導航:首頁 > 網路數據 > 大數據與hadoop

大數據與hadoop

發布時間:2023-07-18 01:31:32

1. hadoop是什麼意思與大數據有什麼關系

一、hadoop是什麼意思?

Hadoop是具體的開源框架,是工具,用來做海量數據的存儲和計算的。

二、hadoop與大數據的關系

首先,大數據本身涉及到一個龐大的技術體系,從學科的角度來看,涉及到數學、統計學和計算機三大學科,同時還涉及到社會學、經濟學、醫學等學科,所以大數據本身的知識量還是非常大的。

從當前大數據領域的產業鏈來看,大數據領域涉及到數據採集、數據存儲、數據分析和數據應用等環節,不同的環節需要採用不同的技術,但是這些環節往往都要依賴於大數據平台,而Hadoop則是當前比較流行的大數據平台之一。

Hadoop平台經過多年的發展已經形成了一個比較完善的生態體系,而且由於Hadoop平台是開源的,所以很多商用的大數據平台也是基於Hadoop搭建的,所以對於初學大數據的技術人員來說,從Hadoop開始學起是不錯的選擇。

當前Hadoop平台的功能正在不斷得到完善,不僅涉及到數據存儲,同時也涉及到數據分析和數據應用,所以對於當前大數據應用開發人員來說,整體的知識結構往往都是圍繞大數據平台來組織的。隨著大數據平台逐漸開始落地到傳統行業領域,大數據技術人員對於大數據平台的依賴程度會越來越高。

當前從事大數據開發的崗位可以分為兩大類,一類是大數據平台開發,這一類崗位往往是研發級崗位,不僅崗位附加值比較高,未來的發展空間也比較大,但是大數據平台開發對於從業者的要求比較高,當前有不少研究生在畢業後會從事大數據平台開發崗位。

另一類是大數據應用開發崗位,這類崗位的工作任務就是基於大數據平台(Hadoop等)來進行行業應用開發,在工業互聯網時代,大數據應用開發崗位的數量還是比較多的,而且大數據應用開發崗位對於從業者的要求也相對比較低。

2. 請問大數據開發工具有哪些

你好,目前大數據常用的工具有Apache Hadoop、Apache Spark、Apache Storm、Apache Cassandra、Apache Kafka等等。下面分別介紹一下這幾種工具:

  1. Hadoop用於存儲過程和分析大數據。Hadoop 是用 Java 編寫的。Apache Hadoop 支持並行處理數據,因為它同時在多台機器上工作。它使用集群架構。集群是一組通過 LAN 連接的系統。Apache Hadoop是大數據行業中最常用的工具之一

  2. Apache Spark可以被認為是 Hadoop 的繼承者,因為它克服了它的缺點。Spark 與 Hadoop 不同,它同時支持實時和批處理。它是一個通用的集群系統。它還支持內存計算,比 Hadoop 快 100 倍。這可以通過減少對磁碟的讀/寫操作次數來實現

  3. Apache Storm 是一個開源的大數據工具,分布式實時和容錯處理系統。它有效地處理無限的數據流。通過無界流,我們指的是不斷增長的數據,並且有一個開始但沒有定義的結束

  4. Apache Cassandra是一個分布式資料庫,可提供高可用性和可擴展性,而不會影響性能效率。它是最好的大數據工具之一,可以容納所有類型的數據集,即結構化、半結構化和非結構化

  5. MongoDB是一個開源數據分析工具,提供跨平台能力的NoSQL資料庫。對於需要快速移動和實時數據來做出決策的企業來說,它堪稱典範

  6. Apache Kafka 是一個分布式事件處理或流式處理平台,可為系統提供高吞吐量。它的效率足以每天處理數萬億個事件。它是一個高度可擴展的流媒體平台,還提供了出色的容錯能力

當然,除了這些之外,還有一些其他跨平台的工具可供大數據使用。

希望我的回答能幫到你!

