⑴ 大數據分析的具體內容有哪些
隨著互聯網的不斷發展,大數據技術在各個領域都有不同程度的應用
1、採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
2、導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3、統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4、挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
⑵ 大數據分析所需的五個資源是什麼
1.完成MATLAB Mastery Bundle
MATLAB或Matrix是一個多范型數字計算空間和編程語言。用外行人的話來說,它是一種工具,它使得編寫代碼,運行腳本以及執行數據分析和可視化等任務變得輕松易懂,從而解決復雜問題,而這些代碼還不那麼復雜。
2.Python Power Code BONU SBundle
市場上有許多重要的編程語言可供選擇,數據分析師使用其日常任務和職責中的很多。但是,如果有人要先學習,那就是Python。Python語言被譽為用戶友好型以及直觀性。此外,它擁有眾多的功能,這使它能夠處理數據爭奪。70小時的培訓通過展示如何下載,提取,清理,匯總,分析和可視化數據,開始了編程教育。
3.大數據和分析主工具包
數據分析師和高級分析咨詢人員使用大量的語言和工具來獲取角色,這並不足為奇。這四個模塊集合為資料庫添加了四個重要的分析工具,即Minitab,SPSS,SAS和RStudio。
4.使用Tableau Desktop9 Bundle進行數據可視化
通過互動式儀錶板分析和呈現數據以完全挖掘信息的主要工具之一是Tableau9.這個收集將使您了解Tableau。因此,可以開始創建自己的可視化數據。
5.完整介紹R編程包
R的核心是一種統計編程語言,它非常適合挖掘和分析數據。但是,它也具有高級圖形和機器學習功能,也在數據可視化和集成復雜演算法上提供了一些獨一無二的優勢。在五門課程和三本電子書中,收集指導通過要點使用R來充分發揮潛力。
關於大數據分析所需的五個資源是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
以上是小編為大家分享的關於大數據分析所需的五個資源是什麼?的相關內容,更多信息可以關注環球青藤分享更多干貨
⑶ 數據分析:大數據處理的基本流程(三)
01
什麼是數據分析
隨著數字化進程的高速發展,越來越多的企業面對愈加激烈的競爭,差異化的市場,多變的環境,常常會面臨各種難題,也變得更依賴於數據。
分析的本質是讓業務更加清晰,讓決策更加高效。 數據分析 作為大數據價值產生的必要步驟、整個 大數據處理流程的核心 ,其在企業中的地位也越來越重要。
數據分析的目的 說白了就是把隱藏在一大批看來雜亂無章的數據中的信息集中和提煉出來,對其加以匯總、理解並消化,以求最大化地開發數據的功能,從而找出所研究對象的內在規律,發揮數據的作用。
簡而言之, 數據分析就是一個有組織、有目的收集數據、為了使其成為信息而對數據加以詳細研究和概括總結的過程。
在企業實際應用中,數據分析的一系列過程也是產品質量管理體系的支持過程。在企業產品的整個壽命周期,包括從市場調研到售後服務的各個過程都需要適當運用數據分析,以提升數據分析的有效性,能夠適時解決企業難題、識別機會、規避風險。
數據分析的作用及價值,可簡單歸納總結為下面四個方面:
1.追溯過去,了解真相(識別機會、規避風險)
2.洞察本質,尋本溯源(診斷問題、亡羊補牢)
3.掌握規律,預測未來(評估效果、改進策略)
4.採取措施,驅動行動(提高效率、加強管理)
02
數據分析的三個常用方法
數據分析本身是一個非常大的領域,這里將主要討論一下在企業產品整個壽命周期期間,3個常用的數據分析方法 (想看數據分析常用演算法的小夥伴可以點這里跳轉) :
數據趨勢分析
數據對比分析
數據細分分析
