『壹』 大數據與統計學的關系
大數據與統計學的關系:統計學是大數據的三大基礎學科之一,所以統計學與大數據之間的關系還是非常密切的,但是這也導致一部分人產生了一定的誤解,認為大數據就是統計學,統計學就是大數據。
實際上,雖然在大數據時代背景下,統計學的知識體系產生了一定程度的調整,但是統計學本身的理念與大數據還是具有一定區別的,統計學注重的是方式方法,而大數據則更關注於整個數據價值化的過程,大數據不僅需要統計學知識,還需要具備數學知識和計算機知識。從另一個角度來說,統計學為大數據進行數據價值化奠定了一定的基礎。
其實對於很多職場人來說,平時大部分的數據分析任務都是基於統計學理論進行的,包括採用的數據分析工具也都屬於統計學領域的范疇。
從未來的發展趨勢來看,一方面統計學會進一步向大數據傾斜,包括目前不少統計學專業的研究生課題,都逐漸開始向大數據方向拓展,另一方面大數據會在發展的初期大量採用統計學相關理論和技術,這也能夠提升大數據相關技術的落地應用能力。
『貳』 大數據時代下,傳統統計學有哪些變革
「社會統計學與數理統計學的統一」理論的重大意義
王見定教授指出:社會統計學描述的是變數,數理統計學描述的是隨機變數,而變數和隨機變數是兩個既有區別又有聯系,且在一定條件下可以相互轉化的數學概念。王見定教授的這一論述在數學上就是一個巨大的發現。
我們知道「變數」的概念是17世紀由著名數學家笛卡爾首先提出,而「隨機變數」的概念是20世紀30年代以後由蘇聯學者首先提出,兩個概念的提出相差3個世紀。截至到王見定教授,世界上還沒有第二個人提出變數和隨機變數兩者的聯系、區別以及相互的轉化。我們知道變數的提出造就了一系列的函數論、方程論、微積分等重大數學學科的產生和發展;而隨機變數的提出則奠定了概率論和數理統計等學科的理論基礎和促進了它們的蓬勃發展。可見變數、隨機變數概念的提出其價值何等重大,從而把王見定教授在世界上首次提出變數、隨機變數的聯系、區別以及相互的轉化的意義稱為巨大、也就不視為過。
下面我們回到:「社會統計學和數理統計學的統一」理論上來。王見定教授指出社會統計學描述的是變數,數理統計學描述的是隨機變數,這樣王見定教授准確地界定了社會統計學與數理統計學各自研究的范圍,以及在一定條件下可以相互轉化的關系,這是對統計學的最大貢獻。它結束了近400年來幾十種甚至上百種以上五花八門種類的統計學混戰局面,使它們回到正確的軌道上來。
由於變數不斷地出現且永遠地繼續下去,所以社會統計學不僅不會消亡,而且會不斷發展狀大。當然數理統計學也會由於隨機變數的不斷出現同樣發展狀大。但是,對隨機變數的研究一般來說比對變數的研究復雜的多,而且直到今天數理統計的研究尚處在較低的水平,且使用起來比較復雜;再從長遠的研究來看,對隨機變數的研究最終會逐步轉化為對變數的研究,這與我們通常研究復雜問題轉化為若干簡單問題的研究道理是一樣的。既然社會統計學描述的是變數,而變數描述的范圍是極其寬廣的,絕非某些數理統計學者所雲:社會統計學只作簡單的加、減、乘、除。從理論上講,社會統計學應該復蓋除數理統計學之外的絕大多數數學學科的運作。所以王見定教授提出的:「社會統計學與數理統計學統一」理論,從根本上糾正了統計學界長期存在的低估社會統計學的錯誤學說,並從理論上和應用上論證了社會統計學的廣闊前景。
