Ⅰ 大數據和人工智慧論文
隨著大數據和人工智慧技術的發展,未來的保險保障將不僅僅能提供經濟補償,還能實現損失干預,具體到人身險方面,以下是我精心整理的大數據和人工智慧論文的相關資料,希望對你有幫助!
基於大數據和人工智慧的被保險人行為干預
【摘要】隨著大數據和人工智慧技術的發展,未來的保險保障將不僅僅能提供經濟補償,還能實現損失干預,具體到人身險方面,則可以實現對被保險人行為的干預,降低給付發生的概率和額度,提高人民健康水平。基於此,文章介紹了利用大數據和人工智慧技術對被保險人行為干預的優點及干預方式,並預期可能實現的干預結果,最後對保險公司進行被保險人行為干預提出了階段建議。
【關鍵詞】大數據 人工智慧 行為干預
近年來隨著大數據和人工智慧技術的發展,越來越多的領域應用這些技術來提高自身的專業水平。保險作為基於大數法則進行風險管理的一種方式,對數據的處理和應用要求更高。目前大數據技術在保險業的應用主要是精準營銷、保險產品開發和理賠服務等,但在保險中的防災防損方面的應用還不夠。如果能夠深入挖掘大數據在被保險人行為方面的研究,再結合人工智慧進行智能幹預,則可以對被保險人實現有效的風險管理,提高被保險人的身體健康狀況,從而極大程度的提升客戶效用,提高社會整體福利水平。
一、被保險人行為干預簡介
行為干預是通過對環境進行控制從而使個體產生特定行為的方式,目前主要在教育,醫療等方面發揮作用。但在被保險人管理方面,行為干預應用很少。現行的對被保險人的管理主要集中在投保審核的過程中,而在投保後提供的服務和干預很少,一般也就是提供健康體檢等服務,而對被保險人投保後的日常生活行為方式,健康隱患則基本處於放任自流的狀況。而被保險人行為干預則是通過對被保險人日常生活行為,飲食習慣等進行實時數據收集和分析,然後制定干預方式進行針對化管理的模式。
二、利用大數據和人工智慧進行被保險人行為干預的優點
實現精準、良好的對被保險人的行為干預,需要利用大數據和人工智慧技術。大數據相比傳統數據具有海量、高速、多樣等特點,它實現了對信息的全量分析而不是以前的抽樣分析。在被保險人行為干預模式中,需要對每一個個體的日常生活作息,行為,飲食,身體健康指標的進行實時數據採集,然後進行分析,這用傳統的數據統計方法是難以做到的。利用大數據技術進行分析能從海量信息中獲取被保險人的風險狀況,從而為精準干預提供基礎。簡單的干預難以實現特定的干預結果,而人工智慧則讓干預顯得更加自然,讓被保險人更加易於接受,從而很大程度上提高了干預效果。
三、如何利用大數據和人工智慧進行被保險人行為干預
利用大數據和人工智慧進行被保險人的行為干預主要有以下步驟:
首先利用人工智慧設備進行被保險人數據收集,除了目前的手機APP,網路等軟體和設備上的數據能夠被收集外,未來人工智慧家居能提供更多的被保險人信息。例如提供體重、坐姿等數據的椅子,提供飲食時間和品種的筷子,提供身體運動和健康數據的智能穿戴式設備等等。數據收集後,需要利用大數據技術對海量數據進行清洗,去噪等技術處理,然後對數據進行分析。第三步是根據數據分析結果,制定具體的行為干預方案。最後一步是根據制定的方法,利用人工智慧進行干預,如智能椅子調整坐姿,智能廚具減少含油量,針對性的健康食譜推薦,鍛煉提醒,智能家居輔助鍛煉等等。與此同時,新一輪的數據收集又開始了,整個過程是連續進行,不斷循環的。
四、利用大數據和人工智慧進行被保險人行為干預的預期成果
對被保險人來說,這種干預方式能有效的進行健康管理。未來的健康保險將成為個人真正的健康管家,從日常生活行為,到身體機能都能提供很好的干預,並且讓良好生活方式的養成更加容易,從而提高自身的健康狀況,達到更好的生活狀況。但另一方面,全面數據化,智能化的方式可能會帶來很大的數據泄露風險,所以如果保護客戶私密數據是另一個值得研究的問題。另外,對於投保前健康狀況較差的客戶,或者是對行為干預較為抵制,干預效果較差的客戶,可能需要承擔更多的保費。當然對於優質客戶和樂於提升和改變的客戶則可以享受到更加優惠的費率。也就是說在大數據和人工智慧技術下,客戶進行了進步一步細分。