趨勢 , 對比 , 細分 ,基本包含了數據分析最基礎的部分。無論是數據核實,還是數據分析,都需要不斷地找趨勢,做對比,做細分,才能得到最終有效的結論。
數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如產品點擊率、活躍用戶數等。簡單的數據趨勢圖並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念: 環比,同比,定基比 。
環比 指本期統計數據與上期比較,利用環比可以知道最近的變化趨勢,但是有些數據可能會受季節、時間、地域等因素影響而產生差異。
為了消除差異,於是有了 同比 的概念,例如2019年2月份和2018年2月份進行比較。
定基比 就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋。
數據對比分析
很多時候單獨看數據的趨勢變化並不能說明問題,此時就需要給孤立的數據一個合理的參考系,否則孤立的數據毫無意義,這也是對比分析的意義所在。
一般而言,對比的數據是數據的基本面,比如行業情況,全站的情況等。
有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準,也就是A/B test,比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致,只有這樣才能得到比較有說服力的數據。可以簡單理解為樣本數量為2的控制變數法。
數據細分分析
在得到一些初步結論後,就需要進一步對數據進行細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
進行數據細分分析時,一定要進行多維度的細拆,可以包括但不限於:
分時 :不同時間短數據是否有變化
分渠道 :不同來源的流量或者產品是否有變化
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異
分地區 :不同地區的數據是否有變化
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪
03
大數據時代數據分析面臨的挑戰
大數據時代,數據分析技術的發展也並非一直順風順水,眼下可能會面臨一些新的挑戰,主要有以下幾點:
1
數據量大並不一定意味著數據價值的增加,也有可能是意味著數據噪音的增多。
因此,在數據分析之前必須進行數據清洗等預處理工作,但是預處理如此大量的數據,對於計算資源和處理演算法來講都是非常嚴峻的考驗。
2
大數據時代的演算法需要進行調整。
大數據的應用常常具有實時性的特點,演算法准確率不再是大數據應用的最主要指標。很多時候,演算法需要在處理實時性和准確率之間博得一個平衡點。
其次,分布式並發計算系統是進行大數據處理的有力工具,這就要求很多演算法必須做出調整以適應分布式並發的計算框架,演算法需要變得具有可擴展性。許多傳統的數據挖掘演算法都是線性執行的,面對海量的數據很難在合理的時間內獲取所需的結果。因此需要重新把這些演算法實現成可以並發執行的演算法,以便完成對大數據的處理。
最後,在選擇處理大數據的演算法時必須謹慎,當數據量增長到一定規模以後,可以從少量數據中挖掘出有效信息的演算法並非一定適用大數據。
3
數據結果的衡量標准。
對大數據進行分析並非易事,同樣的,對大數據分析結果好壞如何衡量也是大數據時代數據分析面臨的更大挑戰之一。
大數據時代的數據體量大、類型混雜、產生速度快,進行分析時如果沒有對整個數據的分布特點了如指掌,無疑會導致在設計衡量的方法、指標時遇到困難。
企通查-企業大數據平台基於 數據採集、特徵提取、信息關聯、機器學習和深度學習演算法模型、NLP文本分析 等先進技術,清晰構建企業全維度動態畫像,通過 企業風控指數、企業信用指數、企業活力指數 三大指數模型體系和基於 企業基本能力、創新能力、經營能力、核心能力、財務能力和風險能力 六大方面的大數據風控體系,實現對企業和客戶的 全流程主動感知、重點監控、變動提醒和風險預警 。此外,企通查還可以根據客戶的不同需求定製所需的一系列企業數據。