『叄』 大數據和統計學之間的關系,你怎麼看
「社會統計學與數理統計學的統一"理論與大數據
統計學與大數據的關系
已上提問內是統計學基本概念不容清楚:有的學者認為大數據時代統計學過時了;實際上:這是一種錯誤學說,就是一個大呼悠。所為的大數據就是數據流大一點而已,從數據擴展到信息,並沒有超出統計學描述的范圍;也就是互聯網、計算機、蘋果手機,小朋友手機搖啊搖,小姑娘們聊啊聊,帥哥鍵盤敲啊敲,這些數據、信息、資料、圖片向白雲一樣飄啊飄,飄到空間瞬間形成龐大的幾十萬億的數據雲。最後這些數據流我們用計算機通過統計學專家學者加已整理、分析;這就對統計學家提出了新的挑戰。大數據和信息是通過互聯網傳播的,社會統計學與數理統計學的統一理論是、互聯網的理論基礎。
統計學是通過搜索、整理、分析、描述數據、信息等手段,以達到推斷所測對象的本質,甚至預測對象未來的一門綜合性科學。其中用到了大量的數學及其它學科的專業知識,它的使用范圍幾乎覆蓋了社會科學和自然科學的各個領域。
『肆』 統計學專業與大數據有哪些不同統計學就業前景怎麼樣
統計學專業與大數據專業會有一些不同,但總體上是有相同之處都跟網路有關系統計信息數據的。同濟學就業前景比較廣闊,從事的崗位也比較多,可以從事計算工作,也可以從事銷售工作,也可以去銀行工作,這些崗位都是能夠提供的。
因為市場的發展在不斷完善,而且中國傳統貿易化的發展越來越快,統計學工作的相關人員需求量越來越多,需要提供准確的消息,現在是大數據時代,如果統計學學的非常扎實。可以從事的工作也有很多,可以當數據分析師也可以從事銀行金融類證券公司的工作人員。所以這個專業的畢業生需要有很強的技術能力才能有更好的發展,在校學習的知識也會增多。
『伍』 大數據時代,統計學還有用嗎
大數據時代,統計學還有用嗎_數據分析師考試
在數據「爆炸」的時代,大數據常常被寄予厚望。到底,什麼樣的數據才算大數據,怎樣才能用好大數據,傳統統計學還有用武之地嗎?清華大學統計學研究中心前不久成立,著名統計學家、哈佛大學終身教授劉軍擔任主任。日前,劉軍做客人民日報、人民網《文化講壇》,分享他的思考。
讓大數據區別於數據的,是其海量積累、高增長率和多樣性
什麼是數據?數據(data)在拉丁文里是「已知」的意思,在英文中的一個解釋是「一組事實的集合,從中可以分析出結論」。籠統地說,凡是用某種載體記錄下來的、能反映自然界和人類社會某種信息的,就可稱之為數據。古人「結繩記事」,打了結的繩子就是數據。步入現代社會,信息的種類和數量越來越豐富,載體也越來越多。數字是數據,文字是數據,圖像、音頻、視頻等都是數據。
什麼是大數據呢?量的增多,是人們對大數據的第一個認識。隨著科技發展,各個領域的數據量都在迅猛增長。有研究發現,近年來,數字數據的數量每3年多就會翻一番。
大數據區別於數據,還在於數據的多樣性。正如高德納咨詢公司研究報告指出的,數據的爆炸是三維的、立體的。所謂的三維,除了指數據量快速增大外,還指數據增長速度的加快,以及數據的多樣性,即數據的來源、種類不斷增加。
從數據到大數據,不僅是量的積累,更是質的飛躍。海量的、不同來源、不同形式、包含不同信息的數據可以容易地被整合、分析,原本孤立的數據變得互相聯通。這使得人們通過數據分析,能發現小數據時代很難發現的新知識,創造新的價值。