對保險人來說,行為干預能夠降低被保險人的風險,很多疾病能實現防範於未然,降低賠償程度。另外,藉助大數據和人工智慧,保險人還能根據分析結果,被保險人對干預的反應等進行客戶的進一步分類,從而實現區塊化管理。但這對保險公司也提出了更高的技術要求,尤其在前期,可能會帶來加大的成本。
五、保險公司推進被保險人行為干預的建議
對於保險公司來說,目前的一些人工智慧技術還未能實現,或者成本高昂,難以普及。所以現階段對保險公司來說首先是提高大數據能力。
具體來說,首先是利用大數據對公司已有客戶信息進行數據挖掘,包括承保數據,理賠數據等,從而一定程度挖掘出客戶的特徵,並提供服務。如根據挖掘出的性別差異,地區差異,年齡差異等,提供不同的生活建議。
如果公司已經充分進行了自身客戶已有數據的挖掘,則可以利用目前的手機APP,佩戴設備進行數據的進一步收集。例如,利用薄荷、飲食助手、微信運動、春雨掌上醫生、血糖記錄、小米手環等數據進行用戶數據收集。同時可以針對被保險人開發專門的手機APP,集數據收集和服務於一身。
更進一步,保險公司可以嘗試與其他高科技企業合作,開發一些智能穿戴式設備,智能家居等,逐步實現對被保險人的行為干預。
參考文獻
[1]彼得・迪亞曼迪斯.將會被人工智慧和大數據重塑的三個行業[J].中國青年,2015,23:41.
[2]王和,鞠松霖.基於大數據的保險商業模式[J].中國金融,2014,15:28-30.
[4]尹會岩.保險行業應用大數據的路徑分析[J].上海保險,2014,12:10-16.
下一頁分享更優秀的<<<大數據和人工智慧論文
Ⅱ 大數據下的計算機信息處理技術研究論文
大數據下的計算機信息處理技術研究論文
摘要: 現如今,隨著科學技術的快速發展,計算機技術已經融入到人們的生活之中,想想10年前的計算機技術和現如今的計算機技術,真的是天壤之別,發生了翻天覆地的變化。同時,大數據的應用也越來越廣泛,帶來了豐厚的利潤,各種「雲」層出不斷,對大數據的背景下,計算機信息處理的技術提出更高的競爭和要求。本文首先介紹大數據的概念,闡述基於大數據背景下的各種計算機信息處理技術,並對技術進行分析研究,最後對大數據未來的發展的機會做出分析。
關鍵詞: 大數據;計算機信息;技術研究
隨著科技的迅猛發展,大數據的應用愈來愈廣,隨之產生的數據系統總量大,十分龐大,這就對大數據時代下的計算機信息處理技術提出了更高的要求,如何將大數據處理的井然有序,有條不紊,值得每一位考研人員進行探討。
一、大數據的概念
什麼是大數據?大數據,另一種叫法稱之為巨型資料,是一個十分復雜密集的數據集,這樣的數據集在一定的時間內,依靠於傳統普通的數據加工軟體無法最終實現管理、抓取及處理的功能,需要進行創新,用新的處理模式才能夠實現。大數據具有虛擬化、按需服務、低成本等等特點。在每一個消費者的角度來看,大數據中的計算技術資源服務可以幫助每一個大數據用戶完成想要的資源信息,用戶只需進行付費就可以直接使用,根本不需要到處搜尋資料,跑來派去的打聽。這從根本上改變了人們對信息資源的需求方式,為用戶提供一種超大規模的網路資源共享。同時,面對海量的大資料庫資源,如何對大數據資源進行處理,得到用戶們想要的信息資源,需要計算機信息技術不斷的進行挖掘。
二、大數據下的計算機信息處理技術
