導航:首頁 > 網路數據 > 醫療大數據案例分析

醫療大數據案例分析

發布時間:2023-07-21 23:35:32

『壹』 如何利用大數據來改善醫療服務質量

近年來,大數據不斷向世界的各行各業滲透,影響著我們的衣食住行。例如,網上購物時,經常會發現電子商務門戶網站向我們推薦商品,往往這類商品都是我們最近需要的。這是因為用戶上網行為軌跡的相關數據都會被搜集記錄,並通過大數據分析,使用推薦系統將用戶可能需要的物品進行推薦,從而達到精準營銷的目的。下面簡單介紹幾種大數據的應用場景。

大數據在醫療行業的應用

大數據讓就醫看病更簡單。過去,對於患者的治療方案,大多數都是通過醫師的經驗來進行,優秀的醫師固然能夠為患者提供好的治療方案,但由於醫師的水平不相同,所以很難保證患者都能夠接受最佳的治療方案。

而隨著大數據在醫療行業的深度融合,大數據平台積累了海量的病例、病例報告、治癒方案、葯物報告等信息資源.所有常見的病例、既往病例等都記錄在案,醫生通過有效、連續的診療記錄,能夠給病人優質、合理的診療方案。這樣不僅提高醫生的看病效率,而且能夠降低誤診率,從而讓患者在最短的時間接受最好的治療。下面列舉大數據在醫療行業的應用,具體如下。

(1) 優化醫療方案,提供最佳治療方法。

面對數目及種類眾多的病菌、病毒,以及腫瘤細胞時,疾病的確診和治療方案的確定也是很困難的。藉助於大數據平台,可以搜集不同病人的疾病特徵、病例和治療方案,從而建立醫療行業的病人分類資料庫。如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診,明確地定位疾病。在制訂治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制訂出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業研發出更加有效的葯物和醫療器械。

(2)有效預防預測疾病。

解決患者的疾病,最為簡單的方式就是防患於未然。通過大數據對於群眾的人體數據監控,將各自的健康數據、生命體征指標都集合在資料庫和健康檔案中。通過大數據分析應用,推動覆蓋全生命周期的預防、治療、康復和健康管理的一體化健康服務,這是未來賣耐健康服務管理的新趨勢。當然,這一點不僅需 要醫療機構加快大數據的建設,還需要群眾定期去做檢查,及時更新數據,以便通過大數據來預防和預測疾病的發生,做到早治療、早康復。當然,隨著大數據的不斷發展,以及在各個領域的應用,一些大規模的流感也能夠通過大數據實現預測。

大數據在金融行業的應用

隨著大數據技術的應用,越來越多的金融企業也開始投身到大數據應用實踐中。麥肯錫的一份研究顯示,金融業在大數據價值潛力指數中排名第一。下面列舉若干大數據在金融行業的典型應用,具體如下。

(1) 精準營銷。

銀行在純配遲互聯網的沖擊下,迫切需要掌握更多用戶信息,繼而構建用戶360立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。

(2) 風險管控。

應用大數據平台,可以統一管理金融企業內部多源異構數據和外部徵信數據,更好地完善風控體系。內部可保證數據的完整性與安全性,外部可控制用戶風險。

(3) 決策支持。

通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,從而使經營決策更高效、敏捷、精準。

(4) 服務創新。

通過對大數據的應用,改善與客戶之間的交互、增加用戶黏性,為個人與政府提供增值服務,不斷增強金融企業業務核心競爭力。

(5) 產品創新。

通過高端數據分析和綜合化數據分享,有效對接銀行、保險、信託、基金等各類金融產品,使金融做李企業能夠從其他領域借鑒並創造出新的金融產品。

大數據在零售行業的應用

美國零售業曾經有這樣一個傳奇故事,某家商店將紙尿褲和啤酒並排放在一起銷售,結果紙尿褲和啤酒的銷量雙雙增長!為什麼看起來風馬牛不相及的兩種商品搭配在一起,能取到如此驚人的效果呢?後來經過分析發現,這些購買者多數是已婚男士,這些男士在為小孩購買尿不濕的同時,會同時為自己購買一些啤酒。發現這個秘密後,沃爾瑪超市就大膽地將啤酒擺放在尿不濕旁邊,這樣顧客購買的時候更方便,銷量自然也會大幅上升。

