Ⅰ 大數據量下如何高效過濾表中的某個欄位
(1) 選擇最有效率的表名順序(只在基於規則的優化器中有效):
ORACLE 的解析器按照從右到左的順序處理FROM子句中的表名,FROM子句中寫在最後的表(基礎表 driving table)將被最先處理,在FROM子句中包含多個表的情況下,你必須選擇記錄條數最少的表作為基礎表。如果有3個以上的表連接查詢, 那就需要選擇交叉表(intersection table)作為基礎表, 交叉表是指那個被其他表所引用的表.
(2) WHERE子句中的連接順序.:
ORACLE採用自下而上的順序解析WHERE子句,根據這個原理,表之間的連接必須寫在其他WHERE條件之前, 那些可以過濾掉最大數量記錄的條件必須寫在WHERE子句的末尾.
(3) SELECT子句中避免使用 『 * 『:
ORACLE在解析的過程中, 會將'*' 依次轉換成所有的列名, 這個工作是通過查詢數據字典完成的, 這意味著將耗費更多的時間
(4) 減少訪問資料庫的次數:
ORACLE在內部執行了許多工作: 解析SQL語句, 估算索引的利用率, 綁定變數 , 讀數據塊等;
(5) 在SQL*Plus , SQL*Forms和Pro*C中重新設置ARRAYSIZE參數, 可以增加每次資料庫訪問的檢索數據量 ,建議值為200
(6) 使用DECODE函數來減少處理時間:
使用DECODE函數可以避免重復掃描相同記錄或重復連接相同的表.
(7) 整合簡單,無關聯的資料庫訪問:
如果你有幾個簡單的資料庫查詢語句,你可以把它們整合到一個查詢中(即使它們之間沒有關系)
(8) 刪除重復記錄:
最高效的刪除重復記錄方法 ( 因為使用了ROWID)例子:
DELETE FROM EMP E WHERE E.ROWID > (SELECT MIN(X.ROWID)
FROM EMP X WHERE X.EMP_NO = E.EMP_NO);
(9) 用TRUNCATE替代DELETE:
當刪除表中的記錄時,在通常情況下, 回滾段(rollback segments ) 用來存放可以被恢復的信息. 如果你沒有COMMIT事務,ORACLE會將數據恢復到刪除之前的狀態(准確地說是恢復到執行刪除命令之前的狀況) 而當運用TRUNCATE時, 回滾段不再存放任何可被恢復的信息.當命令運行後,數據不能被恢復.因此很少的資源被調用,執行時間也會很短. (譯者按: TRUNCATE只在刪除全表適用,TRUNCATE是DDL不是DML)
(10) 盡量多使用COMMIT:
只要有可能,在程序中盡量多使用COMMIT, 這樣程序的性能得到提高,需求也會因為COMMIT所釋放的資源而減少:
COMMIT所釋放的資源:
a. 回滾段上用於恢復數據的信息.
b. 被程序語句獲得的鎖
c. redo log buffer 中的空間
d. ORACLE為管理上述3種資源中的內部花費
(11) 用Where子句替換HAVING子句:
Ⅱ 大數據處理_大數據處理技術
大數據技術,就是從各種類型的數據中快速獲得有價值信息的技術。大數據領域已經涌現出了大量新的技術,它們成為大數據採集、存儲、處理和呈現的有力武器。
大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。
一、大數據採集技術
數據是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。重點要突破分布式高速高可靠數據爬取或採集、高速數據全映像等大數據收集技術;突破高速數據解析、轉換與裝載等大數據整合技術;設計質量評估模型,開發數據質量技術。
互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果你真的想做,可以來這里,這個手技的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大數據採集一般分為大數據智能感知層:主要包括數據感測體系、網路通信體系、感測適配體系、智能識別體系及軟硬體資源接入系統,實現對結構化、半結構化、非結構化的海量數據的智能化識別、定位、跟蹤、接入、傳輸、信號轉換、監控、初步處理和管理等。必須著重攻克針對大數據源的智能識別、感知、適配、傳輸、接入等技術。基礎支撐層:提供大數據服務平台所需的虛擬伺服器,結構化、半結構化及非結構化數據的資料庫及物聯網路資源等基礎支撐環境。重點攻克分布式虛擬存儲技術,大數據獲取、存儲滾掘、組織、分析和決策操作的可視化介面技術,大數據的網路傳輸與壓縮技術,大數據隱私保護技術等。