⑷ 大數據都體現在哪些方面
大數據體現在方方面面,今兩年疫情防控為例,大數據把海陸空交通、醫院,政府,公安,安檢信息全部整合到一起,比如一架飛機落地後,其中一名乘客被確診為疑似病例。其他乘客就可以通過大數據來一個個全部找到,主要是通過他們訂票信息,得知他們的聯系方式,頭像,行走路徑,就可以找到與疑似病例的密切接觸者有哪些,都去過哪兒,等等。另外,現在所有的交通事故,安全生產事故都可以通過大數據來統一調度,救援,等。
我們生活中也很多啊,我們平時點的外賣,點過一次,或者多次,就會出現在點單的最上面,這都是大數據分析出來的數據。
我們平時搜索過什麼,廣告推送都會崩出來,特別是淘寶和京東,直接廣告就出現彈框,吸引你去購買,打開這些app,你會發現最近搜的東西推送的不光多,類似的一些也會推送。
公安領域的大數據應用,可以實現從警綜、警力、警情、人口、卡口/車輛、重點場所、攝像頭管理等全方位進行公安日常監測與協調管理;實現突發事件下的可視化接處警、警情查詢監控、轄區定位、應急指揮調度管理,滿足公安行業平急結合的應用需求。從而全面提升公安機關智能化決策能力,提升警務資源利用和服務價值,為預防打擊違法犯罪、維護社會穩定提供有力支持。
交通領域的大數據應用,可以實現從公交車輛、司乘人員、運行線路、站點場站管理、乘客統計等多個維度進行日常路網運行監測與協調管理;支持突發事件下的值班接警、信息處理發布、應急指揮調度管理,發揮交通資源最大效益
電力領域的大數據應用,可以實現用戶分布、節點負荷、電網拓撲、電能質量、竊電嫌疑、安全防禦、能源消耗等智能電網多個環節進行日常運行監測與協調管理;滿足常態下電網信息的實時監測監管、應急態下協同處置指揮調度的需要。全面提高電力行業管理的及時性和准確性,更好地實現電網安全、可靠、經濟、高效運行。
園區管理的大數據應用,可以實現從園區建設規劃、管網運行、能耗監測、園區交通、安防管理、園區資源管理等多個維度進行日常運行監測與協調管理;從而全面加強園區創新、服務和管理能力,促進園區產業升級、提升園區企業競爭力。
網路安全的大數據應用,能夠實現對網路中的安全設備、網路設備、應用系統、操作系統等整體環境進行安全狀態監測,幫助用戶快速掌握網路狀況,識別網路異常、入侵,把握網路安全事件發展趨勢,全方位感知網路安全態勢。
航天是大數據應用最早也最成熟,取得成果最多的領域,航天要對尺度遠比地球大無數倍的廣闊空間進行探索,其總量更多,要求更高。因此,航天大數據不僅具有一般大數據的特點,更要求高可靠性和高價值。能夠實現對航天測發、測控設備控制;航天指揮作戰體系模擬推演、作戰評估;航天作戰指揮顯示控制航天器數據分析、狀態監控。
⑸ 大數據工程師分析企業數據 所需大數據來源有哪些
【導語】如今大數據異常的火爆,每行每業都在討論大數據,在這樣的大趨勢下,各大企業也都在思考大數據的問題,也都希望能在公司產品有研發、生產、銷售及售後各個領域應用大數據,那麼大數據工程師分析企業數據,所需大數據來源有哪些呢?接下來就一起來看看吧。
1、其實數據的來源可以是多個方面多個維度的。如企業自身的經營管理活動產生的數據、政府或機構公開的行業數據、數據管理咨詢公司或數據交易平台購買數據、或者通過爬蟲工具等在網路上抓取數據等等。
2、企業的每個崗位、每個人員都在進行著與企業相關的經營和管理活動,都在掌握著企業相關資源,擁有這些資源的信息和記錄,這些資源與資源轉換活動就是企業大數據的發源地。只要每個崗位的員工都能參與到數據採集和數據記錄的過程中,或者配合著相關的設備完成對數據的採集工作,企業積累自己的大數據就是一件非常容易的事情。
3、政府或機構公開的行業數據其實更好獲取,如國家統計局、中國統計學會、中國投入產出學會等。在這些網站中可以很方便地查詢到一些數據,如農業基本情況、工業生產者出廠價格指數、能源生產總量和構成、對外貿易和利用外資等等數據。並且可以分為月報、季報、年報,如果堅持獲取分析,對行業的發展趨勢等都是有很大的指導作用。