總體的來說,基於大數據背景下的計算機信息處理技術總共可以分成以下3個方面:信息的獲取及加工技術、信息的存儲技術和信息安全方面的技術。下面就針對這三種技術,進行研究分析。1)信息的獲取及加工技術。信息的獲取及加工技術是實現信息化的第一步,是最基礎的工作內容,只有完成了信息數據的搜集工作,才能進行下面的計算機信息技術的處理。因此,如若進行信息的採集工作,需要首先明確信息的目標源,對信息數據進行監控,時刻把握信息的流向及動態,然後將採集的信息數據輸入至計算機資料庫中,實現了信息的獲取採集工作。接下來是第二步,信息的加工及處理工作,所有的加工和處理技術的核心在於用戶的指引,完全由用戶導向,設定信息的篩選范圍,確定信息的豐富度等等。最後是依照於用戶的要求,將信息資源傳輸到用戶手中。這樣就實現了整個信息從採集到處理,再從處理到傳送工作的整個流程。2)信息的存儲技術。在大數據的背景下,對於整個計算機信息的處理,信息技術的存儲是十分關鍵的環節,可以將處理加工的數據得以保存,更方便用戶對於數據的調取和應用。而且,現如今的信息數據總量大、更新速度快,合理的運用存儲方面的技術,可以快速的實現信息的存儲工作,提高工效效率,將復雜變簡單。在目前的時代下,應用最廣泛的是分布式數據存儲技術,應用十分方便,能夠實現快速大量的數據存儲。3)信息安全方面的技術。大數據在方便用戶使用和享受的同時,信息數據資源的安全性也是不容忽略的,而且隨著社會的發展,數據資源的安全性和隱私性逐漸受到關注,如何實現資料庫的安全是個十分值得研究的課題。首先最主要的是建立計算機安全體系,充分引進更多的人才。其次需要加強安全技術的研發速度,由於大數據發展及更新速度快,需要快速的更新原有的安全體系,盡快的適應大數據時代的更新速度。除此之外,加強對信息的監測是十分必要的,避免不法之人進行數據的盜取,在信息數據龐大的體量下,依然能夠提供穩定有效的安全體系。
三、大數據下的計算機信息技術的發展前景
1)雲技術的發展是必然趨勢。雲計算網路技術是越來越得到大的發展,一方面由於計算機硬體系統的數據處理技術有限,雲技術可以完全的將弊端破除,同時,它能夠利用最新的數據資源和處理技術,不依賴於計算機硬體系統。因此,隨著龐大的數據越來越復雜,傳統的數據處理方式已經不能夠適應,未來將計算機信息處理必將朝著雲計算發展。2)計算機網路不再受限於計算機硬體。未來,計算機網路技術將會不再受制於計算機硬體的限制,網路的傳輸技術更加趨向於開放化,計算機網路和計算機硬體將會分隔開,重新定義新的網路架構。3)計算機技術和網路相互融合。傳統的計算機技術需要運用計算機的硬體系統才能夠實現信息的處理、加工及存儲工作,未來新的.計算技術將脫離於計算機硬體配備,可以僅僅用計算機網路就可以實現數據的加工和處理。同時,二者也將會相互融合、相互發展真正的滿足由於大數據時代的更新所帶來的困擾,這是未來大數據背景下計算機技術發展的又一個方向。
四、大數據下的計算機信息技術面臨的機遇和挑戰
在大數據背景下,計算機信息技術的機遇和挑戰並存,首先,病毒及網站的惡意攻擊是少不了的,這些問題是站在計算機信息技術面前的巨大挑戰,同時,近些年,網路詐騙不斷,社會關注度逐漸提高,網路的安全問題也是不同忽視,再者,信息之間的傳送速度也有限,需要對傳送技術進行創新,以適應更高的用戶需求。最後,隨著大資料庫的不斷豐富,越來越龐大的數據資源進行加工和處理,對數據的存儲又有了新的要求,如何適應不斷龐大的數據信息量,實現更加便捷的、滿足用戶需求的調取也是一個巨大的挑戰。與此同時,也存在著許多的機遇。首先,大數據對信息安全的要求越來越大,一定程度上帶動了信息安全的發展,其次,大數據在應用方面,對企業及用戶帶來了巨大的便利,同時也豐富了產業資源,未來用戶及企業面前的競爭可能會轉化為大數據信息資源的競爭。最後,大數據時代的來臨,構造了以信息安全、雲計算和物聯網為主要核心的新形勢。
五、結論
通過一番研究,目前在大數據時代下,計算機信息技術確實存在著一定的弊端,需要不斷的進行創新和發展,相信未來的雲計算會越來越先進,越來越融入到人們的生活及工作當中,計算機信息技術面臨的巨大的挑戰和機遇,面對挑戰,抓住機遇,相信未來我國的計算機技術會越來越好,必將超過世界領先水平!