二、大數據預處理技術
主要完成對已接收數據的辨析、抽取、清洗等操作。1)抽取:因獲取的數據可能具有多種結構和類型,數據抽取過程可以幫助我們將這些復雜的數據轉化為單一的或者便於處理的構型,以達到快速分析處理的目的。2)清洗:對於大數據,並不全是有價值的,有些數據並不是我們所關心的內容,而另一些數據則是完全錯誤的干擾項,因此要對數據通過過濾「去噪」從而提取出有效數據。
三、大數據存儲及管理技術
大數據存儲與管理要用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。重點解決復雜結構化、半結構化和非結構化大數據管理與處理技術。主要解決大數據的可存儲、可表示、可處理、可靠性及有效傳輸等幾個關鍵問題。開發可靠的分布式文件系統(DFS)、能效優化的存儲、計算融入存儲、大數據的去冗餘及高效低成本的大數據存儲技術;突破分布式非關系型大數據管理與處理技術,異構數據的數據融合技術,數據組織技術,研究大數據建模技術;突破大數據索引技術;突破大數據移動、備份、復制等技術;開發大數據可視化技術。
開發新型資料庫技術,資料庫分為關系型資料庫、非關系型資料庫以及資料庫緩存系統。其中,非關系型資料庫主要指的是NoSQL資料庫,分為歷備吵:鍵值資料庫、列存資料庫、圖存資料庫以及文檔資料庫等類型。關系型資料庫包含了傳統關系資料庫系統以及NewSQL資料庫。
開發大數據安全技術。改進數據銷毀、透明加解密、分布式訪問控制、數據審計等技術;突破隱私保護和推理控制、數據真偽識別和取證、數據持有完整性驗證等技術。
四、大數據分析及挖掘技術
大數據分析技術。改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
數據挖掘就是從大量的、不完全的、有雜訊的、模糊的、隨機的實際應用數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數據肢侍挖掘涉及的技術方法很多,有多種分類法。根據挖掘任務可分為分類或預測模型發現、數據總結、聚類、關聯規則發現、序列模式發現、依賴關系或依賴模型發現、異常和趨勢發現等等;根據挖掘對象可分為關系資料庫、面向對象資料庫、空間資料庫、時態資料庫、文本數據源、多媒體資料庫、異質資料庫、遺產資料庫以及環球網Web;根據挖掘方法分,可粗分為:機器學習方法、統計方法、神經網路方法和資料庫方法。機器學習中,可細分為:歸納學習方法(決策樹、規則歸納等)、基於範例學習、遺傳演算法等。統計方法中,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、費歇爾判別、非參數判別等)、聚類分析
(系統聚類、動態聚類等)、探索性分析(主元分析法、相關分析法等)等。神經網路方法中,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。
從挖掘任務和挖掘方法的角度,著重突破:
1.可視化分析。數據可視化無論對於普通用戶或是數據分析專家,都是最基本的功能。數據圖像化可以讓數據自己說話,讓用戶直觀的感受到結果。
2.數據挖掘演算法。圖像化是將機器語言翻譯給人看,而數據挖掘就是機器的母語。分割、集群、孤立點分析還有各種各樣五花八門的演算法讓我們精煉數據,挖掘價值。這些演算法一定要能夠應付大數據的量,同時還具有很高的處理速度。
3.預測性分析。預測性分析可以讓分析師根據圖像化分析和數據挖掘的結果做出一些前瞻性判斷。
4.語義引擎。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。語言處理技術包括機器翻譯、情感分析、輿情分析、智能輸入、問答系統等。
5.數據質量和數據管理。數據質量與管理是管理的最佳實踐,透過標准化流程和機器對數據進行處理可以確保獲得一個預設質量的分析結果。