4、如果需要的數據市場上沒有,或者不願意購買,可以選擇招/做一名爬蟲工程師,自己動手去爬取數據。可以說只要在互聯網上看到的數據都可以把它爬下來。在網路爬蟲的系統框架中主過程由控制器,解析器,資源庫三部分組成,控制器的主要工作是負責給多線程中的各個爬蟲線程分配工作任務,爬蟲的基本工作是由解析器完成,資源庫是用來存放下載到的網頁資源。
企業大數據來源合理,大數據工程師才能更准確的進行大數據分析,所以大數據工程師也要不斷進行自我能力提升,才能更好的進行數據分析。
⑹ 大數據的中的數據是從哪裡來的
大數據應用中的關鍵點有三個,首要的就是大數據的數據來源,我們在分析大數據的時候需要重視大數據中的數據來源,只有這樣我們才能夠做好大數據的具體分析內容。那麼大家知不知道大數據的數據來源都是通過什麼渠道獲得的?下面就由小編為大家解答一下這個問題。
對於數據的來源很多人認為是互聯網和物聯網產生的,其實這句話是對的,這是因為互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。而物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據的數據來源,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,是我們常用的數據來源。
而數據的來源是我們評價大數據應用的第一個關注點。首先需要我們看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是好數據還是壞數據,能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,只有我們找到了好的數據來源,我們就能夠做好大數據的工作。這句需要我們去尋找數據比較密集的領域。
一般來說,我們獲取數據的時候需要數據密集的行業中挖掘數據,主要就是金融、電信、服務行業等等,而金融是一個特別重要的數據密集領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。
我們在這篇文章中為大家介紹了大數據的數據來源以及數據密集的領域,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。
⑺ 大數據工程師如何進行統計數據分析
【導讀】隨著大數據時代的到來,數據資源已經成為一種新的資源形式,在這樣的布景之下,怎麼科學運用大數據,將其價值進行充分地挖掘、剖析,有效促進社會開展成為各行業開展之下的重要方向。那麼,大數據工程師如何進行統計數據分析呢?
1.規劃和解說試驗以指導產品決策
數據剖析師能夠協助確認這種差異是否足夠顯著,以致需求引起更多的關注,關注和出資。它們能夠協助你了解試驗成果,這在你測量多個指標,運行相互影響的試驗或成果中產生某些Simpson悖論時特別有用。
2.樹立猜測信號而非雜訊的模型
數據剖析師能夠告知你或許的原因,為什麼銷量增長了5%。數據剖析師能夠協助你了解推進出售的要素,下個月的出售狀況以及需求注意的潛在趨勢。
請參閱什麼是過度擬合的直觀解說,尤其是對於少量樣本集?過度擬合實際上是在做什麼?高R,低標准誤差的過高許諾怎麼產生?了解為什麼僅適合信號這一點很重要。
3.將大數據變成全局
任何人都能夠觀察到該企業有100,000個客戶在你的雜貨店購買10,000個項目。
數據剖析師能夠協助你標記每個客戶,將他們與相似的客戶分組,並了解他們的購買習慣。這樣一來,你便能夠查看事務開展怎麼影響特定人群,而不用整體看待每個人或獨自看待每個人。
4.了解用戶的參加度,保存率,轉化率和潛在客戶
為什麼你的客戶從你的網站上購買商品?你怎麼保持客戶回頭客?為什麼用戶退出你的渠道?他們什麼時候出來?你公司最喜歡哪種電子郵件來招引用戶?參加,活動或成功的一些首要指標是什麼?有哪些好的出售線索?
運用的統計數據:回歸,因果剖析,潛在變數剖析,調查規劃
5.給用戶他們想要的東西
給定用戶(客戶,客戶,用戶)及其與公司項目(廣告,商品,電影)之間的互動(點擊,購買,評級)的矩陣,你能否建議用戶接下來要購買哪些項目?