參考文獻:
[1]王秀蘇.計算機信息處理技術在辦公自動化上的應用[J].科技經濟市場,2010(03).
[2]張連傑.企業管理中計算機技術的應用[J].電腦知識與技術,2011(26).
[3]陳靜.淺談計算機處理技術[J].科技與企業,2012(11).
[4]趙春雷,喬治納漢."大數據"時代的計算機信息處理技術[J].世界科學,2012.
[5]庄晏冬.智能信息處理技術應用與發展[J].黑龍江科技信息,2011.
[6]艾伯特拉斯洛,巴拉巴西,著.馬慧,譯.爆發:大數據時代預見未來的新思維[M].北京:中國人民大學出版社,2012.河南省高等學校重點科研項目計劃(16A520008)
Ⅲ 數據採集|教育大數據的來源、分類及結構模型
一、 教育大數據的來源
教育是一個超復雜的系統,涉及 教學、管理、教研、服務 等諸多業務。與金融系統具有清晰、規范、一致化的業務流程所不同的是,不同地區、不同學校的教育業務雖然具有一定的共性,但差異性也很突出,而業務的差異性直接導致教育數據來源更加多元、數據採集更加復雜。
教育大數據產生於 各種教育實踐活動 ,既包括校園環境下的教學活動、管理活動、科研活動以及校園生活,也包括家庭、社區、博物館、圖書館等非正式環境下的學習活動;既包括線上的教育教學活動,也包括線下的教育教學活動。
教育大數據的核心數據源頭是「人」和「叢擾物」——「人」包括學生、教師、管理者和家長,「物」包括信息系統校園網站、伺服器、多媒體設備等各種教育裝備。
依據來源和范圍的不同,可以將教育大數據分為個體教育大數據、課程教育大數據、班級教育大數據、學校教育大數據、區域教育大數據、國家教育大數據等六種 。
二、 教育大數據的分類
教育數據有多重分類方式。
從數據產生的業務來源來看,包括 教學類數據、管理類數據、科研類數據 以及服務類數據。
從數據產生的技術場景來看冊鄭念,包括 感知數據 、業務數據和互聯網數據等類型。
從數據結構化程度來看,包括 結構化數據、半結構化數據和非結構化數據 。結構化數據適合用二維表存儲。
從數據產生的環節來看,包括 過程性數據和結果性數據州困 。過程性數據是活動過程中採集到的、難以量化的數據(如課堂互動、在線作業、網路搜索等);結果性數據則常表現為某種可量化的結果(如成績、等級、數量等)。
國家採集的數據主要以管理類、結構化和結果性的數據為主,重點關注宏觀層面教育發展整體狀況。到大數據時代,教育數據的全面採集和深度挖掘分析變得越來越重要。教育數據採集的重心將向非結構化、過程性的數據轉變。
三、教育數據的結構模型
整體來說,教育大數據可以分為四層,由內到外分別是基礎層、狀態層、資源層和行為層。
基礎層:也就是我們國家最最基礎的數據,是高度保密的數據; 包括教育部2012年發布的七個教育管理信息系列標准中提到的所有數據,如學校管理信息、行政管理信息和教育統計信息等;
狀態層,各種裝備、環境與業務的運行狀態的數據; 必然設備的耗能、故障、運行時間、校園空氣質量、教室光照和教學進度等;
資源層,最上層是關於教育領域的用戶行為數據。 比如PPT課件、微課、教學視頻、圖片、游戲、教學軟體、帖子、問題和試題試卷等;
行為層:存儲擴大教育相關用戶(教師、學生、教研員和教育管理者等)的行為數據, 比如學生的學習行為數據、教師的教學行為數據、教研員的教學指導行為數據以及管理員的系統維護行為數據等。
不同層次的數據應該有不同的採集方式和教育數據應用的場景。
關於教育大數據的冰山模型,目前我們更多的是採集一些顯性化的、結構性的數據,而存在冰山之下的是更多的非結構化的,而且真正為教育產生最大價值的數據是在冰山之下的。