3. 什麼是大數據分析Hadoop

要了解什麼是Hadoop,我們必須首先了解與大數據和傳統處理系統有關的問題。前進,我們將討論什麼是Hadoop,以及Hadoop如何解決與大數據相關的問題。我們還將研究CERN案例研究,以突出使用Hadoop的好處。

在之前的博客「 大數據教程」中,我們已經詳細討論了大數據以及大數據的挑戰。在此博客中,我們將討論:

1、傳統方法的問題

2、Hadoop的演變

3、Hadoop的

4、Hadoop即用解決方案

5、何時使用Hadoop?

6、什麼時候不使用Hadoop?

一、CERN案例研究

大數據正在成為組織的機會。現在,組織已經意識到他們可以通過大數據分析獲得很多好處,如下圖所示。他們正在檢查大型數據集,以發現所有隱藏的模式,未知的相關性,市場趨勢,客戶偏好和其他有用的業務信息。

這些分析結果正在幫助組織進行更有效的營銷,新的收入機會,更好的客戶服務。他們正在提高運營效率,與競爭對手組織相比的競爭優勢以及其他業務利益。


什麼是Hadoop –大數據分析的好處

因此,讓我們繼續前進,了解在兌現大數據機會方面與傳統方法相關的問題。

二、傳統方法的問題

在傳統方法中,主要問題是處理數據的異構性,即結構化,半結構化和非結構化。RDBMS主要關注於銀行交易,運營數據等結構化數據,而Hadoop則專注於文本,視頻,音頻,Facebook帖子,日誌等半結構化,非結構化數據。RDBMS技術是一種經過驗證的,高度一致,成熟的系統許多公司的支持。另一方面,由於大數據(主要由不同格式的非結構化數據組成)對Hadoop提出了需求。

現在讓我們了解與大數據相關的主要問題是什麼。因此,繼續前進,我們可以了解Hadoop是如何成為解決方案的。


什麼是Hadoop –大數據問題

第一個問題是存儲大量數據。

無法在傳統系統中存儲大量數據。原因很明顯,存儲將僅限於一個系統,並且數據正在以驚人的速度增長。

第二個問題是存儲異構數據。

現在,我們知道存儲是一個問題,但是讓我告訴您,這只是問題的一部分。由於我們討論了數據不僅龐大,而且還以各種格式存在,例如:非結構化,半結構化和結構化。因此,您需要確保您擁有一個系統來存儲從各種來源生成的所有這些種類的數據。

第三個問題是訪問和處理速度。

硬碟容量正在增加,但磁碟傳輸速度或訪問速度並未以相似的速度增加。讓我以一個示例為您進行解釋:如果您只有一個100 Mbps I / O通道,並且正在處理1TB數據,則大約需要2.91個小時。現在,如果您有四台具有一個I / O通道的計算機,則對於相同數量的數據,大約需要43分鍾。因此,與存儲大數據相比,訪問和處理速度是更大的問題。

在了解什麼是Hadoop之前,讓我們首先了解一下Hadoop在一段時間內的發展。

Hadoop的演變



2003年,道格·切特(Doug Cutting)啟動了Nutch項目,以處理數十億次搜索並為數百萬個網頁建立索引。2003年10月下旬– Google發布帶有GFS(Google文件系統)的論文。2004年12月,Google發布了MapRece論文。在2005年,Nutch使用GFS和MapRece進行操作。2006年,雅虎與Doug Cutting及其團隊合作,基於GFS和MapRece創建了Hadoop。如果我告訴您,您會感到驚訝,雅虎於2007年開始在1000個節點的群集上使用Hadoop。

2008年1月下旬,雅虎向Apache Software Foundation發布了Hadoop作為一個開源項目。2008年7月,Apache通過Hadoop成功測試了4000個節點的集群。2009年,Hadoop在不到17小時的時間內成功整理了PB級數據,以處理數十億次搜索並為數百萬個網頁建立索引。在2011年12月,Apache Hadoop發布了1.0版。2013年8月下旬,發布了2.0.6版。

當我們討論這些問題時,我們發現分布式系統可以作為解決方案,而Hadoop提供了相同的解決方案。現在,讓我們了解什麼是Hadoop。

三、什麼是Hadoop?