通過數據來研究規律、發現規律,貫穿了人類社會發展的始終。人類科學發展史上的不少進步都和數據採集分析直接相關,例如現代醫學流行病學的開端。倫敦1854年發生了大規模的霍亂,很長時間沒有辦法控制。一位醫師用標點地圖的方法研究了當地水井分布和霍亂患者分布之間的關系,發現有一口水井周圍,霍亂患病率明顯較高,藉此找到了霍亂暴發的原因:一口被污染的水井。關閉這口水井之後,霍亂的發病率明顯下降。這種方法,充分展示了數據的力量。
本質上說,許多科學活動都是數據挖掘,不是從預先設定好的理論或者原理出發,通過演繹來研究問題,而是從數據本身出發通過歸納來總結規律。近現代以來,隨著我們面臨的問題變得越來越復雜,通過演繹的方式來研究問題常常變得很困難。這就使得數據歸納的方法變得越來越重要,數據的重要性也越發凸顯出來。
大數據是非競爭性資源,有助於政府科學決策、商家精準營銷
大數據時代,數據的重要作用更加凸顯,許多國家都把大數據提升到國家戰略的高度。
政府合理利用大數據,引導決策的將是基於實證的事實,政府會更有預見性、更加負責、更加開放。中國古代治國就已經有重數據的思想,如商鞅提出,「強國知十三數……欲強國,不知國十三數,地雖利,民雖眾,國愈弱至削」。大數據時代,循「數」治國將更加有效。小數據時代,政府做決策更多依憑經驗和局部數據,難免頭痛醫頭、腳痛醫腳。比如,交通堵塞就多修路。大數據時代,政府做決策能夠從粗放型轉向集約型。路堵了,利用大數據分析,可以得知哪一時間、哪一地段最容易堵,或在這一地段附近多修路,或提前預警引導居民合理安排出行,實現對交通流的最佳配置和控制,改善交通。
對於商家來說,大數據使精準營銷成為可能。一個有趣的故事,是沃爾瑪超市的「啤酒、尿布」現象。沃爾瑪超市分析銷售數據時發現,顧客消費單上和尿布一起出現次數最多的商品,竟然是啤酒。跟蹤調查後發現,有不少年輕爸爸會在買尿布時,順便買些啤酒喝。沃爾瑪發現這一規律後,搭配促銷啤酒、尿布,銷量大幅增加。大數據時代,每個人都會「自發地」提供數據。我們的各種行為,如點擊網頁、使用手機、刷卡消費、觀看電視、坐地鐵出行、駕駛汽車,都會生成數據並被記錄下來,我們的性別、職業、喜好、消費能力等信息,都會被商家從中挖掘出來,以分析商機。
大數據也將使個人受益。從生物學、醫學上講,以前生物學家只是通過對單個或幾個基因的操控來觀察其對生物體的影響,很難發現整體的關聯。現在由於技術的發展,可以分析很多,如遺傳信息、全體基因的表達量信息、蛋白質族譜信息、全基因組甲基化信息、表觀遺傳信息等。同時還有個人健康指標、病歷、葯物反應等數據。如果真能達成生物學上多維多向數據的有機融合,就能夠把個人完整地描述出來,從而實現精準醫療的目的。
大數據時代,審核數據的真實性也有了更有效的手段。大數據的特徵之一是多樣性,不同來源、不同維度的數據之間存在一定的關聯度,可以交叉驗證。例如,某地的工業產值虛報了一倍,但用電量和能耗卻沒有達到相應的規模。這就是數據異常,很容易被系統識別出來。發現異常後,相關部門再進行復核,就能更有針對性地防止、打擊數據造假。
數據是一種資源,但數據又跟煤、石油等物質性資源不一樣。物質性資源不可再生,你用多了,別人就用少了,因而很難共享。數據可以重復使用、不斷產生新的價值。大數據資源的使用是非惡性競爭的,共享的前提下,更能夠製造雙贏。從另一個角度來說,數據如果不被融合、聯系在一起,也不能稱之為大數據。