參考文獻:
教育大數據的來源與採集技術 邢蓓蓓
Ⅳ hadoop參考文獻有哪些
《大數據技術原理與應用—概念、存儲、處理、分析與應用》。hadoop參考文獻有《大數據技術原理與應用—概念、存儲、處理、分析與應用》,Hadoop是一個開源的框架,可編寫和運行分布式應用處理大規模數據。
Ⅳ 如果我們的研究主題為大數據,應檢索哪些文獻
1.[期刊論文]數據科學與大數據技術專業的教材建設探索
期刊:《新聞文化建設》 | 2021 年第 002 期
摘要:隨著大數據時代的到來,信息技術蓬勃發展,國家大力推進大數據產業的發展,鼓勵高校設立數據科學和數據工程相關專業。在趨勢的推動下,許多高校成立了數據科學與大數據技術專業。本文通過研究數據科學與大數據技術專業的發展現狀,探索新專業下人才培養的課程設置及教材建設等問題,同時介紹高等教育出版社在數據科學與大數據技術專業教材建設方面的研發成果。
關鍵詞:數據科學與大數據技術專業;課程設置;教材建設
鏈接:https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/0201289060336.html
---------------------------------------------------------------------------------------------------
2.[期刊論文]數據科學與大數據技術專業課程體系探索
期刊:《科教文匯》 | 2021 年第 002 期
摘要:該文闡述了數據科學與大數據專業的設置必要性、專業的培養目標和知識能力結構,最後探索了數據科學與大數據專業的技術性課程體系設置方法.希望該文內容對數據科學與大數據技術專業的培養方案制訂和課程體系構造具有一定的指導意義和參考價值.
關鍵詞:數據科學;大數據技術;課程體系
鏈接:https://www.zhangqiaokeyan.com/academic-journal-cn_science-ecation-article-collects_thesis/0201284684572.html
---------------------------------------------------------------------------------------------------
3.[期刊論文]數據科學與大數據技術專業實驗實踐教學探析
期刊:《長春大學學報(自然科學版)》 | 2021 年第 001 期
摘要:近些年各種信息數據呈爆炸式增長,在這種背景下,國家在2015年印發了關於大數據技術人才培養的相關文件,每年多個高校的大數據相關專業獲批.數據量的增長對數據處理的要求越來越高,各行業涉及信息數據的范圍越來越廣,對大數據專業人才的需求越來越多.為了應對社會需求,如何科學地規劃數據科學與大數據專業的本科教育,尤其在當前注重實踐操作的背景下,如何制定適合的實驗實踐教學方案,更好滿足社會需求.
關鍵詞:數據科學;大數據;實踐教學
鏈接:https://www.zhangqiaokeyan.com/academic-journal-cn_journal-changchun-university_thesis/0201288750604.html
Ⅵ 淺談計算機與大數據的相關論文
在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是我給大家推薦的計算機與大數據的相關論文,希望大家喜歡!