Hadoop是一個框架,它允許您首先在分布式環境中存儲大數據,以便可以並行處理它。 Hadoop中基本上有兩個組件:

1、大數據Hadoop認證培訓

2、講師指導的課程現實生活中的案例研究評估終身訪問探索課程


什麼是Hadoop – Hadoop即解決方案

第一個問題是存儲大數據。

HDFS提供了一種分布式大數據存儲方式。您的數據存儲在整個DataNode的塊中,您可以指定塊的大小。基本上,如果您擁有512MB的數據,並且已經配置了HDFS,那麼它將創建128MB的數據塊。 因此,HDFS將數據分為512/128 = 4的4個塊,並將其存儲在不同的DataNode上,還將在不同的DataNode上復制數據塊。現在,由於我們正在使用商品硬體,因此存儲已不是難題。

它還解決了縮放問題。它著重於水平縮放而不是垂直縮放。您始終可以根據需要隨時在HDFS群集中添加一些額外的數據節點,而不是擴展DataNodes的資源。讓我為您總結一下,基本上是用於存儲1 TB的數據,您不需要1 TB的系統。您可以在多個128GB或更少的系統上執行此操作。

下一個問題是存儲各種數據。

藉助HDFS,您可以存儲各種數據,無論是結構化,半結構化還是非結構化。由於在HDFS中,沒有預轉儲模式驗證。並且它也遵循一次寫入和多次讀取模型。因此,您只需寫入一次數據,就可以多次讀取數據以尋找見解。

Hird的挑戰是訪問和處理數據更快。

是的,這是大數據的主要挑戰之一。為了解決該問題,我們將處理移至數據,而不是將數據移至處理。這是什麼意思?而不是將數據移動到主節點然後進行處理。在MapRece中,處理邏輯被發送到各個從屬節點,然後在不同的從屬節點之間並行處理數據。然後,將處理後的結果發送到主節點,在該主節點上合並結果,並將響應發送回客戶端。

在YARN架構中,我們有ResourceManager和NodeManager。ResourceManager可能會或可能不會與NameNode配置在同一台機器上。 但是,應該將NodeManager配置在存在DataNode的同一台計算機上。

YARN通過分配資源和安排任務來執行您的所有處理活動。

什麼是Hadoop – YARN

它具有兩個主要組件,即ResourceManager和NodeManager。

ResourceManager再次是主節點。它接收處理請求,然後將請求的各個部分相應地傳遞到相應的NodeManager,什麼是大數據分析Hadoop在此進行實際處理。NodeManager安裝在每個DataNode上。它負責在每個單個DataNode上執行任務。

我希望現在您對什麼是Hadoop及其主要組件有所了解。讓我們繼續前進,了解何時使用和何時不使用Hadoop。

何時使用Hadoop?

Hadoop用於:

1、搜索 – Yahoo,亞馬遜,Zvents

2、日誌處理 – Facebook,雅虎

3、數據倉庫 – Facebook,AOL

4、視頻和圖像分析 –紐約時報,Eyealike

到目前為止,我們已經看到了Hadoop如何使大數據處理成為可能。但是在某些情況下,不建議使用Hadoop。

4. 大數據與Hadoop之間是什麼關系

大數據是一系列技術的統稱,經過多年的發展,大數據已經形成了從數據採集、整理版、傳輸、權存儲、安全、分析、呈現和應用等一系列環節,這些環節涉及到諸多大數據工作崗位,這些工作崗位與物聯網、雲計算也都有密切的聯系。

大數據技術的三個重點:Hadoop、spark、storm。Hadoop本身就是大數據平台研發人員的工作成果,Hadoop是目前常見的大數據支撐性平台,Hadoop平台提供了分布式存儲(HDFS)、分布式計算(MapRece)、任務調度(YARN)、對象存儲(Ozone)和組件支撐服務(Common)。

