導航:首頁 > 網路數據 > 各金融機構大數據時代私人訂制

各金融機構大數據時代私人訂制

發布時間:2023-07-20 21:54:46

㈠ 什麼是大數據時代

「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當回今每一個行業和答業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。

㈡ 大數據金融創新與發展

img src=' https://p26 . toutiaoimg.com/large/c5f 00022 e 860696 a06b '/

近年來,大數據已經成為重塑金融競爭格局的重要支撐和抓手。特別是「十三五」規劃綱要明確提出實施國家大數據戰略,把大數據作為基礎性戰略資源,加快數據資源共享、開放和發展。

在此背景下,為全面落實「十三五」規劃提出的國家大數據戰略,推動金融業轉型升級和創新發展,助力上海建設國際金融中心和科技創新中心,「大數據時代的金融野盯服務與創新」論壇於8月17日在中國金融信息中心舉行。論壇由上海市經濟和信息化委員會、上海市金融服務辦公室和上海銀監局指導。由新華社中國經濟信息社、新華社新聞信息中心、新華網、上海證券報、中國金融信息中心、中國銀行上海市分行主辦,易迅財經協辦,證大財富特別支持。

img src=' https://P3 . toutiaoimg.com/large/c5b 00057 DCC 4232 c 44 e '/

大數據之父勛伯格曾說,「大數據開啟了時代的重大變革。正如望遠鏡讓我們感受宇宙,顯微鏡讓我們觀察微生物一樣,大數據正在改變我們的生活和我們理解世界的方式,成為新發明和服務的來源,更多的變化即將發生」。

img src=' https://P3 . toutiaoimg.com/large/c5e 0002510 CD 74d 6298 '/

張笑君表示,傳統金融行業如何利用大數據技術和思維實現產業轉型變革,推動金融服務創新發展,是每個企業都應該深入思考的問題;如何利用大數據降低金融風險,促進「大數據新金融」的可持續發展,使其發揮更大的社會價值,也是政府部門和監管部門面臨的新課題。

據了解,2016年是「十三五」的開局之年,也是新華社業務轉型發展的重要一年。2016年7月底,新華社全面完成國內分支機構采編管理「兩分離兩加強」重大機構改革。7月1日,新聞信息中心上海中心正式成立,這也標志著新華社在上海的各項事業進入了一個新階頌罩和段。

「在保持傳統信息產品和業務優勢的同時,上海證券報將能夠專注於國家戰略和上海本地事業的整體發展。在垂直管理體制和上海分社的雙重領導下,將繼續夯實基礎、求新求變,進一步擴大新華社新聞產品市場的覆蓋面和影響力,為上海「四個中心」建設做出我們的貢獻。」張笑君說。

img src=' https://P6 . toutiaoimg.com/large/c5d 000581 f 9 CB 43 f 6 c 4 '/

上海市經濟和信息化委員會副主任邵志清

上海市經濟和信息化委員會副主任邵志清表示,這次論壇主要是為了規劃所謂的「形勢、戰略和技術」。所謂「趨勢」,永遠不應該是趨勢的敵人。一個人,一個企業做一件事,一定要順應時代潮流,順勢而為。今天,我們已經進入了信息文明時代,其中第一個是PC時代,第二個是網路時代,第三個是大數據時代。

大數據可以開發成引擎嗎?邵志清講了三個方面。首先,世界進入了一個新時代。90年代中期加入互聯網大家庭,實現了人際交往的突破,讓「一條家信抵一噸金」不復存在。現在,世界各國都在計劃實現大數據時代的國家發展,因為大數據已經是一種資源,一種資產。顯然,它已經成為一項國家發展戰略。大數據能力已經成為綜悶凱合國際競爭力和國際影響力不可或缺的方面。

第二,大數據已經成為我們的生產要素。大數據為計算開辟了新模式和新路徑。產業方面,有新業務、新商業模式、新業態,給新經濟帶來很多活力。現在政府掌握了大量的大數據資源,如何服務社會和市場,從而激發市場的活力和社會的創造力,在社會治理方面如何管理網格。大數據也帶來了很多機會,例如,它可以用於控制城市基礎設施、環境保護、食品葯品安全和交通運輸。