計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術
[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。
[關鍵詞]大數據時代;計算機;信息處理技術
在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經佔領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。
一、大數據時代信息及其傳播特點
自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的資料庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、列印能力等各項能力均有顯著提升,尤其是當前軟體技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。
大數據信息不但具有較大容量,同時相對於傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在 網路技術 發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網路傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬體所具有的限製作用。因為在當前計算機網路發展中還存在一定的不足,在完成雲計算機網路構建之後,才能夠在信息處理過程中,真正的實現收放自如[2]。
二、大數據時代的計算機信息處理技術
(一)數據收集和傳播技術
現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要採用信息處理技術實施相應的信息處理。計算機採用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之後首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之後,才能夠把這些信息完整的在計算機網路上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,藉助於計算機傳播特點將信息數據的閱讀價值有效的實現。
(二)信息存儲技術
在目前計算機網路中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關於不同信息的存儲需求滿足,但是也有一部分用戶對於計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。
(三)信息安全技術
大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個資料庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,並且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬體中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網路信息管理體系發展需求,同時也要加強關於安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對於大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬於重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關於計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種 方法 具有一定可行性。
(四)信息加工、傳輸技術
在實施計算機信息數據處理和傳輸過程中,首先需要完成數據採集,同時還要實時監控數據信息源,在資料庫中將採集來的各種信息數據進行存儲,所有數據信息的第一步均是完成採集。其次才能夠對這些採集來的信息進行加工處理,通常來說也就是各種分類及加工。最後把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。
結語:
在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬體中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是雲計算網路,把網路數據和計算機硬體數據兩者分開,也就有助於實現雲計算機網路的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。
參考文獻
[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光碟軟體與應用,2014,(05):105+107.
[2] 詹少強.基於“大數據”時代剖析計算機信息處理技術[J].網路安全技術與應用,2014,(08):49-50.
[3] 曹婷.在信息網路下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI
[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光碟軟體與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟體技術在大數據時代的應用
摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更准確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求採用一套全新的、對企業決策具有深遠影響的解決方案。
關鍵詞:計算機 大數據時代 容量 准確 價值 影響 方案
1 概述
自從計算機出現以後,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網路公司開始致力於數據存儲與資料庫的研究,為互聯網用戶提供各種服務。隨著雲時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。
大數據是IT行業在雲計算和物聯網之後的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對於企業的運營模式、組織結構以及 文化 塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網路資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代。可見,這是一個競爭與機遇並存的時代。
2 大數據時代的數據整合應用
自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都准備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取捨,以及如何解決數據資產化和價值挖掘問題。
企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平台與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。
2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取 措施 ,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對 企業運營 的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的遊客和商務信息的服務。藉此,動物園可以獲得新的收入來源和提高營收,並根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。
3 企業信息解決方案在大數據時代的應用
企業信息管理軟體廣泛應用於解決欺詐偵測、雇員流動、客戶獲取與維持、網路銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特徵,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:
3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標准為:包含足夠的重要信息,同時也要便於分析操作。該步驟涉及的處理工具為:數據導入、合並、粘貼、過濾以及統計抽樣方法。
3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對於數據的認識。該步驟涉及的工具為:統計 報告 、視圖探索、變數選擇以及變數聚類等方法。
3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變數的方式來修改數據集。該步驟涉及工具為:變數轉換、缺失處理、重新編碼以及數據分箱等。
3.4 Model 為了獲得可靠的預測結果,我們需要藉助於分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網路、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型演算法。
3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。
在完成SEMMA步驟後,可將從優選模型中獲取的評分公式應用於(可能不含目標變數的)新數據。將優選公式應用於新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據並以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。
如果您將優選模型注冊進入SAS元數據伺服器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入 工作報告 和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。
在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。
4 結束語
在近十年時間里,數據採集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,並且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。
參考文獻:
[1]薛志文.淺析計算機網路技術及其發展趨勢[J].信息與電腦,2009.