之所以講「啤酒-尿布」這個例子,其實是想告訴大家,挖掘大數據潛在的價值,是零售業競爭的核心競爭力,下面列舉若干大數據在零售業的創新應用,具體如下。

(1) 精準定位零售行業市場。

企業想進人或開拓某一區域零售行業市場,首先要進行項目評估和可行性分析,只有通過項目評估和可行性分析才能最終決定是否適合進人或者開拓這塊市場。通常需要分析這個區域流動人口是多少?消費水平怎麼樣?客戶的消費習慣是什麼?市場對產品的認知度怎麼樣?當前的市場供需情況怎麼樣等等,這些問題背後包含的海量信息構成了零售行業市場調研的大數據,對這些大數據的分析就是市場定位過程。

(2) 支撐行業收益管理。

大數據時代的來臨,為企業收益管理工作的開展提供了更加廣闊的空間。需求預測、細分市場和敏感度分析對數據需求量很大,而傳統的數據分析大多採集的是企業自身的歷史數據來進行預測和分析,容易忽視整個零售行業信息數據,因此難免使預測結果存在偏差。企業在實施收益管理過程中如果能在自有數據的基礎上,依靠一些自動化信息採集軟體來收集更多的零售行業數據,了解更多的零售行業市場信息,這將會對制訂准確的收益策略,贏得更高的收益起到推進作用。

(3) 挖掘零售行業新需求。

作為零售行業企業,如果能對網上零售行業的評論數據進行收集,建立網評大資料庫,然後再利用分詞、聚類、情感分析了解消費者的消費行為、價值取向、評論中體現的新消費需求和企業產品質量問題,以此來改進和創新產品,量化產品價值,制定合理的價格及提高服務質量,從中獲取更大的收益。

『貳』 最近很火的醫療大數據分析到底是個什麼鬼

這個是根據國家的政策來執行的

『叄』 大數據技術應用在醫療行業的哪些方面

【導讀】大數據技術可以說目前已經應用到了各行各業中,對於各行各業都是有很大的幫助和促進作用的,在醫療行業,能夠促進醫學研究,幫助改善我們的生活質量,有效促進相關疾病的治療等等,那麼大數據技術應用在醫療行業的哪些方面呢?下面我們就來一起了解一下。

1、新型冠狀病毒大數據搜索報告

該數據有可能更好地預測各種情況和當前公共衛生問題引起的區域性暴發疫情的情況。反過來,醫療服務提供者能夠採取適當的預防措施,並分配必要的資源,以應對與健康有關的特定疾病的區域性升級

2、區域醫療保健監控

可以將數據用於預測醫學研究,從而有助於預防可能的疾病傳播。例如,通過跟蹤他們搜索的醫療問題來了解患者人群及其醫療保健需求以及跟蹤他們在醫療站點上提供的信息,這些都是促進預防保健和研究的方法。

3、打擊性傳播疾病

如果及時報告,則可以治療性傳播疾病(STD)和性傳播感染(STI)。但是,諸如缺乏性教育等問題通常會導致症狀不受控制。大數據可以利用本地經驗,並幫助科技公司和醫療保健提供商填補信息空白並傳播對性健康的認識。

4、機器人護士

如今,在醫學研究和發展中使用大數據至關重要。人工智慧和機器學習正在引領醫學數據的收集,新葯療法的發現以及患者預後的改善。通過實時分析公共衛生問題,大數據可以促進多個領域的醫學研究,改善患者護理並防止致命疾病的傳播。