5. 資料庫與hadoop與分布式文件系統的區別和聯系

資料庫與hadoop與分布式文件系統的區別和聯系

1. 用向外擴展代替向上擴展
擴展商用關系型資料庫的代價是非常昂貴的。它們的設計更容易向上擴展。要運行一個更大
的資料庫,就需要買一個更大的機器。事實上,往往會看到伺服器廠商在市場上將其昂貴的高端機
標稱為「資料庫級的伺服器」。不過有時可能需要處理更大的數據集,卻找不到一個足夠大的機器。
更重要的是,高端的機器對於許多應用並不經濟。例如,性能4倍於標准PC的機器,其成本將大大
超過將同樣的4台PC放在一個集群中。Hadoop的設計就是為了能夠在商用PC集群上實現向外擴展
的架構。添加更多的資源,對於Hadoop集群就是增加更多的機器。一個Hadoop集群的標配是十至
數百台計算機。事實上,如果不是為了開發目的,沒有理由在單個伺服器上運行Hadoop。
2. 用鍵/值對代替關系表
關系資料庫的一個基本原則是讓數據按某種模式存放在具有關系型數據結構的表中。雖然關
系模型具有大量形式化的屬性,但是許多當前的應用所處理的數據類型並不能很好地適合這個模
型。文本、圖片和XML文件是最典型的例子。此外,大型數據集往往是非結構化或半結構化的。
Hadoop使用鍵/值對作為基本數據單元,可足夠靈活地處理較少結構化的數據類型。在hadoop中,
數據的來源可以有任何形式,但最終會轉化為鍵/值對以供處理。
3. 用函數式編程(MapRece)代替聲明式查詢(SQL )
SQL 從根本上說是一個高級聲明式語言。查詢數據的手段是,聲明想要的查詢結果並讓資料庫引擎
判定如何獲取數據。在MapRece中,實際的數據處理步驟是由你指定的,它很類似於SQL
引擎的一個執行計劃。SQL 使用查詢語句,而MapRece則使用腳本和代碼。利用MapRece可
以用比SQL 查詢更為一般化的數據處理方式。例如,你可以建立復雜的數據統計模型,或者改變
圖像數據的格式。而SQL 就不能很好地適應這些任務。
4.
分布式文件系統(dfs)和分布式資料庫都支持存入,取出和刪除。但是分布式文件系統比較暴力,
可以當做key/value的存取。分布式資料庫涉及精煉的數據,傳統的分布式關系型資料庫會定義數據元
組的schema,存入取出刪除的粒度較小。
分布式文件系統現在比較出名的有GFS(未開源),HDFS(Hadoop distributed file system)。
分布式資料庫現在出名的有Hbase,oceanbase。其中Hbase是基於HDFS,而oceanbase是自己內部
實現的分布式文件系統,在此也可以說分布式資料庫以分布式文件系統做備碧乎基礎存儲。

共享文件與分布式文件系統的區別

分布式文件系統(Distributed File System,DFS)
如果區域網中有多台伺服器,並且共享文件夾也分布在不同的伺服器上,這就不慧運利於管理員的管理和用戶的訪問。而使用分布式文件系統,系統管理員就可以把不同伺服器上的共享文件夾組織在一起,構建成一個目錄樹。這在用戶看來,所有共享文件僅存儲在一個地點,只需訪問一個共享的DFS根目錄,就能夠訪問分布在網路上的文件或文件夾,而不必知道這些文件的實際物理位置。

ftp server和分布式文件系統的區別

換個思路,使用mount --bind把目錄載入過來就可以了 先將數據盤掛載 mount /dev/sdb1 /mnt/d 在ftp目錄下建一個文件夾data mount --bind /mnt/d data

FTP server和分布式文件系統的區別, 分布式文件系統和分布式資料庫有什麼不同

分布式文件系統(dfs)和分布式資料庫都支持存入,取出和刪除。但是分布式文件系統比較暴力,可以當做key/value的存取。分布式資料庫涉及精煉的數據,傳統的分布式關系型資料庫會定義數據元組的schema,存入取出刪除的粒度較小。
分布式文件系統現在比較出名的有GFS(未開源),HDFS(Hadoop distributed file system)。分布式資料庫現在出名的有Hbase,oceanbase。其中仿悉Hbase是基於HDFS,而oceanbase是自己內部實現的分布式文件系統,在此也可以說分布式資料庫以分布式文件系統做基礎存儲。

