產業優勢不明顯,優勢企業很少,數據商業化較慢,市場還不成熟,客戶數據商業敏感度較低,缺乏高質量數據工具和人才。所有大數據企業內心的感受就是,站在了時代的風口,選對了方向和行業,但是發展壯大還是很難。200多家大數據企業正在努力耕耘著大數據產業,痛並快樂著。
以上是小編為大家分享的關於中國大數據產業和企業的問題觀察的相關內容,更多信息可以關注環球青藤分享更多干貨
5. 大數據告訴你A股的秘密規律
大數據告訴你A股的秘密規律
1、收盤前上漲概率較高
統計數據表明,2009年1月至2015年9月期間,對比指數每五分鍾的漲跌幅發現,午盤收盤前和全天收盤前,市場呈現較高概率的上漲,上漲概率高達60.3%和79.1%。
尾盤耐灶上漲現象與市場交易機制有較大關系,例如尾盤機構集中建倉、以及大宗交易的影響。但綜合而言,對該現象的產生,目前尚沒有完美的解釋。
2、周一上漲概率大
統計每周的交易時間發現,周一上漲的概率和幅度最大。分段統計後發現,牛市期間,股市在周一上漲的幅度較大,而熊市中這種現象不明顯。
「周一更容易上漲現象」在美國等成熟市場則並不明顯,這很可能是由於成熟市場投資者情緒化不明顯造成的。
周一出現極端漲跌幅的概率較高,這也與市場預期有關。例如投資者未預期到的周末市場數據和突發事件出現,或者預期落空帶來的市場波動散啟,在我國以散戶為主的市場中,這種市場情緒波動更大。
統計月度數據發現,我國資本市場的上半月效應明顯。而這種現象,與SHIBOR短端利率上半月較低的統計規律遙相呼應。
3、四月份要賣
「Sell In may and goaway」是一句廣為流傳的股市諺語,指的是股市在經過5月份後,市場就開始疲軟,投資者在5月就可以獲利了結。
通過隨機測算上證綜指的投資收益率:在每年任意時間買入指數,在之後任意時間賣出獲利。發現年初買入、四月賣出獲得正收益的概率最大。同時對比美國標普500指數,此期間交易帶來的正收益概率也是最大的。
同時,美國的長期投資價值凸顯,從年度隨機投資收益的分布來看,均顯示最長時間的持股,投資收益最高。對比標普500的指數的長期走勢,發現標普500指數的價值是通過時間來檢驗的,持有時間越長,收益越高。
如果從月度漲跌幅的角度去看市場,上證綜指和標普500指數均在上半年取得比較好的正收益,上漲的概率較高,而進入6月份後,市場的回報率和上漲概率均下行。
4、牛市波動增強
用兩種方法來表示股票市場的波動,日內分鍾收益率的標准差和開盤收盤價格波幅。
從日內分鍾數據的標准差來看,在上證綜指的階段性頂點時,市場的波動顯著增強,而這種現象在市場趨勢性上漲的尾端更為明顯。
從開盤收盤價格的波幅來看,波動帶來的規律並不如上一種方式明顯。
但對開盤收盤的價格進行了策略化處理後,回測其效果即:高開買進、低開賣出的雙向操作。
回測結果顯示,這樣的策略長期表現要好於指數,但其效果存在失效期。用同樣的方法測試了滬深300股指期貨主力合約,策略失效同樣存在,其長期效果尚可,年化回報率為12.2%。
5、春節前後上漲概率大
每當長假來臨,持幣過節還是持股過節的問題,都會備受投資者關注。
研究結果表明,在節前五個交易日,節後七個交易日里,上證綜指表現較好。在迄今為止的22個春節前後,上證綜指上漲次數為18次,上漲概率高達81.81%,漲跌幅的中值為3.19%,均值為3.72%。春節效應比十一效應更加明顯,持續時間更長、平均上漲幅度更大。
在十一長假之前的三個交易日和假日之後的兩個交易日,上證綜指表現較好。在16次十一長假前後,上證綜指有11次上漲,上漲概率為68.75%,指數漲跌幅的中值為1.87%,均值為1.05%。由此可見,在十一假日前後,指數上漲的概率較大,十一效應在A股市場中較為明顯。
整體而言,我國的假期效應明顯,尤其是春節效應,其持續時間和漲幅都比較高。
統計標普500指數的聖誕節效應,發現同樣存在節日效應,尤其是在聖誕節之後,市場表現相對較好。
6、均線系統仍有效
技術分析在我國股票市場應用依然較為廣泛,而技術分析的有效性,也是廣大投資者爭論不休的事情。
回昌掘扮測結果顯示,在多數發展比較完善的資本市場,例如美國,日本、英國、法國,均線系統下的技術分析已經失效,而新興市場國家和地區依然有效,而且德國DAX30指數有效性也較強。