5、改善醫療保健支持系統

醫療技術的主要進步之一是醫療保健機器人技術,預計到2021年其收入將增長到28億美元。醫療保健機器人技術包括外科機器人培訓,機器人護士,智能假肢和仿生學等專業,以及治療,葯丸,遠程呈現和後勤方面的幫助。使用大數據驅動的機器人技術有可能極大地改善醫療保健支持的質量,這已經通過少數著名的機器人護士(如Robot
Dinsow)看到,它可以監控患者並提醒他們用葯;Paro機器人可以提醒護理人員。

關於大數據技術在醫療行業應用,就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據工程師相關內容,可以點擊本站的其他文章進行學習。

『肆』 醫療行業大數據應用的三個案例

醫療行業大數據應用的三個案例
文章從華大基因推出腫瘤基因檢測服務、大數據預測早產兒病情、廣東省人民醫院利用大數據調配床位3個醫療行業大數據應用案例中,以應用背景、數據源、圖說場景、實現途徑、應用效果5個視角去看待大數據在醫療的應用狀況。
案例一:華大基因推出腫瘤基因檢測服務
應用背景:
伴隨著生物技術、大數據技術的發展,個體基因檢測治療疾病已經成為現實。其中,最廣為人知的是美國好萊塢女星安吉麗娜?朱莉,在 2013 年經過檢測她發現自身攜帶致癌基因——BRCA1 基因,為防止罹患卵巢癌,於 2015 年切除了卵巢和輸卵管。目前,國內外已經有多家基因檢測機構,如我國的華大基因、貝瑞和康、 美國的 23andMe、 Illumina 公司等。華大基因一直致力於腫瘤基因組學研究,已經研究 20 多類癌症。近日,華大基因推出了自主研究的腫瘤基因檢測服務,採用了高通量測序手段對來自腫瘤病人的癌組織進行相關基因分析,對肺癌、乳腺癌、胃癌等多種常見高發癌症進行早期、無創傷檢測。
數據源:
檢測數據:患者血清、口腔黏膜數據、基因測序等。
其它數據:體檢數據、電子病歷、遺傳記錄、患者調查、地理區域以及生活條件等。
圖說場景:

實現路徑:
首先採取患者樣本,通過測序得到基因序列,接著採用大數據技術與原始基因比對,鎖定突變基因,通過分析做出正確的診斷,進而全面、系統、准確地解讀腫瘤葯物與突變基因的關系,同時根據患者的個體差異性,輔助醫生選擇合適的治療葯物,制定個體化的治療方案,實現「 同病異治」 或「 異病同治」 ,從而延長患者的生存時間。
應用效果:
癌症診斷和預測。腫瘤醫院的病人中有 60%至 80%剛到醫院時就已經進入中晚期,癌症早期的篩查可以幫助患者有針對性的改善生活習慣或者採取個體化的輔助治療,有益於身體健康;同時將癌症扼殺在搖籃里,從而降低日後巨大的醫葯開支和生活困擾。助力個性化醫療。結合生物大數據,挖掘疾病分子機制最終可以做到更好的篩查,更好的臨床指導以及更好用葯的過程。
案例二:大數據預測早產兒病情
應用背景:
安大略理工大學的卡羅琳·麥格雷戈( Carolyn McGregor)博士和一支研究隊伍與 IBM 一起和很多醫院合作,用一個軟體來監測處理即時的病人信息,然後把它用於早產兒的病情診斷。
數據源:
個人體征數據:心率、呼吸、體溫、血壓和血氧含量。
其它數據:孕婦產檢數據、電子病歷、遺傳數據等。
實現路徑:
系統會監控 16 個不同地方的數據,比如心率、呼吸、體溫、血壓和血氧含量,這些數據可以達到每秒鍾 1260 個數據點之多。在明顯感染症狀出現的 24 小時之前,系統就能監測到早產兒細微的身體變化發出的感染信號,及早預測控制早產兒的病情,從而提高新生兒的出生率。
應用效果:
預測病情。早產兒的穩定不是病情好轉的標志,只有通過海量的數據並且找出隱含的相關性才能發現提早知道病情,醫生就能夠提早治療,也能更早地知道某種療法是否有效,這一切都有利於病人的康復。
案例三:廣東省人民醫院利用大數據調配床位
應用背景:
起因於國外醫院的經驗以及廣東省人民醫院各專業科室差異很大的病床使用率。長期以來,優勢專業病源充足,病人候床情況嚴重,排隊入院,相反有些專業空床情況明顯,病床使用率僅 65%左右。為此管理層打出了模糊臨床二級分科、跨科收治病人、集中床位調配權的一套「 組合拳」 。
數據源:
患者數據:掛號數據、電子病歷、患者基本數據等。
醫院數據:各科室床位使用情況、診療活動、平均住院費用、平均住院周期等。
實現路徑:
對跨科收治病人之後的科與科之間的工作量、收入、支出、分攤成本等指標進行合理的劃分,強化了入院處的集中床位調配權,解決病人入院排隊情況,使醫院更好地履行了社會責任,同時也給增加了醫院的效益。
應用效果:
提高病床使用率。病床使用率由 87%提高到 92%,優勢專業候床排隊現象明顯減少。
支持決策判斷。優勢專科與弱勢專科的病人在地域構成比、平均住院費用等標上存在顯著差異,支持決策判斷。