第三,利用大數據安裝創新驅動發展的強大引擎,要從資源、技術、使用、產業、安全等幾個方面著力。

邵志清表示,最近上海也在制定大數據發展的實施意見,對接國家層面的戰略,結合上海實際,大概有幾個方面要做:要素供給、使用創新、產業發展。他認為,要加快幾個方面的建設:一是整合共享的資源流通體系。二是創新活躍的行業使用體系。三是發展自主可控的數據技術服務體系。第四是世界一流的大數據基礎設施體系。第五,可信、安全、獨立的擔保體系。

img src=' https://P3 . toutiaoimg.com/large/c5e 0002510d 22 a 7942 e '/

上海數據交易中心首席運營官沈翔宇

「在具體循環方面,我們對所有數據做了從高風險到低風險的評估。從用戶產生的原始數據到後來產生的數據,無論是對個人還是對群體,都有幾個要求。進入流通,我們有自主知識產權的六要素標准:數據要有ID,數據要有維度主鍵,也就是Key。這是分配ID、分配key、設置限制、數據提供及時性、設置交易價格的角度。」他們把數據交易中心能給大家提供的服務分為會員、掛牌、撮合、分銷、清算服務等五個方面。沈翔宇說會有一個交易平台給大家用。

img src=' https://P6 . toutiaoimg.com/large/C5 c 00057 e 30 BF 384969 '/

上海大數據聯盟

常務副秘書長馬慧民

上海大數據聯盟常務副秘書長馬慧民演講主題是《大數據推動產業創新》。市場交易成本主要是由信息成本和討價還價成本構成。他說,企業組織成本主要是指維持企業內部各個部門運轉所需要的各類行政成本和協調成本。

當企業內的組織管理成本擴大到等於市場交易費用時,企業達到其最大邊界。比如說大數據、移動互聯網等新型技術讓計程車行業交易費用大幅度降低,傳統計程車公司逐漸被中間市場——平台公司影響。比如說滴滴打車、Uber,有了這些平台,交易成本大大降低了。互聯網促進和推動這個產業的發展,同時為產業的生產也帶來了變革。大數據和相關技術解決了某種信息不對稱領域引起的交易成本增加的過程。

通過大數據可以進行精準營銷。「我們通過很多數據採集之後,我們會形成一個用戶畫像,無論是線上數據還是線下的數據,集合在一起之後就知道這個個人或者是企業需要什麼樣的東西。這里就解決了一個問題,就是線上、線下數據加在一起的個人標簽。」馬慧民說。

上海交通大學互聯網金融研究所所長羅明雄

上海交通大學互聯網金融研究所所長羅明雄分享的主題是《從互聯網金融投融資看大數據金融》。他說,互聯網金融等同於P2P、等同於騙子這是非常不準確的,P2P只是互聯網金融當中的一個分支,而騙子只是打著P2P的旗號去做的行騙。他把大數據產業鏈條分為四個部分包括數據源、數據採集與存儲、數據分析與挖掘和大數據使用。

什麼人可以做好大數據金融,羅明雄說,一個是可以合法拿到大量的非結構化數據,二是能夠對這些非結構化數據進行專業的挖掘、梳理、清洗。他建議大家不要把銀行完全想像成傳統金融機構,銀行業在變,銀行會通過很多領域來進行思考,要做風控,會拿到很多的數據,然後把這些數據打通,包括你的信貸風控、精準營銷、運行決策優化。他說,銀行的電商把信息打通,本質就非常類似於余額寶,余額寶就是利用信息化手段,讓老百姓以極低門檻享受一個私人銀行般的理財服務。

羅明祥說,傳統的供應鏈金融是以銀行或傳統金融機構主導,通過綁定核心企業通過給核心企業授信,並給予其上下游企業一定支持,對供應鏈金融企業的BD能力以及自身資源能力提出很大的挑戰。近期以B2B或者是SaaS模式切入供應鏈金融,從「三流」切入成為供應鏈金融最容易彎道超車的商業模式。供應鏈金融的本質是你能夠抓到中小的企業為他提供整套供應鏈金融服務。