[2]張帆,朱國仲.計算機網路技術發展綜述[J].光碟技術,2007.
[3]孫雅珍.計算機網路技術及其應用[J].東北水利水電,1994.
[4]史萍.計算機網路技術的發展及展望[J].五邑大學學報,1999.
[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.
[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟體導刊.
[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).
[8]楊鳳霞.淺析 Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略
[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席捲全球,尤其是在進入新時期之後數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步並將其質量拔高就需要結合大數據,依託於大數據實現長足發展,本文基於此就大數據於CAT影響進行著手分析,之後探討依託於大數據良好推進CAT,以期為後續關於CAT方面研究提供理論上參考依據。
[關鍵詞]大數據 計算機審計 影響
前言:相較於網路時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合於大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。
一、初探大數據於CAT影響
1.1影響之機遇
大數據於CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較於以往僅僅關注數據因果有了較大進步。基於上述三大變化趨勢,也深刻的代表著大眾對於數據處理的態度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯後性,只有依託於大數據並發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。
1.2影響之挑戰
大數據於CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依託於其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息准確三方面,而在CAT實際工作環節中常常由於外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。
二、探析依託於大數據良好推進CAT措施
2.1數據質量的有效保障
依託於大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現並找出信息系統不可靠不準確地方;其二是把控電子數據採集,通常電子數據具備多樣化採集方式,如將審計單位相應資料庫直接連接採集庫進而實現數據採集,該種直接採集需要備份初始傳輸數據,避免數據採集之後相關人員隨意修改,更加可以與審計單位進行數據採集真實性 承諾書 簽訂等等,最終通過電子數據方面採集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。
2.2公共數據平台的建立
依託於大數據良好推進CAT措施還集中在公共數據平台的建立,建立公共化分析平台一方面能夠將所有採集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標准予以良好執行。如果將分析模型看作是CAT作業標准以及相應的核心技術,則公共分析平台則是標准執行和相應技術實現關鍵載體。依託於公共數據平台不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利於CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。
2.3審計人員的強化培訓
依託於大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作於計算機上的具 體操 作以及操作重點難點,可以構建統一培訓平台,在該培訓平台中予以多元化資料的分享,聘請高技能豐富 經驗 人士予以平台授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。
三、結論
綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依託於大數據促使審計人員得以素質提升,並利用公共數據平台建立和相應的數據質量保障促使CAT工作更加高效,而本文對依託於大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。
猜你喜歡:
1. 人工智慧與大數據論文
2. 大數據和人工智慧論文
3. 計算機大數據論文參考
4. 計算機有關大數據的應用論文
5. 有關大數據應用的論文
Ⅶ 求一篇與大數據或者大數據信息安全專業相關的原版英文文獻及其翻譯,3000字左右。好人,拜託!
Big data refers to the huge volume of data that cannot
be stored and processed with in a time frame in
traditional file system.
The next question comes in mind is how big this data
needs to be in order to classify as a big data. There is a
lot of misconception in referring a term big data. We
usually refer a data to be big if its size is in gigabyte,
terabyte, Petabyte or Exabyte or anything larger than
this size. This does not define a big data completely.
Even a small amount of file can be referred to as a big
data depending upon the content is being used.
Let』s just take an example to make it clear. If we attach
a 100 MB file to an email, we cannot be able to do so.
As a email does not support an attachment of this size.
Therefore with respect to an email, this 100mb file
can be referred to as a big data. Similarly if we want to
process 1 TB of data in a given time frame, we cannot
do this with a traditional system since the resource
with it is not sufficient to accomplish this task.
As you are aware of various social sites such as
Facebook, twitter, Google+, LinkedIn or YouTube
contains data in huge amount. But as the users are
growing on these social sites, the storing and processing
the enormous data is becoming a challenging task.
Storing this data is important for various firms to
generate huge revenue which is not possible with a
traditional file system. Here is what Hadoop comes in
the existence.