值得一提的是,雙均線系統的有效期,比單均線有效期要長久一些,或許這暗示著技術分析也要進行不斷的演化,以適應市場的發展。
7、7倍PE肯定見底
資本市場有其自身規律,也有著估值的上下限。「樹不會長到天上去」,脫離資本市場規律的事情不可能長久。
8、低價股收益率最高
對比A股的不同市場風格指數發現,在A股中,低估值個股,包括低市盈率和低市凈率指數,長期走勢均好於中、高估值品種,且其長期收益率要高於上證綜指。在資本市場的長線低估值走勢較好。
9、新股上市第一年收益欠佳
由於我國資本市場的結構和上市制度,導致上市公司在上市前報表的盈利能力較高,而一旦上市,其整體盈利能力開始下滑。
統計前五年上市公司的RoE分布表明,隨著上市時間的延長,低盈利能力的公司開始增加,收益率的眾數開始向較低的RoE水平傾斜。
對比上市公司不同年限的投資價值,上市第一年的投資收益並不好,其後明顯好轉。
10、金融板塊行情獨立
從行業的月度收益率出發,尋找行業之間的聯動性。
數據顯示,金融行業與其他行業的相關性最小,而在每個月上漲前五名的行業中,銀行業出現的次數最多。
6. 十一長假放幾天
十一長假國慶節根據《全國年節及紀念日放假辦法》要放假3天(10月1日、2日、3日)。
根據《全國年節及紀念日放假辦法》相關規定:
第二條 全體公民放假的節日:
(一)元旦,放假1天(每年1月1日)
(二)春節,放假3天(農歷正月初一、初二、初三)
(三)清明節,放假1天(農歷清明當日 )
(四)勞動節,放假1天
(五)端午節,放假1天
(六)中秋節,放假1天
(七)國慶節,放假3天(10月1日、2日、3日)
第六條全體公民放假的假日,如果適逢星期六、星期日,應當在工作日補假。部分公民放假的假日,如果適逢星期六、星期日,則不補假。
(6)2015十一長假大數據擴展閱讀
《勞動法》第四十條規定:
用人單位在下列節日期間應當依法安排勞動者休假:
(一)元旦;
(二)春節;
(三)國際勞動節;
(四)國慶節;
(五)法律、法規規定的其他休假節日。
7. 數據新聞的功能與優勢
目前,在大數據新聞製作上已經積累了經驗的國際媒體有《衛報》《紐約時報》《華盛頓郵報》等,但它們也處於探索階段。通過對國內外代表性媒體的大數據新聞實踐進行研究,可以總結出大數據新聞的四個功能,即描述、判斷、預測、信息定製。
《衛報》網頁2012年1月5日發布了一個有關「阿拉伯之春」的大數據新聞報道。報道利用動態圖表,以時間軸為主線描述了自2010年12月一突尼西亞男子自焚至2011年12月的一年間,17個阿拉伯國家發生的一場政治運動。網民可以通過這個四維動態的報道,清楚地從宏觀到微觀,全面了解阿拉伯之春在不同國家的不同表現形式。圖表上方設置了時間的推拉按鈕,網民推拉到自己想觀看的時間點,可以清楚地看到相同時間點上不同國家發生的相關事件。畫面的下方是各個國家的標簽,網民也可以通過國家標記,來關注某個具體國家在縱向時間軸上的政治演變進程。不同的政治事件用不同顏色來標示:綠色為群眾性抗議活動,淺藍色為國際上的相關反應,黃色為政治事件,紅色為政權更替。如果網民想了解某個事件的具體內容,點擊不同顏色的標示,隨即獲取深度報道的鏈接。這種新聞報道方式,將涉及十幾個國家、時間跨度長達一年的復雜的「阿拉伯之春」,以明晰的動態方式呈現出來,純文字報道難以達到這樣的傳播效果。
大數據新聞還能夠描述那些看不見的短期過程,比如流言如何在社交網路上傳播。《衛報》通過追蹤分析260萬份推特內容,利用可視化動態圖表描述了從流言開始傳播到辟謠結束的整個過程。它也是以時間為軸,利用圓圈大小、顏色變化來描述整個過程,綠色的圈代表散布流言的推文,紅色的圈代表更正這個流言的推文,灰色的是中立的評價推文,黃色的是對流言持懷疑態度的推文。圈的大小代表了推文的影響程度,圈越大影響程度越大。如果想了解具體的內容,點到哪個圈,屏幕旁邊即刻呈現這個圈所代表的推文的發布者、發布日期、轉推人數等等信息。通過這個動態的演進過程,人們可以清楚地看到,社交網路並不像一般想像的那樣,是一味擴散虛假消息的場所。其實在假消息出現不久,社交網路上各種辟謠的消息就已經出現了。