萬達金融集團總裁助理兼萬達徵信公司總經理嵇磊

萬達金融集團總裁助理兼萬達徵信公司總經理嵇磊結合他在銀行、信貸行業和徵信領域的工作體會與大家分享了徵信行業的發展機遇。

國外徵信行業發展情況來講,美國的徵信體系最為成熟,現已形成從數據採集、數據標准化、數據處理到信用使用等成熟完整的產業鏈布局,從而形成全球最大的市場規模。嵇磊說,美國徵信行業的發展歷程、動因及趨勢,對我國徵信市場及機構發展具有很好的借鑒意義。從發展路徑看,美國的徵信行業經歷了快速發展、法律完善、行業整合及成熟發展四大階段,最後經過行業洗牌整合,機構數量從最多時的2000家減少至500家,並逐漸出現全國性徵信巨頭。

研究分析國外市場,是為了更好的研判中國徵信市場。至2015年末,央行徵信系統已收錄8.8億自然人信息,其中3.8億有信貸記錄;收錄企業及其他組織2120萬戶,其中577萬戶有信貸記錄。伴隨著龐大消費市場的逐步成熟、消費信貸的快速增長、互聯網及大數據使用的跨越式發展,更多的社會第三方徵信機構參與到我國徵信體系建設中。

盡管成立背景不同、數據類型各異,但在個人徵信業務的具體規劃上,各家徵信公司均不約而同地突出了「大數據」和「互聯網徵信」。互聯網徵信機構收集信息面寬,可以覆蓋無法在銀行留下信貸記錄的龐大群體,從而成為央行徵信體系的有益補充。

嵇磊認為,徵信業最好的時代已經到來。隨著法律法規的進一步完善、消費經濟持續增長以及大數據、互聯網技術的發展,徵信行業正面臨前所未有的發展機遇:一是法律法規的完善為徵信發展提供支持;二是消費經濟增長推動徵信業持續發展;三是大數據及互聯網促動徵信業務全面升級;四是社會發展提高人們對信用價值的認知。

翼勛金融總經理孫海江

翼勛金融總經理孫海江表示,大數據的成長速度非常快,現在整體的大數據,人類90%數據都是在最近三年產生的。每天要使用消費類的軟體,比如說滴滴打車這樣的工具類軟體以及金融軟體等等,都會產生大量的數據。這些數據的服務能夠產生價值,同時這些數據使用也能夠帶來價值。但是其實這個當中還有數據為我們帶來的困擾。

在圓桌討論環節,光大雲付副董事長兼總裁夏令武、綠地金服CEO楊曉冬、上海互聯網大數據工程研究中心主任陸晉軍、證大財富總裁戴衛新、前海徵信副總經理施奕明圍繞四個議題展開,分別是:大數據時代為金融業帶來的新機遇;大數據 金融如何服務小微企業;如何管理大數據徵信使用中存在的挑戰與風險;政府如何監管並服務於大數據金融創新。

光大雲付副董事長兼總裁夏令武

光大雲付副董事長兼總裁夏令武說,大數據和互聯網最近幾年的飛速發展給金融業帶來很多機遇。這種機遇是兩個方面,一個方面是給傳統金融機構帶來了更大、更強的生存能力。有人說互聯網會顛覆傳統機構。現在如果說從大數據維度來看,其實不是的。傳統金融機構掌控了金融業、經濟部門最大的數據。因為金融機構就是經營數據的。所以我想大數據增強了傳統金融機構的能力。另一方面,大數據也推動了新的金融服務形式的產生,而光大雲付就是這兩方面的結合。

綠地金服CEO楊曉冬

作為陸金所創始管理團隊之一,綠地金服CEO楊曉冬說,大數據最重要的是要降低企業的成本,從經營角度來說,大數據可以幫助我們提高風控能力。我對大數據未來的遠景還是充滿信心的,但目前的狀況還是不令人滿意的。舉一個例子,在美國,這是我在90年代做的項目。90年代的時候,你在美國就可以在互聯網上開戶,我不用1秒鍾就可以知道所有的信息。但是在目前,在中國的信息還是島式的信息,沒有一個統一的信息可以證明這個人是可信的,可以線上開戶。市場數據成本是否合理,是關繫到大數據能否成功的關鍵。他希望政府可以為不僅是金融企業,要為所有企業提供公共信息。這樣才可以幫助金融企業降低成本。

