導航:首頁 > 網路數據 > 大數據實現方式

大數據實現方式

發布時間:2023-07-16 05:11:06

大數據產業頂層規劃出爐,如何實現

大數據產業頂層規劃出爐,如何實現

國務院印發《促進大數據發展行動綱要》,從頂層規劃角度系統部署我國大數據產業發展。

業內分析認為,我國應通過聚焦行業應用、創新產學研機制、加強人才培養、促進成果轉化等方面加快推動大數據及其相關產業發展。

數據成戰略資源

國務院印發的《促進大數據發展行動綱要》指出,數據已成為國家基礎性戰略資源。深化大數據應用已成為穩增長、促改革、調結構、惠民生和推動政府治理能力現代化的內在需要和必然選擇。

大數據產業發展頂層規劃也給出了明確的「創新導向」:計劃在未來5至10年打造精準治理、多方協作的社會治理新模式,建立運行平穩、安全高效的經濟運行新機制,構建以人為本、惠及全民的民生服務新體系,開啟大眾創業、萬眾創新的創新驅動新格局,培育高端智能、新興繁榮的產業發展新生態。

綱要的出爐也被認為是我國繼「互聯網+」行動後,進一步從頂層規劃上明晰大數據、雲計算、移動互聯、人工智慧等前沿技術發展規劃。

用友網路董事長王文京認為,移動互聯網、雲計算、大數據等正成為社會發展、經濟增長的重要驅動,數據資產也成為人類社會繼財富資產、人力資產等之後的「第四種資產」,其重要性不言而喻。

中國科學院院士、北京大學教授鄂維南認為,大數據正改變著實體經濟與產業格局。例如,基於大數據的計算廣告學改變了傳統廣告行業;一些企業正深入研究非結構化數據處理,以改變傳統產業。

聚焦人才培養

各界人士認為,大數據作為新的計算方式,其對產業、實體經濟的影響將極其深遠。然而,以產業需求為導向的創新研發亟待提升,國內「數據人才」培養也需要進一步優化,以適應市場需求。

首先,以產業需求為導向,成果及時落地轉化,企業主體創新力量須得到調動。

「在中國,數據科學發展的很多研究源於市場需求。比如,監控視頻處理就是很重要的應用場景。如何讓電腦對圖像數據進行突破,可以智能判斷,這就是很好的大數據科研突破口。」鄂維南說,盡管目前國內大數據產業發展很快,但也存在著缺乏以市場需求為導向的創新突破等問題。

各方認為,唯有釋放企業的創新活力,才能推動大數據關鍵領域取得突破,促進大數據科研成果轉化為實際成果。

其次,符合市場需求的人才培養應得到重視。

北京大學校長林建華認為,進入數據時代,人們對獲取、存儲、分析、處理數據的能力亟待提升。因此,數據科學人才培養成為急需加強的方面。「可以看到產業內很多大企業用非常大的資源,爭取學術界數據人才,各方面拉人才。可以說,大數據能否做成,關鍵在能不能聚焦人才培養。」

而高校和產業界普遍認為,當前對大數據人才的培養仍相對滯後。北京航空航天大學軟體學院院長孫偉認為,傳統it教育很難將前沿技術和課堂傳授知識結合起來,培養人才很難及時與產業接軌。高校創新人才培養應更加面向市場需求、技術前沿。

以新模式助大數據產業突破

分析認為,國內產業界對數據科學的前沿探索已經加速推進,部分高校也開始了「數據科學家」的培養。在此背景下,我國應進一步打通壁壘,以新模式探索產學研用結合,培育數據人才、助推以市場為導向的數據科學研究突破,促進產業加速發展。

調查發現,以北京中關村為例,大數據已經在商業、金融、交通、醫療、教育等行業示範應用,100多家大數據創新企業從不同領域深植數據資源。

同時,北京航空航天大學、浙江大學等高校與阿里雲、慧科教育達成合作,計劃3年內培養和認證5萬名雲計算和數據科學工作者。這些為數據人才培養提供產業與教育基礎。

模式的探索已現雛形。北京中關村管委會、海淀區政府、北京大學和北京工業大學等四方啟動「北京大數據研究院」,啟動建立大數據高精尖創新中心,推動人才培養和科研突破;並成立股份制技術成果轉化中心,圍繞熱點領域產業需求,推動關鍵共性技術研發、行業大數據分析、成果轉化等。