hadoop是分布式文件系統嗎

是的
Hadoop分布式文件系統(HDFS)是一種被設計成適合運行在通用硬體上的分布式文件系統。HDFS是一個高度容錯性的系統,適合部署在廉價的機器上。它能提供高吞吐量的數據訪問,非常適合大規模數據集上的應用。要理解HDFS的內部工作原理,首先要理解什麼是分布式文件系統。
1.分布式文件系統
多台計算機聯網協同工作(有時也稱為一個集群)就像單台系統一樣解決某種問題,這樣的系統我們稱之為分布式系統。
分布式文件系統是分布式系統的一個子集,它們解決的問題就是數據存儲。換句話說,它們是橫跨在多台計算機上的存儲系統。存儲在分布式文件系統上的數據自動分布在不同的節點上。
分布式文件系統在大數據時代有著廣泛的應用前景,它們為存儲和處理來自網路和其它地方的超大規模數據提供所需的擴展能力。
2.分離元數據和數據:NameNode和DataNode
存儲到文件系統中的每個文件都有相關聯的元數據。元數據包括了文件名、i節點(inode)數、數據塊位置等,而數據則是文件的實際內容。
在傳統的文件系統里,因為文件系統不會跨越多台機器,元數據和數據存儲在同一台機器上。
為了構建一個分布式文件系統,讓客戶端在這種系統中使用簡單,並且不需要知道其他客戶端的活動,那麼元數據需要在客戶端以外維護。HDFS的設計理念是拿出一台或多台機器來保存元數據,並讓剩下的機器來保存文件的內容。
NameNode和DataNode是HDFS的兩個主要組件。其中,元數據存儲在NameNode上,而數據存儲在DataNode的集群上。NameNode不僅要管理存儲在HDFS上內容的元數據,而且要記錄一些事情,比如哪些節點是集群的一部分,某個文件有幾份副本等。它還要決定當集群的節點宕機或者數據副本丟失的時候系統需要做什麼。
存儲在HDFS上的每份數據片有多份副本(replica)保存在不同的伺服器上。在本質上,NameNode是HDFS的Master(主伺服器),DataNode是Slave(從伺服器)。

文件系統與資料庫系統的區別和聯系

其區別在於:
(1)
文件系統用文件將數據長期保存在外存上,數
據庫系統用資料庫統一存儲數據。
(2)
文件系統中的程序和數據有一
定的聯系,資料庫系統中的程序和數據分離。
(3)
文件系統用操作系
統中的存取方法對數據進行管理,資料庫系統用
DBMS
統一管理和控
制數據。
(4)
文件系統實現以文件為單位的數據共享,資料庫系統實
現以記錄和欄位為單位的數據共享。
其聯系在於:
(1)
均為數據組織的管理技術。
(2)
均由數據管理軟
件管理數據,程序與數據之間用存取方法進行轉換。
(3)
資料庫系統
是在文件系統的基礎上發展而來的。

資料庫系統和文件系統的區別與聯系

文件系統和資料庫系統之間的區別:
(1) 文件系統用文件將數據長期保存在外存上,資料庫系統用資料庫統一存儲數據;
(2) 文件系統中的程序和數據有一定的聯系,資料庫系統中的程序和數據分離;
(3) 文件系統用操作系統中的存取方法對數據進行管理,資料庫系統用DBMS統一管理和控制數據;
(4) 文件系統實現以文件為單位的數據共享,資料庫系統實現以記錄和欄位為單位的數據共享。
文件系統和資料庫系統之間的聯系:
(1) 均為數據組織的管理技術;
(2) 均由數據管理軟體管理數據,程序與數據之間用存取方法進行轉換;
(3) 資料庫系統是在文件系統的基礎上發展而來的。

什麼是Hadoop分布式文件系統

分布式文件系統(Distributed File System)是指文件系統管理的物理存儲資源不一定直接連接在本地節點上,而是通過計算機網路與節點相連。
Hadoop是Apache軟體基金會所研發的開放源碼並行運算編程工具和分散式檔案系統,與MapRece和Google檔案系統的概念類似。
HDFS(Hadoop 分布式文件系統)是其中的一部分。

6. 大數據中Hadoop的核心技術是什麼

Hadoop核心架構,分為四個模塊:

1、Hadoop通用:提供Hadoop模塊所需要的Java類庫和工具。

2、Hadoop YARN:提供任務調度和集群資源管理功能。

3、Hadoop HDFS:分布式文件系統,提供高吞吐量的應用程序數據訪問方式。

4、Hadoop MapRece:大數據離線計算引擎,用於大規模數據集的並行處理。

特點:

Hadoop的高可靠性、高擴展性、高效性、高容錯性,是Hadoop的優勢所在,在十多年的發展歷程當中,Hadoop依然被行業認可,占據著重要的市場地位。

Hadoop在大數據技術框架當中的地位重要,學大數據必學Hadoop,還要對Hadoop核心技術框架掌握扎實才行。

7. 如何架構大數據系統hadoop

大數據數量龐大,格式多樣化。

大量數據由家庭、製造工廠和辦公場所的各種設備、互聯網事務交易、社交網路的活動、自動化感測器、移動設備以及科研儀器等生成。

它的爆炸式增長已超出了傳統IT基礎架構的處理能力,給企業和社會帶來嚴峻的數據管理問題。

因此必須開發新的數據架構,圍繞「數據收集、數據管理、數據分析、知識形成、智慧行動」的全過程,開發使用這些數據,釋放出更多數據的隱藏價值。

一、大數據建設思路

1)數據的獲得

大數據產生的根本原因在於感知式系統的廣泛使用。

隨著技術的發展,人們已經有能力製造極其微小的帶有處理功能的感測器,並開始將這些設備廣泛的布置於社會的各個角落,通過這些設備來對整個社會的運轉進行監控。

這些設備會源源不斷的產生新數據,這種數據的產生方式是自動的。

因此在數據收集方面,要對來自網路包括物聯網、社交網路和機構信息系統的數據附上時空標志,去偽存真,盡可能收集異源甚至是異構的數據,必要時還可與歷史數據對照,多角度驗證數據的全面性和可信性。

2)數據的匯集和存儲

互聯網是個神奇的大網,大數據開發和軟體定製也是一種模式,這里提供最詳細的報價,如果你真的想做,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了

數據只有不斷流動和充分共享,才有生命力。

應在各專用資料庫建設的基礎上,通過數據集成,實現各級各類信息系統的數據交換和數據共享。

數據存儲要達到低成本、低能耗、高可靠性目標,通常要用到冗餘配置、分布化和雲計算技術,在存儲時要按照一定規則對數據進行分類,通過過濾和去重,減少存儲量,同時加入便於日後檢索的標簽。

3)數據的管理

大數據管理的技術也層出不窮。

在眾多技術中,有6種數據管理技術普遍被關注,即分布式存儲與計算、內存資料庫技術、列式資料庫技術、雲資料庫、非關系型的資料庫、移動資料庫技術。

其中分布式存儲與計算受關注度最高。

上圖是一個圖書數據管理系統。

4)數據的分析

數據分析處理:有些行業的數據涉及上百個參數,其復雜性不僅體現在數據樣本本身,更體現在多源異構、多實體和多空間之間的交互動態性,難以用傳統的方法描述與度量,處理的復雜度很大,需要將高維圖像等多媒體數據降維後度量與處理,利用上下文關聯進行語義分析,從大量動態而且可能是模稜兩可的數據中綜合信息,並導出可理解的內容。

大數據的處理類型很多,主要的處理模式可以分為流處理和批處理兩種。

批處理是先存儲後處理,而流處理則是直接處理數據。

挖掘的任務主要是關聯分析、聚類分析、分類、預測、時序模式和偏差分析等。

5)大數據的價值:決策支持系統

大數據的神奇之處就是通過對過去和現在的數據進行分析,它能夠精確預測未來;通過對組織內部的和外部的數據整合,它能夠洞察事物之間的相關關系;通過對海量數據的挖掘,它能夠代替人腦,承擔起企業和社會管理的職責。