上海互聯網大數據工程研究中心主任陸晉軍

上海互聯網大數據工程研究中心主任陸晉軍說,現在整個大數據行業存在一個亂象。一方面擁有數據的,比如說政府、銀行、運營商很難開放。另一方面,有很多公司又號稱有數據。但這個數據哪裡來?可能會涉及到到隱私泄露的問題。圍繞金融談大數據,談移動互聯網,這是真正可以改變金融領域供給側改革的技術和手段。因為有了移動互聯網、各種寶、各種貸,為老百姓提供了更多的選擇,當然選擇過程當中又帶來了很多風險。這是做技術、管理、監管的人要去解決的問題。通過大數據一定程度可以解決客戶畫像、客戶獲取、徵信等等的問題,要把它做好。

陸晉軍說,大數據一定要開放,一定要跨境。如果說你是封閉群體的數據也可以做數據分析,但是只有打開了通路,和不同領域的數據做交換、結合之後才可以產生更多的價值。這也是大數據交易所面臨的一個非常重要的課題,而且要注重大數據的安全。

證大財富CEO戴衛新

證大財富的CEO戴衛新認為精準營銷和風險管理兩者結合度是非常高的。他們公司在兩年前就做了「淘寶達人貸」,面對的客戶是專門在淘寶上有消費的人群做信用貸款。在推出這個產品的時候,芝麻信用分還沒有出來,通過這兩年的數據積累,未來在大數據使用上,可以做一些改善。可以結合芝麻信用分來看我們客戶的表現以及真實的芝麻信用分有巨大的關聯性,來驗證芝麻信用分在這樣一個領域的市場,是不是有更好的使用場景。

戴衛新表示,金融最大的要點就是風險控制,大家數據共享可以有效降低在這一塊上的損失。他說證大財富一直和上海官方機構、民營徵信機構等合作,做數據共享。

前海徵信副總經理施奕明

前海徵信副總經理施奕明從徵信和金融的關系談了他的看法。金融的核心是風險定價,風險控制是非常重要的手段。原來傳統的金融方式都是以線下方面為主,比如說貸款必須要面簽。但是現在很多都是遠程化、線上化的方式,如果說沒有像現代徵信業的發展,像遠程開戶、人臉識別這樣的技術是不可能實現的。未來大數據在金融行業將會越來越重要。

施奕明介紹徵信業面臨的挑戰是信息孤島問題、安全合規問題和技術創新問題。

他說,現在徵信把信息分為三大類,第一類是公共信用數據,第二類是金融信用數據,第三類是生活信用數據。這三方面的數據分別在各個不同的地方,要把這三類進行整合,需要一個大的戰略,數據聯盟、數據交易中心的出現為數據整合提供了很好的基礎,也會成為徵信業未來發展的契機。

大數據時代一個很大的問題就是個人信息披露泛濫。前海徵信操作是非常規范的,任何數據的採集和披露都是要遵照合法的途徑和規矩來做的,大數據的前提是合法合規。

在大數據徵信時代有很多的創新點,但必須要謹慎。傳統的金融徵信其實已經被驗證過無數次了,是可以非常有效的判斷一個人的信用風險的。現在大數據發展很快,但是這些信息和標簽是不是可以真正的防止風險,這是需要待驗證的。因此並不會把所有創新都推向市場,需要經過長期驗證之後,才會非常負責地推向市場。

主持人:第一財經廣播主持人葉柳

相關問答:

㈢ 大數據時代來臨,銀行怎麼辦

大數據概念的興起似乎還是昨天的事,但托這個高速發展時代的福,我們已經可以看到很多成熟的大數據應用工具了。在很短的時間內,我們就能在茫茫的數據海洋中精確定位、分析,並拿到自己想要的結果。當然,這些技術的進步並非由銀行推動,大型零售商、網上商城和各種門類的技術公司才是大數據的主導者,只不過,經過他們的探索之後,大數據也為銀行打開了一扇精確營銷的大門。從長遠來看,銀行如能充分利用大數據的優勢,可以在市場細分、客戶服務、客戶研究、產品研發、產品測試等等方面取得重大進步,並在某種程度上徹底改變銀行服務客戶、銷售產品的方式和渠道。 當然,這一切的前提是銀行能找對切入大數據時代的方法和工具。對於銀行來說,以正確的數量模型和分析方式來契合銀行目前的業務需求,是合理利用大數據,達成更多經濟回報的關鍵。其他行業的經驗已經證明,大數據固然好,但如果不能對數據進行有效篩選和正確利用,最後只會賠了夫人又折兵。尤其銀行是一個比較特殊且敏感的行業,在全局層面徹底進行所謂大數據革命是不實際的,正確的做法是從小的具體業務和關鍵節點入手,以能被銀行現有管理架構和外部監管機制接受的方式,逐步將大數據納入銀行的經營體系中來。 舉例來說,當前銀行業普遍在為兩件事頭疼:留住客戶、滿足客戶的期待。對於這兩個難題,大數據機制下的情緒分析和行為預測可以發揮意想不到的作用。 分析客戶情緒 傳統的客戶意見收集及調查方式往往以一個組別為單位,通過對於部分群體客戶的調查和研究,銀行可以得到客戶方方面面的情況。隨著時代的進步,這樣的方式在獲得客戶金融消費的最新趨勢、挖掘客戶隱藏的需求等方面已不太管用。最為致命的一點是,這樣的客戶信息、數據收集方式往往耗時較長,花費更多,但最終得出的結果又往往無法應對客戶實時產生的需求變化。 所謂情緒分析,是指收集客戶在包括社交網路在內的網路平台上的言論和活動,不僅包括他自己的部分,還包括他最近關聯到的其他好友,由此得到的數據,經過一套科學設計過的計算、分析系統,得出某個具體客戶近期的情緒走向,為預測客戶行動、幫助銀行指定具體的應對措施提供幫助。 在這里,「情緒」並不簡單代表客戶的情感變化,還包括客戶的態度立場、情感傾向等等。這在以往的調查分析工具中,是極難把握的東西,但在這個自媒體時代,這樣的信息散布在網路上,極易獲取、分析。而且抓取、分析這些數據的方法已經相當成熟,從宅在家裡的技術男,到正經嚴肅的學院派,大家都在推出這樣的工具。銀行只需要選擇一個比較穩定的技術供應商,並將結果實時反饋、整合到自己的系統中來,就能在第一時間確定客戶對於銀行的產品、服務、定價或政策調整的反應,並採取合適的方式應對。如果客戶的反應對銀行有利,銀行可以及時介入,對客戶的情緒加以引導,以實現更好的服務和銷售;如果客戶對銀行表露出不太好的情感,銀行也能及時發覺並積極處理,進一步提升客戶的服務體驗。 下面舉出幾個銀行必須及時關注的客戶表態例子: 「XXX銀行在小微業務上的確很好用,但缺乏合適的當天到賬服務就太那啥了!」 「XX銀行的網上查閱賬戶余額功能的確設計得不錯,但客戶服務的一些細節真的有待改善。」 以普通人的角度,這不過是兩句簡單的客戶意見表達而已。但在情緒分析工具的幫助下,通過對於「好用」、「缺乏」、「改善」等關鍵詞彙的識別與統計,以及對於上下文意思的了解,就可以形成一張完整的客戶情緒變化表,將更多的客戶情緒變化匯集到一起,就可以形成一份頗具價值的報告(所謂輿情監控就是這類報告的簡單形態)。通過這些報告,銀行可以知道自己在客戶心中真實的反饋,並知道客戶最需要銀行在哪些方面做出改變。也就是說,銀行可以得知客戶的「心願單」,並將此納入自己的產品、服務革新計劃當中,逐一予以滿足。 對於銀行來說,客戶情緒分析最有用的一點是幫助銀行更有效率地回饋客戶。