六、大數據展現與應用技術
大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。在我國,大數據將重點應用於以下三大領域:商業智能、政府決策、公共服務。例如:商業智能技術,政府決策技術,電信數據信息處理與挖掘技術,電網數據信息處理與挖掘技術,氣象信息分析技術,環境監測技術,警務雲應用系統(道路監控、視頻監控、網路監控、智能交通、反電信詐騙、指揮調度等公安信息系統),大規模基因序列分析比對技術,Web信息挖掘技術,多媒體數據並行化處理技術,影視製作渲染技術,其他各種行業的雲計算和海量數據處理應用技術等。
Ⅲ 手機推送帶來的世界狹窄如何解決
可以減少手機使用的時間,並關閉一些APP的推送功能。
進入大數據時代以後,傳統的數據轟炸變成了精準投送。大數據在強化你本來的認知,讓你看不到真正的世界。
1.在大數據時代,掌握信息過濾能力變得尤為重要,但這的確很難,而且會越來越難。保持獨立思考的能力在當下尤為重要。
2.大數據其實剝奪了很多人說話的權力,大眾傳媒讓更多人的聲音傳遞了出去,但同樣,掌握大數據的人就掌握了輿論導向,掌握大數據的組織可以精準地知道哪些信息對自己有利,哪些對自己有害。當我們看到某個信息的時候,我們要思考一個問題,這個信息對誰有利。我們看到的新聞很可能是被大數據過濾過的,很可能是別有用心之舉。作為普通人,我們接受到的別有用心的信息一般就是軟廣告,這個在手機、汽車、化妝護膚品行業應該是尤為明顯,可能我今天搜索了某個品牌的手機,我以後就會經常接受到這個品牌的信息。大數據就是這樣強化我們的固有認知。而「殺熟」這個操作在大數據下也變得十分簡單。
3.記住一點,任何情況下都要保持清醒的頭腦,我們看到的信息至少不是真相全部,甚至有些還是虛假的。大數據把很多人都致盲了,它把人分成了一個又一個的圈子,圈子與圈子之間互相不理解,互相覺得對方不可理喻,就好比盲人摸象,大家都以為自己的認知才是大象,而事實上遠非如此。
Ⅳ 大數據預處理的方法有哪些
1、數據清理
數據清理常式就是通過填寫缺失值、光滑雜訊數據、識別或者刪除離群點,並且解決不一致性來進行“清理數據”。
2、數據集成
數據集成過程將來自多個數據源的數據集成到一起。
3、數據規約
數據規約是為了得到數據集的簡化表示。數據規約包括維規約和數值規約。
4、數據變換
通過變換使用規范化、數據離散化和概念分層等方法,使得數據的挖掘可以在多個抽象層面上進行。數據變換操作是提升數據挖掘效果的附加預處理過程。
Ⅳ 大數據預處理包含哪些
一、數據清理
並不一定的數據全是有使用價值的,一些數據並不是大家所關注的內容,一些乃至是徹底不正確的影響項。因而要對數據過濾、去噪,進而獲取出合理的數據。
數據清理關鍵包括忽略值解決(缺乏很感興趣的屬性)、雜訊數據解決(數據中存有著不正確、或偏移期待值的數據)、不一致數據解決。
忽略數據能用全局性變數定義、屬性平均值、將會值填充或是立即忽視該數據等方式;雜訊數據能用分箱 (對初始數據開展排序,隨後對每一組內的數據開展平滑處理)、聚類演算法、電子計算機人工服務定期檢查重歸等方式 除去雜訊。
二、數據集成與轉換
數據集成就是指把好幾個數據源中的數據融合並儲存到一個一致的資料庫文件。這一全過程中必須主要處理三個難題:模式匹配、數據冗餘、數據值沖突檢測與解決。
因為來源於好幾個數據結合的數據在取名上存有差別,因而等額的的實體線常具備不一樣的名字。數據集成中最後一個關鍵難題就是數據值矛盾難題,具體表現為來源於不一樣的統一實體線具備不一樣的數據值。
三、數據規約
數據規約關鍵包含:數據方集聚、維規約、數據縮小、標值規約和定義層次等。
倘若依據業務流程要求,從資料庫房中獲得了剖析所必須的數據,這一數據集將會十分巨大,而在大量數據上開展數據剖析和數據發掘的成本費又非常高。應用數據規約技術性則能夠 完成數據集的規約表明,促使數據集縮小的另外依然趨於維持原數據的一致性。在規約後的數據集在開展發掘,仍然可以獲得與應用原數據集幾近同樣的剖析結果。
關於大數據預處理包含哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。