A. 大數據是什麼意思
大數據是一種在獲取、存儲、管理、分析等方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。它具有大量、快速、多樣、價值空蘆遲密度低和真實性五大特徵。對於「大數據」研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據的特性:
大量 (Volume):大量體現在數據量上,大數據的採集、存儲、計算的量都很大。一般PB以上的數據才能稱為大數據,在實際應用中,大數據的數據量通常高達數十TB,甚至數百 PB。
快速 (Velocity):高速是指高速接收、高速處理數據,因為數據具有一定的時效性嘩輪。
多樣 (Variety):多樣是指可用的數據類型眾多。包括結構化、半結構斗李化和非結構化數據,具體表現為網路日誌、音頻、視頻、圖片、模擬信號等等。
價值(Value):大數據的數據價值密度相對較低,我們需要以低成本創造高價值。
真實性(Veracity):數據的質量,即保證數據的准確性和可信賴度。
B. 什麼是大數據測試
測試大數據應用程序更多的是驗證其數據處理,而不是測試軟體產品的個別功能版。當涉及到大權數據測試時,性能和功能測試是關鍵。在大數據測試中,QA工程師使用集群和其他組件來驗證對TB級數據的成功處理。因為處理非常快,所以它需要高水平的測試技能。
大數據應用程序的測試更多的是去驗證其數據處理而不是驗證其單一的功能特色。當然在大數據測試時,功能測試和性能測試是同樣很關鍵的。對於大數據測試工程師而言,如何高效正確的驗證經過大數據工具/框架成功處理過的至少百萬兆位元組的數據將會是一個巨大的挑戰。因為大數據高效的處理測試速度,它要求測軟體工程師具備高水平的測試技術才能應對大數據測試。
C. 大數據是什麼意思
大數據是指那些數據量特別大、數據類別特別復雜的數據集,這種數據集不能用傳統的資料庫進行轉存、管理和處理,是需要新處理模式才能具有更強大的決策力、洞察發現力和流程優化能力的海量、高增差率和多樣化的信息資產。
而大數據的主要特點就是數據量大、數據處理速度快、數據真實性高、數據類別復雜等,它們合起來被稱為4V。
大數據也可以應用在警察預測犯罪的發生、預測選舉結果,同時還能通過手機定位數據和交通數據建立城市規劃,現在醫療行業也在做大數據的分析。
現在社會發展速度非常快,科技也很發達,信息的流通和人們之間的交流也非常密切,而大數據就是這個時代高科技的產物。
對於大部分行業而言,怎麼運用這些大規模數據是贏得競爭的關鍵,但同時,大數據在經濟發展中的意義不能取代一切對於社會問題的理性思考。
現在大數據行業非常的受歡迎,人才需要求量也非常大,而且企業給大數據工程師的薪資比一般工程師的薪資也要高很多。
D. 大數據是什麼意思,大數據概念怎麼理解
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
E. 大數據是怎麼定義的,大數據包括什麼
最早提出大數據的是麥肯錫公司,當時的定義是:
滲透在每一個行業和業務領域的數據,通過人們對這些海量數據的挖掘和運用,產生出一波新的生產率增長和消費者盈餘浪潮。
後來麥肯錫全球研究所給出的定義是:
一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
研究機構Gartner給出了這樣的定義:
「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
網路的定義:
指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單的說就是超級存儲,海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。
F. 大數據是什麼意思
大數據(英語:Bigdata),又稱為巨量資料,指的是在傳統數據處理應用軟體不足以處理的大或復雜的數據集的術語。
大數據也可以定義為來自各種來源的大量非結構化或結構化數據。從學術角度而言,大數據的出現促成廣泛主題的新穎研究。這也導斗純致各種大數據統計方法的發展。大數據並沒有統計學的抽樣方法;它只是觀察和追蹤發生的事情。因此,大數據通常包含的數據大小超出傳統軟體在可接受的時間內處理的能力。由於近期的技術進步,發布新數據的便捷性以及全球大多數政府對高透明度的要求,大數據分析在現代研究中越來越突出。
應用:
大數據的應用示例包括大科學、RFID、感測設備網路、天文學、大氣學、交通運輸、基因組學、生物學、大社會數據分析、互聯網文件處理、製作互聯網搜索引擎索引、通信記錄明細、軍事偵查、金融大數據,醫療蠢襲大數據,社交網路、通勤時間預測、醫療記錄、照片圖像和影像封存、大規模的電子商務等。
1.大型強子對撞機中有1億5000萬個感測器,每秒發送4000萬次的數據。實驗中每秒產生將近6億次的對撞,在過濾去除99.999%的撞擊數據後,得到約100次的有用撞擊數據。
將撞擊結果數據過濾處理後僅記錄0.001%的有用數據,全部四個對撞機的數據量復制前每年產生空檔咐25拍位元組(PB),復制後為200拍位元組。
如果將所有實驗中的數據在不過濾的情況下全部記錄,數據量將會變得過度龐大且極難處理。每年數據量在復制前將會達到1.5億拍位元組,等於每天有近500艾位元組(EB)的數據量。這個數字代表每天實驗將產生相當於500垓(5×1020)位元組的數據,是全世界所有數據源總和的200倍
2.大數據產生的背景離不開Facebook等社交網路的興起,人們每天通過這種自媒體傳播信息或者溝通交流,由此產生的信息被網路記錄下來,社會學家可以在這些數據的基礎上分析人類的行為模式、交往方式等。美國的塗爾干計劃就是依據個人在社交網路上的數據分析其自殺傾向,該計劃從美軍退役士兵中揀選受試者,透過Facebook的行動app收集資料,並將用戶的活動數據傳送到一個醫療資料庫。收集完成的數據會接受人工智慧系統分析,接著利用預測程序來即時監視受測者是否出現一般認為具傷害性的行為。
3.運用數據挖掘技術,分析網路聲量,以了解客戶行為、市場需求,做營銷策略參考與商業決策支持,或是應用於品牌管理,經營網路口碑、掌握負面事件等。如電信運營商透過品牌的網路討論數據,即時找出負面事件進行處理,減低負面討論在網路擴散後所可能引發的形象危害。又如具有大量商店交易數據的第三方服務業者(Third-partyServiceProviders,TSP)可以集成手中交易數據、公開的顧客評論數據(例如:GoogleMap評論)、法院的店家訴訟數據等,評估與預測店家運營情形,進一步進行商業顧問服務。
G. 大數據是什麼意思
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據其實就是海量資料巨量資料,這些巨量資料來源於世界各地隨時產生的數據,在大數據時代,任何微小的數據都可能產生不可思議的價值。
(7)大數據量測試是什麼意思擴展閱讀
1、大量。
大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。隨著信息技術的高速發展,數據開始爆發性增長。
社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB。
臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
2、多樣。
廣泛的數據來源,決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。
日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如圖片、音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。
3、高速。
大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。
並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。
基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
4、價值。
這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中。
挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。