Big Data simply means that huge amount
of structured, unstructured and semi-structured
data that has the ability to be processed for information. Now a days massive amount of data
proced because of growth in technology,
digitalization and by a variety of sources, including
business application transactions, videos, picture ,
electronic mails, social media, and so on. So to process
these data the big data concept is introced.
Structured data: a data that does have a proper format
associated to it known as structured data. For example
the data stored in database files or data stored in excel
sheets.
Semi-Structured Data: A data that does not have a
proper format associated to it known as structured data.
For example the data stored in mail files or in docx.
files.
Unstructured data: a data that does not have any format
associated to it known as structured data. For example
an image files, audio files and video files.
Big data is categorized into 3 v』s associated with it that
are as follows:[1]
Volume: It is the amount of data to be generated i.e.
in a huge quantity.
Velocity: It is the speed at which the data getting
generated.
Variety: It refers to the different kind data which is
generated.
A. Challenges Faced by Big Data
There are two main challenges faced by big data [2]
i. How to store and manage huge volume of data
efficiently.
ii. How do we process and extract valuable
information from huge volume data within a given
time frame.
These main challenges lead to the development of
hadoop framework.
Hadoop is an open source framework developed by
ck cutting in 2006 and managed by the apache
software foundation. Hadoop was named after yellow
toy elephant.
Hadoop was designed to store and process data
efficiently. Hadoop framework comprises of two main
components that are:
i. HDFS: It stands for Hadoop distributed file
system which takes care of storage of data within
hadoop cluster.
ii. MAPREDUCE: it takes care of a processing of a
data that is present in the HDFS.
Now let』s just have a look on Hadoop cluster:
Here in this there are two nodes that are Master Node
and slave node.
Master node is responsible for Name node and Job
Tracker demon. Here node is technical term used to
denote machine present in the cluster and demon is
the technical term used to show the background
processes running on a Linux machine.
The slave node on the other hand is responsible for
running the data node and the task tracker demons.
The name node and data node are responsible for
storing and managing the data and commonly referred
to as storage node. Whereas the job tracker and task
tracker is responsible for processing and computing a
data and commonly known as Compute node.
Normally the name node and job tracker runs on a
single machine whereas a data node and task tracker
runs on different machines.
B. Features Of Hadoop:[3]
i. Cost effective system: It does not require any
special hardware. It simply can be implemented
in a common machine technically known as
commodity hardware.
ii. Large cluster of nodes: A hadoop system can
support a large number of nodes which provides
a huge storage and processing system.
iii. Parallel processing: a hadoop cluster provide the
accessibility to access and manage data parallel
which saves a lot of time.
iv. Distributed data: it takes care of splinting and
distributing of data across all nodes within a cluster
.it also replicates the data over the entire cluster.
v. Automatic failover management: once and AFM
is configured on a cluster, the admin needs not to
worry about the failed machine. Hadoop replicates
the configuration Here one of each data iscopied or replicated to the node in the same rack
and the hadoop take care of the internetworking
between two racks.
vi. Data locality optimization: This is the most
powerful thing of hadoop which make it the most
efficient feature. Here if a person requests for a
huge data which relies in some other place, the
machine will sends the code of that data and then
other person compiles it and use it in particular
as it saves a log to bandwidth
vii. Heterogeneous cluster: node or machine can be
of different vendor and can be working on
different flavor of operating systems.
viii. Scalability: in hadoop adding a machine or
removing a machine does not effect on a cluster.
Even the adding or removing the component of
machine does not.
C. Hadoop Architecture
Hadoop comprises of two components
i. HDFS
ii. MAPREDUCE
Hadoop distributes big data in several chunks and store
data in several nodes within a cluster which
significantly reces the time.
Hadoop replicates each part of data into each machine
that are present within the cluster.
The no. of copies replicated depends on the replication
factor. By default the replication factor is 3. Therefore
in this case there are 3 copies to each data on 3 different
machines。
reference:Mahajan, P., Gaba, G., & Chauhan, N. S. (2016). Big Data Security. IITM Journal of Management and IT, 7(1), 89-94.
自己拿去翻譯網站翻吧,不懂可以問