從這兩個例子可以看出,大數據新聞的報道方式能夠在宏觀上對某個事件看得更加清楚與全面,事件復雜的演進過程以及這個過程中的各個方面,都能描述得直觀且有趣。 2011年8月,一個黑人穆斯林男子乘計程車在倫敦街頭遭到警方攔截,雙方發生槍戰,該男子當街死亡。兩天後,約300人聚集在倫敦市中心的警察局進行抗議,後來演變成持續多天的騷亂事件,抗議者引燃了汽車、商店和公交車。當天夜裡,倫敦其他地區也發生了類似襲警、搶劫、縱火等事件。一些媒體評論指出,這與貧富差距有關。英國首相卡梅倫接受采訪時,聲稱騷亂事件與貧富差距無關。
英國《衛報》記者利用大數據的分析結果,做了關於這一事件的系列報道,其中的一個報道主題,便是騷亂與貧困有沒有關聯。記者利用谷歌融合圖表,在倫敦地區地圖上標記出騷亂分子的居住地信息(黃色點)、實際發生騷亂的地點(灰色點),以及貧困地區分布(越偏紅色表示越貧窮)。根據這張倫敦市中心的圖,網民可以將圖擴展到整個大倫敦地區來看,也可以聚焦到具體的街區放大來看,觀察每個被標記的騷亂點的人流從哪裡來,到哪兒去,從而清楚地看到貧苦與騷亂之間存在的某種關聯。這種關系的表達,比起單純的文字報道來,表現清晰,說服力強。 2013年「十一」長假期間,九寨溝發生遊客大量滯留現象並引發群體性事件。如果新聞媒體或旅遊當局能夠在此前運用中國的局部大數據進行預測性報道,完全可以避免這樣的群體性事件發生。因為傳媒可以根據這方面的大數據,提前報道在哪個具體時間段內,有多少人從哪些地方前往九寨溝,其中男人、女人、老人、兒童各有多少等等。
這只是一個小例子,大數據能夠預測社會和人們日常生活中的各個方面。通過挖掘大數據,傳媒在技術上可以製作出可視化、互動式的圖表,告知很多事項。微觀的如流行疾病來襲、交通擁堵情況;宏觀的如經濟指數變動、某種社會危機的來臨等等。網路開辟了「網路預測」網頁,以「大數據,知天下」的口號推出,預測的產品有高考、世界盃、電影票房等等。它們後期准備上線的產品擴展到了更廣的領域,比如金融預測、房地產預測等等。 利用大數據的分析結果,滿足網民的信息個性化要求,是國外媒體的最新嘗試。例如Five thirty eight數據博客,在2014年5月23日新辟讀者來信專欄「親愛的莫娜」。其第一期開篇語闡釋的目的是:「我開這個專欄是為了幫助讀者回答一些生活中重要的或者嚴肅的問題,比如我是不是很正常、我處在世界的哪個地位層面等等,目的不是為了給讀者答疑解惑,不是告訴讀者應該做什麼和不應該做什麼。恰恰相反,我提供數據來解釋、描述你的經歷。」
綜觀這個專欄,讀者的提問五花八門,比較嚴肅的如:「美國有多少人從來沒有喝過一滴酒?」「美國有多少男性空乘人員?」也有比較私人的如:「我該多久換一次襪子?」「婚前同居會不會導致離婚」等等。專欄作者利用美國范圍內的大數據,即刻將分析結果告知當事人,但避免給出指導性意見,僅告知各種數據的分析結果,讓網民自己依照分析結果來處理自己面臨的問題。這個專欄與傳統的紙媒讀者來信專欄不同,不是通過星座、血型、生辰八字或偽裝成閱歷豐富的專家,來提供些心靈雞湯式的回答,只用數據來說話。
這種嘗試在媒體中並不少見。2011年,BBC廣播公司曾根據2012年政府的財政預算聯合畢馬威會計師事務所做了一個預算計算器,用戶只需要輸入一些日常信息,例如買多少啤酒,用多少汽油等,就能夠算出新的預算會讓你付多少稅,明年生活會不會更好。
根據用戶需求提供個性化的大數據服務,是未來的發展趨勢。這些報道有一個共性,媒體都致力於以用戶的需求為中心,利用大數據詮釋宏觀社會現象對用戶的影響,或者回答用戶困惑的問題。媒體可以精準定位,經過後台計算,按照用戶的接收習慣、工作習慣和生活習慣將服務推送到用戶眼前。
8. 大數據 一個徹底改變人們生活的時代
大數據:一個徹底改變人們生活的時代
有學者認為,我們目前正處在一個大數據時代。隨著社交網路的逐漸成熟,移動帶寬的迅速提升,雲計算、物聯網的應用多樣,大數據的運用和創新給公民、政府、社會帶來了種種的挑戰和變革。
根據中國電信成都分公司總經理喻雲華介紹,在未來的10年,網上各種各樣的大數據總量將可能達到40Z,相比現在將會增加近50倍。數據將會到了用「泛濫」來形容的地步。
有數據甚至顯示,在不遠的將來,人們在3分鍾內上傳到網路上的視頻,如果1個人不眠不休的花時間把它看完的話,將耗去34年的時間,
那麼,大數據時代會給我們帶來哪些影響?我們又可以利用大數據做些什麼呢?