大數據不能被直接拿來使用,統計學依然是數據分析的靈魂
現在社會上有一種流行的說法,認為在大數據時代,「樣本=全體」,人們得到的不是抽樣數據而是全數據,因而只需要簡單地數一數就可以下結論了,復雜的統計學方法可以不再需要了。
在我看來,這種觀點非常錯誤。首先,大數據告知信息但不解釋信息。打個比方說,大數據是「原油」而不是「汽油」,不能被直接拿來使用。就像股票市場,即使把所有的數據都公布出來,不懂的人依然不知道數據代表的信息。大數據時代,統計學依然是數據分析的靈魂。正如加州大學伯克利分校邁克爾·喬丹教授指出的,「沒有系統的數據科學作為指導的大數據研究,就如同不利用工程科學的知識來建造橋梁,很多橋梁可能會坍塌,並帶來嚴重的後果。」
其次,全數據的概念本身很難經得起推敲。全數據,顧名思義就是全部數據。這在某些特定的場合對於某些特定的問題確實可能實現。比如,要比較清華、北大兩校同學數學能力整體上哪個更強,可以收集到兩校同學高考時的數學成績作為研究的數據對象。從某種意義上說,這是全數據。但是,並不是說我們有了這個全數據就能很好地回答問題。
一方面,這個數據雖然是全數據,但仍然具有不確定性。入校時的數學成績並不一定完全代表學生的數學能力。假如讓所有同學重新參加一次高考,幾乎每個同學都會有一個新的成績。分別用這兩組全數據去做分析,結論就可能發生變化。另一方面,事物在不斷地發展和變化,同學入校時的成績並不能夠代表現在的能力。全體同學的高考成績數據,僅對於那次考試而言是全數據。「全」是有邊界的,超出了邊界就不再是全知全能了。事物的發展充滿了不確定性,而統計學,既研究如何從數據中把信息和規律提取出來,找出最優化的方案;也研究如何把數據當中的不確定性量化出來。
所以說,在大數據時代,數據分析的很多根本性問題和小數據時代並沒有本質區別。當然,大數據的特點,確實對數據分析提出了全新挑戰。例如,許多傳統統計方法應用到大數據上,巨大計算量和存儲量往往使其難以承受;對結構復雜、來源多樣的數據,如何建立有效的統計學模型也需要新的探索和嘗試。對於新時代的數據科學而言,這些挑戰也同時意味著巨大的機遇,有可能會產生新的思想、方法和技術。
以上是小編為大家分享的關於大數據時代,統計學還有用嗎的相關內容,更多信息可以關注環球青藤分享更多干貨
『陸』 大數據時代:統計學是數據分析的靈魂
大數據時代:統計學是數據分析的靈魂_數據分析師考試
7月中旬以來,從中央到地方,今年上半年經濟社會發展的統計數據陸續進入人們的視野。在觀察、使用統計數據時,類似「大數據時代怎樣用好數據」這樣的話題,再次引起人們的關注。
7月20日出版的《人民日報》,刊發了清華大學統計學研究中心主任劉軍做客人民日報、人民網《文化講壇》時,對相關問題所做的介紹和分析。其內容包括:
什麼是數據?
數據(data)在拉丁文里是「已知」的意思,在英文中的一個解釋是「一組事實的集合,從中可以分析出結論」。籠統地說,凡是用某種載體記錄下來的、能反映自然界和人類社會某種信息的,就可稱之為數據。古人「結繩記事」,打了結的繩子就是數據。步入現代社會,信息的種類和數量越來越豐富,載體也越來越多。數字是數據,文字是數據,圖像、音頻、視頻等都是數據。
什麼是大數據?