『伍』 大數據能給醫療帶來哪些改變_大數據在醫療方面的作用

如慧遲今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這孫碧基些場景中,大數據的分析和應用都將發揮巨大的作用。

醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。

醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。

國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。

(1)數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。

(2)如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。

(3)如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。

未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,則謹醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。

『陸』 如何用大數據實現智慧醫療

醫療數據主要來源,包括患者檔案、醫療機構、制葯企業等等,所以醫患和葯,就是圍繞這樣一個體系架構去做的。它本身數據要求周期比較長,一般按要求時間很長,這裡面各種各樣一些數據。解決方案,本身基礎是什麼?這是數據架構。

利用大數據架構,分析臨床、操作、定價問題、付款問題、支付問題、研發以及新的商業模式、體系架構、制葯行業,臨床決策,費用報銷等等,這樣一個體系架構,醫療行業應用面非常廣。

關於如何用大數據實現智慧醫療?用一個案例解釋

探碼智慧醫療平台通過為患者提供一種前所未有的智慧體驗,其應用涉及到統一通信、視頻、無線網路、感測技術和RFID等當前最新的和最熱門的技術領域,從而打造了一個整合各種應用高新科技信息化平台。

於此同時,探碼科技利用自身大數據收集能力的優勢,通過廣泛的數據源訪問大量結構化和非結構化的患者數據,預測分析可以幫助診斷患者狀況,將治療與最佳結果相匹配,並預測患有疾病或醫院重新接種風險的患者。

運用互聯網共享數據的智能互聯設備和感測器數量的迅速增長。在醫療保健方面,利用各種物聯網新技術的導入,智慧醫療將改變目前醫療服務的現狀、醫院內外以及醫患關系都將發生新的變化,醫療服務將會更加彈性與開放,可以為不斷持續提升醫療服務品質,例如電子病歷與疾病信息平台的建立,都將有助醫院無紙化並進一步打通病患信息的共享機制。從而使患者用較短的治療時間、支付基本的醫療費用,就可以享受安全、便利、優質的診療服務。

智慧醫療與傳統的醫療服務模式相比,主要有以下一些優點:

『柒』 有哪些大數據分析案例

三個領域大數據應用案例分析
1、無人駕駛汽車。汽車非常昂貴,然而在歐洲,人們只有4%的時間在使用汽車,96%的時間把車停在停車場,這是非常不高效的系統。如果未來普及了無人駕駛的汽車,我們就可以過上另一種生活。
我們將只需要在手機上點一個按鍵,車就會自己開過來,把我們帶去目的地。這種車就像沒有駕駛員的計程車,可以被反復使用,效率和可持續性都得到了提升,也避免了資源浪費。
有研究發現,如果自動機動車得到普及,可以減少25%的交通擁堵,減少30%的城市停車場面積。如果北京減少30%的停車場需求,城市生活將大不一樣。
2、醫療行業。我們的壽命現在都比較長了,但仍然希望能夠更長。現在,我們的醫療水平並不是很好,由於我們忽視了每一個人的個體差異,醫生會用通常的方法治療每一個人。然而,基於大數據,我們可以做精確醫療,通過大數據分析每個人的差異,進行精確的治療、劑量、用量,讓患者更快恢復健康。
3、教育行業。我們要讓下一代有能力了解這個世界。然而,因為沒有數據,我們難以做到因材施教,所有孩子獲得同樣的教學,學習同樣的書本。低效率的教學就是在浪費腦力、知識和我們解決問題的能力。
如果我們用大數據去分析孩子在發展學習能力時遇到的問題,就可以進行個性化的學習,就可以釋放知識和理解力的力量,讓每一個孩子充分開發潛能。
-

『捌』 關於大數據應用有什麼例子

『玖』 醫療大數據分析需考慮哪些因素

1、醫療大數據分析的影響因素——流程


醫療大數據分析過程中,也同樣會面臨著較大的挑戰。所以大數據還是應該趨向於科學性醫療大數據的治理,這和流程有著直接關系,比如數據到底應該怎麼採集、數據該如何治理,這些都和數據的質量有著直接的關系。一般情況下要選擇一些專業的BI軟體。


2、醫療大數據分析的原材料——大數據


很多人在使用醫療大數據分析過程中,也往往涉及到一大問題,就在於數據採集的轉化。每一個節點就相當於噪音增加,噪音也同樣會衰竭很多,導致更多的數據丟失,這也是一種傳統的數據倉庫技術逐漸被替代的原因。


大數據,也包含海量的結構化數據,以及非結構化的數據,還有文本形式等等。


3、醫療大數據分析的基礎——數據治理


醫療大數據分析過程中,雖然數據質量具有信息准確性的特色,給機構帶來更多的可靠性。不過在這整個過程中,也必須要保證可訪問性的一致性,還有安全性的標准,這些都是不容忽視的,只有如此才能夠保證所有數據的安全操作。


關於醫療大數據分析需考慮哪些因素,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『拾』 有哪些大數據分析案例

如下:

1. 大數據應用案例之:醫療行業

1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。

2)大數據配合喬布斯癌症治療

喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。

2. 大數據應用案例之:能源行業

1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。

通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。

因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。

為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。

3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶

法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。

他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。

這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。

4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略

北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。

結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。

定價團隊的分析圍繞著三個關鍵維度:

1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。

2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。

3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。

透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。

5、大數據應用案例之:網路營銷行業(SEM)

很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。

在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。

企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。

通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。

6、大數據應用案例之:電商行業

意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。

雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。

從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。

7、大數據應用案例之:娛樂行業

微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。

今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。

總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。

閱讀全文

與醫療大數據案例分析相關的資料

熱點內容
磁碟清理後找不到文件 瀏覽:379
會計學科代碼 瀏覽:507
文件夾選項沒有了xp 瀏覽:167
win7更改文件格式 瀏覽:195
對件內文件排序通常按照什麼順序 瀏覽:12
win10怎樣修復系統文件在哪裡 瀏覽:772
frs文件復制服務 瀏覽:305
有圖片文件相冊不顯示 瀏覽:354
一般網站名是什麼樣的 瀏覽:823
win10用戶下有亂碼文件名 瀏覽:973
測風塔數據有哪些 瀏覽:196
哪些財務數據不能作假 瀏覽:349
華為待機接收不到微信 瀏覽:199
sqlite資料庫表設計 瀏覽:627
微信小程序可以關閉嗎 瀏覽:81
數控編程需要掌握什麼 瀏覽:322
找不到離線文件怎麼辦 瀏覽:134
c盤開機文件在哪裡 瀏覽:275
matlab教程張志涌2012pdf 瀏覽:779
運行程序c盤空間被佔用找不到文件 瀏覽:289

友情鏈接