6.智能預算
0%能夠很好地預算點擊率嗎?數據剖析師能夠結合數據,全局數據和先驗常識來獲得抱負的估計值,告知你該估計值的屬性,並總結該估計值的含義。
7.用數據講故事
數據剖析師在公司中的人物是充任數據與公司之間的大使。溝通是關鍵,並且數據剖析師必須能夠以公司能夠運用的方法解說他們的見地,而又不犧牲數據的保真度。
數據剖析師不只簡單地總結了數字,還解說了數字為何如此重要以及從中能夠得到哪些可行的見地。
以上就是小編今天給大家整理發送的關於大數據工程師如何進行統計數據分析的全部內容,希望對大家有所幫助。所謂不做不打無准備之仗,總的來說隨著大數據在眾多行業中的應用,大數據技術工作能力的工程師和開發人員是很吃香的,希望各位小夥伴們再接再厲,越來越優秀。
⑻ 如何進行大數據分析及處理
1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。
另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如 果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。
語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
大數據的技術
數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取: 關系資料庫、NOSQL、SQL等。
基礎架構: 雲存儲、分布式文件存儲等。
數據處理: 自然語言處理(NLP,Natural Language Processing)是研究人與計算機交互的語言問題的一門學科。
處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理解也稱為計算語言學。
一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。
統計分析: 假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、 卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、 因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘: 分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測 :預測模型、機器學習、建模模擬。
結果呈現: 雲計算、標簽雲、關系圖等。
大數據的處理
1. 大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的 數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。
比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除 此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶 來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。
並且如何在這些資料庫之間 進行負載均衡和分片的確是需要深入的思考和設計。
2. 大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這 些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。
也有一些用戶會在導入時使 用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3. 大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通 的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於 MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4. 大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數 據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。
比較典型演算法有用於聚類的Kmeans、用於 統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。
該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並 且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
⑼ 什麼是大數據分析 主要應用於哪些行業以製造業為例
大數據作為IT行業最流行的詞彙,圍繞大數據的商業價值的使用,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等,逐漸成為業界所追求的利潤焦點。隨著大數據時代的到來,大數據分析也應運而生。
1.大數據分析主要應用於哪些行業?
製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
2.大數據分析師就業前景如何?
從20世紀90年代起,歐美國家開始大量培養數據分析師,直到現在,對數據分析師的需求仍然長盛不衰,而且還有擴展之勢。
根據美國勞工部預測,到2018年,數據分析師的需求量將增長20%。就算你不是數據分析師,但數據分析技能也是未來必不可少的工作技能之一。在數據分析行業發展成熟的國家,90%的市場決策和經營決策都是通過數據分析研究確定的。
3.關於大數據分析具體含義?