量的增多,是人們對大數據的第一個認識。大數據區別於數據,還在於數據的多樣性。從數據到大數據,不僅是量的積累,更是質的飛躍,海量的、不同來源、不同形式、包含不同信息的數據可以容易地被整合、分析,原本孤立的數據變得互相聯通。這使得人們通過數據分析,能發現小數據時代很難發現的新知識,創造新的價值。
大數據時代,統計學是數據分析的靈魂。
大數據告知信息但不解釋信息。打個比方,大數據是「原油」而不是「汽油」,不能被直接拿來使用。大數據時代,統計學依然是數據分析的靈魂。正如美國加州大學伯克利分校邁克爾·喬丹教授指出的,「沒有系統的數據科學作為指導的大數據研究,就如同不利用工程科學的知識來建造橋梁,很多橋梁可能會坍塌,並帶來嚴重的後果。」
事物的發展充滿了不確定性,而統計學,既研究如何從數據中把信息和規律提取出來,找出最優化的方案;也研究如何把數據當中的不確定性量化出來。
劉軍的介紹與分析,幫助我們認識到,從數據到大數據,伴隨質的飛躍;通過對海量數據的整合、分析,可以發現新知識、創造新價值;大數據時代,統計學肩負從數據中提取規律、量化數據中的不確定性等使命。
以上是小編為大家分享的關於大數據時代:統計學是數據分析的靈魂的相關內容,更多信息可以關注環球青藤分享更多干貨
『柒』 大數據時代,統計學還有用嗎
IEEE Spectrum的第三次來「最受歡迎編源程語言」互動式排行榜中,C語言占據榜首,但大數據類是最大贏家。C語言替代了Java榜首的位置。放眼前五名,Python和C++在3、4名上互換了位置,C#跌出前五,其位置由近幾年上升勢頭迅猛的R語言所取代。近年來,包括R在內的大數據類編程語言總體呈現出一種上升趨勢。大數據的學習是離不開數學和邏輯基礎的,只能說大數據時代讓統計學的作用更多了。遠標網上有這些信息,你可以去看。
『捌』 請分析相對於傳統統計學而言,大數據時代在思維方式上的主要變化有哪些方面
奧,在傳統文化相對於統計學而言,大數據思維方式有很多很多變化,首先大數據比以前的來分析人更加徹底,人家通透易懂。
『玖』 如何認識大數據背景下,統計學面臨的挑戰與機遇
1.大數據對統計學帶來的挑戰
傳統的統計學一般還停留在用抽樣技術在總體中抽取樣本收集數據,然後建立模型對數據進行統計分析。但是在數據如此之多的今天傳統的統計學在完成這方面時面臨巨大的挑戰。統計學要想推陳出新,必須要自己作出改革。
2.大數據為統計學帶來的機遇
統計學從古至今一直以來就是一門研究數據的學科,統計學和大數據內在具有聯系性,大數據讓統計學登上了學科霸主的地位,很多教學單位現在都注重統計學人才的培養。統計學能夠讓人們更好的把握對數據的分析和應用。總結了以下幾點大數據時代為統計學帶來的發展機遇。
(1)大數據為統計學提供了新的研究方向,對大數據進行分析,為統計學提供了新的實用價值,因為不僅電商,傳統商家還有政府都需要對龐雜的數據進行分析,找出其中包含的關於經濟發展趨勢的宏觀信息,微觀信息,還有公眾的喜好和需求等等,為了獲取這些信息,更加嚴密和系統的科學方法會被引入統計學研究中。
(2)統計學能夠充分利用計算機技術的發展,統計理論方法需要在學科交叉中獲得新的生命力,統計學應該從數據發展的現在趨勢中尋找統計發展的靈感。考慮到現在的信息技術、雲計算、互聯網的發展,並且以政府統計作為現代化統計的基礎,從傳統的統計學向現代統計學發展。
(3)對統計人才的培養提出了新的要求,現在需要的不僅僅是對統計學理論知識有清晰認識的統計學人才,而是高層次的數據分析師,要有數學知識、統計建模知識、計算機技能、編程技能、大數據挖掘、還要有管理技能等的復合型人才。
(4)可以進一步深化統計理論模型,現在進行統計分析不像以往,統計指標的獲得要經過復雜的演算過程。現在一般都是依靠大型軟體程序,但是這些大型的軟
件程序的編制卻需要特定的統計模型來完成的,如果想要在大數據時代獲得發展的優先權,就要研發出相應的數理統計的模型。