我們都組織過各種客戶回饋活動,但又不知究竟應當挑選哪些客戶進行回饋、哪些客戶經過我們的維護可以促成更多的交易——大部分時候,銀行只是完成既定的任務,將禮品派送出去就完事,以為這樣就能在激烈的競爭中留住自己的目標客戶。而現在,銀行可以在客戶情緒分析工具的幫助下更有選擇的進行類似的活動。例如,近期要做一個針對產品的活動,就以產品為關鍵詞,對當前的客戶情緒進行研判,得出主流客戶群體對於我們產品的態度,再依照態度的不同來選擇不同的活動策略和活動力度。這樣不僅能幫銀行節約成本、提高效率,最為重要的是,這也是維持現有客戶忠誠度,並盡可能多地吸收目標客戶的有效方式。 當然,批評者會說,目前雖然有大量的客戶情緒分析工具,但這些工具的可行性與分析結果的真實性一直都存在疑問。已經有一些銀行依照這些工具的幫助進行了一些實驗,效果並未如想像中理想。那麼,銀行應當怎麼應對這種尚處在完善過程當中的新興事物呢?我們的態度很明確:雖然這還是一個有待完善的工具,但大數據的整體趨勢是不容置疑的。當銀行等到一切都齊備完善到不會出錯時,其實就已經落後於時代的腳步了。要想成為行業的領軍者,就必須承受創新可能帶來的負面效應。 預測客戶行為 比分析客戶情緒更大的挑戰是預測客戶行為。關於大數據如何應用於預測客戶行為最早最著名的例子,來自美國第二大超市塔吉特百貨。明尼蘇達州一家塔吉特門店曾被客戶投訴,一位中年男子指控塔吉特將嬰兒產品優惠券寄給他的女兒——一個高中生。但沒多久他卻來電道歉,因為女兒經他逼問後坦承自己真的懷孕了。塔吉特百貨就是靠著分析用戶所有的購物數據,然後通過相關關系分析得出事情的真實狀況。 對於銀行來說,正確地預計消費者的需求,並及時組織好可匹配的產品與服務響應客戶的需求還是一件比較難完成的任務。這需要大量歷史數據的儲存與分析,還需要有應對各種行為可能的預測機制(不同的行為意味著不同的演算法),才能實現塔吉特百貨那樣「料事如神」的效果。令人頭疼的是,零售銀行所需的數據關聯性與零售商業的數據存在著一定的差異,因此需要針對銀行產品和服務的特點進行重新設計。只要銀行能解決這樣的問題,並把分析的結果實時、具象的體現在前端營銷人員的電腦、手機里,就能幫銀行解決很多眼下頭疼的問題。在全局層面上,這樣的預測機制也能幫銀行少走很多彎路,避免不必要的資源浪費。 銀行可以根據客戶以往的消費記錄,尤其是與金融產品直接相關的消費記錄,以及目前所持有的銀行產品的使用情況建立數據收集模型,通過一定時間的數據收集和分析之後,便能為銀行下一步的產品策劃與營銷提供翔實的數據參考。在此基礎上,諸如交叉銷售、深度挖潛、提升單個客戶貢獻度、保持客戶忠誠度等等業績或營銷目標都能更輕松的完成。當你知道客戶的情緒變化,還知道客戶可能的購買需求,只要你能以合適的方式將客戶所需要的東西及時遞上,客戶自然會樂意接受。 以合適的方式來發揮大數據的效用非常重要。大數據可能帶來的一個負面效應就是客戶隱私的被侵犯,前面提到的塔吉特百貨就是一個例子。在這個事件之後,塔吉特百貨調整了自己寄送優惠廣告的方式:當發現某位客戶可能懷孕之後,塔吉特百貨還是會寄送一份包含孕婦所需產品的小冊子到她手上,只不過通過視覺排版、其他品類產品交叉排列等等方式,在不引發客戶那種「被窺視」的反感的前提下,實現了產品的精準推薦。最終,在大數據的幫助下,2002年到2010年間,塔吉特百貨的銷售額從440億美元增長到了670億美元。 值得一提的是,大數據應用還能幫助銀行實現有效的風控。國外已經有一些金融機構利用大數據來幫助金融產品交易、信用卡消費等方面的風控。尤其是在信用卡、無抵押貸款等產品上,通過大數據建立的模型,銀行能准確的知曉某個客戶的生活和消費情況,從而選擇是不是要發放卡片/貸款給他,或者要不要給他提升額度、延遲還款期。一旦某個客戶出現異常行為,銀行也能在最短的時間內知曉,並採取相應的措施防止風險案件的發生。 總之,雖然還不夠完善,但大數據擁有無可限量的未來。