6)數據的使用

大數據有三層內涵:一是數據量巨大、來源多樣和類型多樣的數據集;二是新型的數據處理和分析技術;三是運用數據分析形成價值。

大數據對科學研究、經濟建設、社會發展和文化生活等各個領域正在產生革命性的影響。

大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。

二、大數據基本架構

基於上述大數據的特徵,通過傳統IT技術存儲和處理大數據成本高昂。

一個企業要大力發展大數據應用首先需要解決兩個問題:一是低成本、快速地對海量、多類別的數據進行抽取和存儲;二是使用新的技術對數據進行分析和挖掘,為企業創造價值。

因此,大數據的存儲和處理與雲計算技術密不可分,在當前的技術條件下,基於廉價硬體的分布式系統(如Hadoop等)被認為是最適合處理大數據的技術平台。

Hadoop是一個分布式的基礎架構,能夠讓用戶方便高效地利用運算資源和處理海量數據,目前已在很多大型互聯網企業得到了廣泛應用,如亞馬遜、Facebook和Yahoo等。

其是一個開放式的架構,架構成員也在不斷擴充完善中,通常架構如圖2所示:

Hadoop體系架構

(1)Hadoop最底層是一個HDFS(Hadoop Distributed File System,分布式文件系統),存儲在HDFS中的文件先被分成塊,然後再將這些塊復制到多個主機中(DataNode,數據節點)。

(2)Hadoop的核心是MapRece(映射和化簡編程模型)引擎,Map意為將單個任務分解為多個,而Rece則意為將分解後的多任務結果匯總,該引擎由JobTrackers(工作追蹤,對應命名節點)和TaskTrackers(任務追蹤,對應數據節點)組成。

當處理大數據查詢時,MapRece會將任務分解在多個節點處理,從而提高了數據處理的效率,避免了單機性能瓶頸限制。

(3)Hive是Hadoop架構中的數據倉庫,主要用於靜態的結構以及需要經常分析的工作。

Hbase主要作為面向列的資料庫運行在HDFS上,可存儲PB級的數據。

Hbase利用MapRece來處理內部的海量數據,並能在海量數據中定位所需的數據且訪問它。

(4)Sqoop是為數據的互操作性而設計,可以從關系資料庫導入數據到Hadoop,並能直接導入到HDFS或Hive。

(5)Zookeeper在Hadoop架構中負責應用程序的協調工作,以保持Hadoop集群內的同步工作。

(6)Thrift是一個軟體框架,用來進行可擴展且跨語言的服務的開發,最初由Facebook開發,是構建在各種編程語言間無縫結合的、高效的服務。

Hadoop核心設計

Hbase——分布式數據存儲系統

Client:使用HBase RPC機制與HMaster和HRegionServer進行通信

Zookeeper:協同服務管理,HMaster通過Zookeepe可以隨時感知各個HRegionServer的健康狀況

HMaster: 管理用戶對表的增刪改查操作

HRegionServer:HBase中最核心的模塊,主要負責響應用戶I/O請求,向HDFS文件系統中讀寫數據

HRegion:Hbase中分布式存儲的最小單元,可以理解成一個Table

HStore:HBase存儲的核心。

由MemStore和StoreFile組成。

HLog:每次用戶操作寫入Memstore的同時,也會寫一份數據到HLog文件

結合上述Hadoop架構功能,大數據平台系統功能建議如圖所示:

應用系統:對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量數據撲面而至。

於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。

數據平台:藉助大數據平台,未來的互聯網路將可以讓商家更了解消費者的使用**慣,從而改進使用體驗。

基於大數據基礎上的相應分析,能夠更有針對性的改進用戶體驗,同時挖掘新的商業機會。

數據源:數據源是指資料庫應用程序所使用的資料庫或者資料庫伺服器。

豐富的數據源是大數據產業發展的前提。

數據源在不斷拓展,越來越多樣化。

如:智能汽車可以把動態行駛過程變成數據,嵌入到生產設備里的物聯網可以把生產過程和設備動態狀況變成數據。

對數據源的不斷拓展不僅能帶來採集設備的發展,而且可以通過控制新的數據源更好地控制數據的價值。

然而我國數字化的數據資源總量遠遠低於美歐,就已有有限的數據資源來說,還存在標准化、准確性、完整性低,利用價值不高的情況,這**降低了數據的價值。

三、大數據的目標效果

通過大數據的引入和部署,可以達到如下效果:

1)數據整合

·統一數據模型:承載企業數據模型,促進企業各域數據邏輯模型的統一;

·統一數據標准:統一建立標準的數據編碼目錄,實現企業數據的標准化與統一存儲;

·統一數據視圖:實現統一數據視圖,使企業在客戶、產品和資源等視角獲取到一致的信息。

2)數據質量管控

·數據質量校驗:根據規則對所存儲的數據進行一致性、完整性和准確性的校驗,保證數據的一致性、完整性和准確性;

·數據質量管控:通過建立企業數據的質量標准、數據管控的組織、數據管控的流程,對數據質量進行統一管控,以達到數據質量逐步完善。

3)數據共享

·消除網狀介面,建立大數據共享中心,為各業務系統提供共享數據,降低介面復雜度,提高系統間介面效率與質量;

·以實時或准實時的方式將整合或計算好的數據向外系統提供。

4)數據應用

·查詢應用:平台實現條件不固定、不可預見、格式靈活的按需查詢功能;

·固定報表應用:視統計維度和指標固定的分析結果的展示,可根據業務系統的需求,分析產生各種業務報表數據等;

·動態分析應用:按關心的維度和指標對數據進行主題性的分析,動態分析應用中維度和指標不固定。

四、總結

基於分布式技術構建的大數據平台能夠有效降低數據存儲成本,提升數據分析處理效率,並具備海量數據、高並發場景的支撐能力,可大幅縮短數據查詢響應時間,滿足企業各上層應用的數據需求。

8. 大數據分析一般用什麼工具分析_大數據的分析工具主要有哪些

在大數據處理分析過程中常用的六大工具:

1、Hadoop

Hadoop是一個能夠對大量數據進行分布式處理的軟體框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop還是可伸縮的,能夠處理PB級數據。此外,Hadoop依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。

2、HPCC

HPCC,HighPerformanceComputingand(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國實施信息高速公路而上實施的指槐蘆計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆比特網路技術,擴展研究和教育機構及網路連接能力。

3、Storm

Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣明余。

4、ApacheDrill

為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。ApacheDrill實現了Google'sDremel.

據Hadoop廠商MapR公司產品經理TomerShiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。

5、RapidMiner

RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。

6、PentahoBI

PentahoBI平台不同於傳統的BI產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。

1、大數據是一個含義廣泛的術語,是指數據集,如此龐大而復雜的,他們需要專門設計的硬體和軟體工具進行處理。該數據集通常是萬億或EB的大小。

2、這些數據集收集自各種各樣的來源:

a、感測器、氣候信息、公開的信息、如雜志、報紙、文章。

b、大數據產生的其他例子包括購買交易記錄、網路日誌、病歷、事監控、視頻和圖像檔案、及大型電子商務。

c、大數據分析是在研究大量的數據的過程中尋找模式,相關性和其他唯帶有用的信息,可以幫助企業更好地適應變化,並做出更明智的決策。

閱讀全文

與大數據與hadoop相關的資料

熱點內容
企鵝號視頻app叫什麼 瀏覽:157
indd文件用ps打不開 瀏覽:759
磁碟清理後找不到文件 瀏覽:379
會計學科代碼 瀏覽:507
文件夾選項沒有了xp 瀏覽:167
win7更改文件格式 瀏覽:195
對件內文件排序通常按照什麼順序 瀏覽:12
win10怎樣修復系統文件在哪裡 瀏覽:772
frs文件復制服務 瀏覽:305
有圖片文件相冊不顯示 瀏覽:354
一般網站名是什麼樣的 瀏覽:823
win10用戶下有亂碼文件名 瀏覽:973
測風塔數據有哪些 瀏覽:196
哪些財務數據不能作假 瀏覽:349
華為待機接收不到微信 瀏覽:199
sqlite資料庫表設計 瀏覽:627
微信小程序可以關閉嗎 瀏覽:81
數控編程需要掌握什麼 瀏覽:322
找不到離線文件怎麼辦 瀏覽:134
c盤開機文件在哪裡 瀏覽:275

友情鏈接