1、數據分析可以讓人們對數據產生更加優質的詮釋,而具有預知意義的分析可以讓分析員根據可視化分析和數據分析後的結果做出一些預測性的推斷。
2、大數據的分析與存儲和數據的管理是一些數據分析層面的最佳實踐。通過按部就班的流程和工具對數據進行分析可以保證一個預先定義好的高質量的分析結果。
3、不管使用者是數據分析領域中的專家,還是普通的用戶,可作為數據分析工具的始終只能是數據可視化。可視化可以直觀的展示數據,讓數據自己表達,讓客戶得到理想的結果。
什麼是大數據分析 主要應用於哪些行業?中琛魔方大數據平台指出大數據的價值,遠遠不止於此,大數據針對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。
我們可以看看億信華辰關於製造業的案例,
某電建集團主要從事國內外高速公路、市政、鐵路、軌道交通、橋梁、隧 道、城市綜合體開發、機場、港口、航道、地下綜合管廊以及生態水環境治理、海綿 城市建設、環境保護等項目投資、建設、運營等,為客戶提供投資融資、咨詢規劃、 設計建造、管理運營一攬子解決方案和集成式、一體化服務。成立以來,投資建設了 一大批體量大、強度高、領域寬的基礎設施及環保項目。
該公司的數據化建設,或將成為新型基礎設施建設的一個縮影。
項目背景 數字經濟時代,數據資源已經成為企業的核心資源和核心競爭力,各類企業信息化建設的重心正從 IT(信息技術) 向 DT(數據技術) 轉化,未來信息化建設的重心將是如何對組織內外部的數據進行深入、多維、實時的挖掘和分析,以滿足決策層的需求,推動信息化向更高層面進化,構築公司數字經濟時代的新優勢。目前,由於各級各部門大量的時間用在內外部各種繁雜的報表填報、匯總、統計和分析上,同時各級領導有對公司或者所轄單位的整體經營情況仍舊通過傳統的匯報、傳統的報表等了解,缺乏直觀和可視化系統支撐決策分析,主要存在問題如下:1、數據孤島嚴重各級各部門數據無法有效共享,跨部門跨層級的數據採集、共享和分析利用困難。2、數據採集方式落後數據採集仍舊採用傳統 EXCEL 方式進行,缺乏自下而上的數據採集、數據審核、數據報送、匯總分析的數據採集平台支撐,導致數據源分散、數據標准不統一、數據質量難以保證、數據採集效率低下。3、缺乏統一的決策經營指標體系和數據資源統一管理機制導致數據資源不能有效利用,價值無法充分發揮,無法為各級領導決策提供有效支持。
建設內容 為徹底解決以上問題,根據需求和數據資產類項目建設方式,系統實現按照「指標資源整理-應用場景展現設計--數據獲取-指標資源池-頁面實現-決策門戶 」的方式設計。即根據梳理的指標體系應用場景需要確定設計展現界面展現內容,根據展現內容確定指標體系,根據指標體系來並收集相關數據。
1、搭建智能填報系統 梳理指標體系,構建決策指標和主題指標,明確指標類型,指標數據來源,各指標輸出口徑:是否填報、填報維度與對象、填報周期等等。實現公司各級各部門自下而上決策數據填報、數據審核、 數據報送、匯總查詢、數據補錄等全過程網路化數據採集的需要。
2、構建經營決策指標體系構建公司經營決策指標體系。收集數據分析需求,分析匯總形成公司市場、經營、履約、運營、項目等生產經營關鍵指標和相關數據分析主題、指標,形成指標 資源池,實現決策數據的體系化、指標化和模型化。
3、決策指標體系建設根據某電建集團提供數據的內容和主要特徵,將決策指標體系的指標分為運營指標、經營指標、整體指標、市場指標、履約指標五類一級指標。每類一級指標又分別由若干個二級指標組成。
4、建設決策支持系統通過億信BI工具,基於報表採集的數據和相關信息系統積累的數據, 初步構建管理駕駛艙,滿足面向公司決策層和部門領導的數據分析,可視化圖表化輔助領導管理決策,並集成電建通APP應用,實現決策移動化。
5、搭建自助式BI通過豌豆BI工具搭建自助式 BI。為市場營銷、建設管理、資產運營、財務管理等部門有自助探索數據分析的業務人員提供自助式可視化分析工具。
價值體現 在合作中,億信華辰根據當前數據分析應用的訴求,幫助該電建集團建設決策整體指標、市場指標、履約指標、運營指標五個模塊,提供了從數據採集、數據匯總到指標口徑定義、指標建模、指標數據落地和數據可視化分析於一體的完整的解決方案。決策管理平台以業務分析平台為基礎,以更核心的指標、更直觀的展現方式實現數據的分析與監控,支撐領導層的管理決策。主要包括管理駕駛艙、項目看板專題、市場專題、經營專題、履約專題、運營專題等場景。使數據資源得到充分利用,最大程度的發揮數據價值。