㈣ 大數據如何推動金融業的商業變革

大數據如何推動金融業的商業變革
商業無論是接受還是拒絕,中國金融業的大數據時代正在呼嘯而至。據調查,經過多年的發展與積累,目前很多國內金融機構的數據量級已經達到100TB以上。而且,非結構化數據量正在以更快的速度增長。在高數據強度的金融行業,這一發展激起了巨大的想像空間。然而,要抓住這一機遇並非易事。
我們系統梳理了大數據在全球金融行業的發展現狀、潛在應用、關鍵瓶頸及應對方案,旨在協助金融機構從價值的角度更好地理解大數據,並在大數據迅速滲入金融業務各個層面的當下抓住發展機遇。大數據引領金融機構變革主要體現在哪些方面?成就大數據的不僅是傳統定義中的「三個V」,即數量(Volume)、速度(Velocity)和種類(Variety)。對金融機構而言,更重要的是第四個V,即價值(Value)。大數據的價值不僅體現在對金融機構財務相關指標的直接影響上,也體現在對商業模式變革的推動能力上,即不斷引發傳統金融機構的內嵌式變革。大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。大數據推動銀行的變革主要體現在價值層面上數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了大數據。海量的數據為銀行的發展提升了價值另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource Planning)和CRM(Customer Relationship Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這些都還不是構成「大量數據」的主體。「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。大數據運作如何推動金融業變革?多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。大數據延長了金融機構的生命周期大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

㈤ 大數據怎樣影響著金融業

大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。

中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。

首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。


其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。


第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。

一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。

二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。

三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。

應該怎樣將大數據應用於金融企業呢?

盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。

(一)推進金融服務與社交網路的融合

我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。

(二)處理好與數據服務商的競爭、合作關系

當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力

首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。

(四)加大金融創新力度,設立大數據實驗室

可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。

(五)加強風險管控,確保大數據安全。

大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。

㈥ 中國有哪些公司在做大數據

大數據近幾年來可謂蓬勃發展,它不僅是企業趨勢,也是一個改變了人類生活的技術創新。大數據對行業用戶的重要性也日益突出。掌握數據資產,進行智能化決策,已成為企業脫穎而出的關鍵。因此,越來越多的企業開始重視大數據戰略布局,並重新定義自己的核心競爭力。本文整理了在中國境內活躍的大數據領域最具影響力的企業,它們有的是計算機或者互聯網領域的巨頭,有的則是剛剛創辦不久的初創企業。但它們有一個共同點,那就是它們都看到了大數據帶來的大機會,並毫不猶豫地挺進了這個領域。

在當前的互聯網領域,大數據的應用已經十分廣泛,尤其以企業為主,企業成為大數據應用的主體。大數據真能改變企業的運作方式嗎?答案毋庸置疑是肯定的。隨著企業開始利用大數據,我們每天都會看到大數據新的奇妙的應用,幫助人們真正從中獲益。大數據的應用已廣泛深入我們生活的方方面面,涵蓋醫療、交通、金融、教育、體育、零售等各行各業。

㈦ 大數據怎樣影響著金融業

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,花旗、富國、UBS等先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行360度評價,計算動態違約概率和損失率,提高貸款決策的可靠性。

閱讀全文

與各金融機構大數據時代私人訂制相關的資料

熱點內容
企鵝號視頻app叫什麼 瀏覽:157
indd文件用ps打不開 瀏覽:759
磁碟清理後找不到文件 瀏覽:379
會計學科代碼 瀏覽:507
文件夾選項沒有了xp 瀏覽:167
win7更改文件格式 瀏覽:195
對件內文件排序通常按照什麼順序 瀏覽:12
win10怎樣修復系統文件在哪裡 瀏覽:772
frs文件復制服務 瀏覽:305
有圖片文件相冊不顯示 瀏覽:354
一般網站名是什麼樣的 瀏覽:823
win10用戶下有亂碼文件名 瀏覽:973
測風塔數據有哪些 瀏覽:196
哪些財務數據不能作假 瀏覽:349
華為待機接收不到微信 瀏覽:199
sqlite資料庫表設計 瀏覽:627
微信小程序可以關閉嗎 瀏覽:81
數控編程需要掌握什麼 瀏覽:322
找不到離線文件怎麼辦 瀏覽:134
c盤開機文件在哪裡 瀏覽:275

友情鏈接