根據大數據分析的結果,沃爾瑪超市認為「尿不濕」和啤酒放在一起最好賣,年輕的爸爸到超市給嬰兒買「尿不濕」,順便犒勞自己買啤酒,所以把這兩個東西放在一起會銷量大增。
華爾街資本市場通過分析全世界的微博賬戶的留言來判斷民眾情緒。民眾高興時買股票,焦慮時會拋股票,根據這個看全世界是高興的人多,還是焦慮的人多。
還有,平安集團利用大數據分析消費者的行為。招商銀行通過數據分析區分出信用卡經常出現的場所。中信銀行通過資料庫解決營銷問題。興業銀行利用數據開發客戶。
又一年十一長假來臨了,就在你買票被「秒殺」,飽受「擁堵」煩惱的時候,你可曾想到,大數據可能會是你的福音。有了大數據分析,就能夠根據手機在某個路口走了多長時間,知道這個地方堵不堵;提前半個月就能知道今年放假哪個旅遊點會堵,哪裡車會堵……
大數據時代已經到來,很多人已經身處其中,最典型的感覺是數據增加速度之快。數據產生方式現在已經被極大地改變,因為以前數據的生產都是由專業團體、專業人士,或者是專業公司完成,而現在數據產生更多是個體行為、是個人,每個人都可以使用自己所採集的終端來產生大量的數據。
數據傳統途徑也發生了很大的變革,以前獲取信息的來源基本上是報紙等平面媒體,或者電視、廣播等傳播媒體;現在很多信息來源通過互聯網。互聯網已經變成了媒體傳播的主要途徑,這個改變對整個社會也產生了非常大的改變。
社交環境網路化變革,以前交朋友更多是生活的圈子,比如說同學、鄰居、親戚,現在更多的通過是互聯網這種虛擬的環境。
數據存儲習慣發生變化,以前都是把照片和文件備份到自己的電腦或者軟盤上。現在這種觀念已經改變,除非做保密工作,或者是年紀大一點的另當別論,大多數人就把它放到網上,在雲中進行存儲。
實際上早在多年以前,大數據問題已經倍受業界關注,像中國移動、中國電信這樣的巨頭早就在積極建設數據中心,引進各種先進的數據處理技術,電信甚至專門建立了一個西部信息中心,電信IDC機房也已經不僅僅是在提供伺服器託管之類的基礎業務了,數據中心同大數據的結合也日益緊密。
其實在普通人不知不覺當中,時代早已經發生了巨大的變革。
很多公司原來都不做手機的,現在紛紛進軍手機市場,他們靠賣手機賺錢嗎?不是,他們是想通過客戶端來捆綁用戶。
過去IBM硬體收入佔到整個收入的60%~70%,現在服務收入已佔到50%~60%。惠普錯過了轉型,近兩年用數百億美元收購移動互聯網和軟體企業,要進行大數據開發。在大數據時代,整個產業鏈的價值鏈向服務去傾斜。
搞物聯網的希望做移動,搞移動的希望做物聯網,搞電信的希望做廣播,搞廣播的希望做電信,賣手機的希望搞運營,做運營的希望賣手機。大數據是新一代信息技術的集中反映,是一個應用驅動性很強的服務領域,是具有無窮潛力的新興產業領域。
大數據時代機遇與挑戰並存,其將成為一個徹底改變人們生活的時代。