鄂維南透露,研究院將主要聚焦包括交通大數據、金融大數據、移動互聯網大數據、醫療大數據等方面,整合分析資源,支撐決策與產業發展。計劃一到兩年內,研究院將建立數據金融、醫療健康、交通數據、智慧城市、能源環境和氣象等分中心,涉及數據與生物、化學、天體、神經科學等學科的交叉研究。

各界認為,這種靈活的產學研結合機制將成為推動大數據快速發展的有效手段。

王文京說,創新機制將有助於創新人才及時對接市場需求,讓大數據切實影響改變產業現狀。

以上是小編為大家分享的關於大數據產業頂層規劃出爐,如何實現的相關內容,更多信息可以關注環球青藤分享更多干貨

❷ 大數據模型建模方法

以下是常見的大數據模型建模方法:

❸ 大數據可以通過哪些方式為企業創造價值

大數據肯定是可以為企業帶來和創造價值的!

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

具體方式我認為可以從三方面來講:

通過對基礎數據的分析及理解,有助於企業指導產品的運營、完善產品的功能、改善用戶的體驗,發現運營鄭局中的問題,確定運營的策略及方向,為產品換代升級或者企業轉型升級提供戰略決策的依據。

基於個性化的精準服廳叢大務,是最常見的應用領域,比如:營銷服務,廣告服務,徵信服務,反欺詐服務等。

通過對已有的數據進行包裝,提供數據服務,從而實現數據的價值。比如提供有償的扮豎開放數據平台服務、精準營銷服務、查詢服務、反欺詐服務等等。

企業能運用好大數據的紅利,必然會帶來不可估量的價值!

❹ 大數據解決方案有哪幾種類型

一、Hadoop。Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。

二、HPCC。HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。

三、Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。 Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來,其它知名的應用企業包括Groupon、淘寶、支付寶、阿里巴巴、樂元素、Admaster等等。

四、Apache Drill。為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為“Drill”的開源項目。該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。

五、RapidMiner。RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。

❺ 大數據怎麼實現的

搭建大數據分析平台的工作是循序漸進的,不同公司要根據自身所處階段選擇合適的平台形態,沒有必要過分追求平台的分析深度和服務屬性,關鍵是能解決當下的問題。大數據分析平台是對大數據時代的數據分析產品(或稱作模塊)的泛稱,諸如業務報表、OLAP應用、BI工具等都屬於大數據分析平台的范疇。與用戶行為分析平台相比,其分析維度更集中在核心業務數據,特別是對於一些非純線上業務的領域,例如線上電商、線下零售、物流、金融等行業。而用戶行為分析平台會更集中分析與用戶及用戶行為相關的數據。企業目前實現大數據分析平台的方法主要有三種:(1)采購第三方相關數據產品例如Tableau、Growing IO、神策、中琛魔方等。此類產品能幫助企業迅速搭建數據分析環境,不少第三方廠商還會提供專業的技術支持團隊。但選擇此方法,在統計數據的廣度、深度和准確性上可能都有所局限。例如某些主打無埋點技術的產品,只能統計到頁面上的一些通用數據。隨著企業數據化運營程度的加深,這類產品可能會力不從心。該方案適合缺少研發資源、數據運營初中期的企業。一般一些創業公司、小微企業可能會選擇此方案。(2)利用開源產品搭建大數據分析平台對於有一定開發能力的團隊,可以採用該方式快速且低成本地搭建起可用的大數據分析平台。該方案的關鍵是對開源產品的選擇,選擇正確的框架,在後續的擴展過程中會逐步體現出優勢。而如果需要根據業務做一些自定義的開發,最後還是繞不過對源碼的修改。(3)完全自建大數據分析平台對於中大型公司,在具備足夠研發實力的情況下,通常還是會自己開發相關的數據產品。自建平台的優勢是不言而喻的,企業可以完全根據自身業務需要定製開發,能夠對業務需求進行最大化的滿足。對於平台型業務,開發此類產品也可以進行對外的商業化,為平台上的B端客戶服務。例如淘寶官方推出的生意參謀就是這樣一款成熟的商用數據分析產品,且與淘寶業務和平台優勢有非常強的結合。在搭建大數據分析平台之前,要先明確業務需求場景以及用戶的需求,通過大數據分析平台,想要得到哪些有價值的信息,需要接入的數據有哪些,明確基於場景業務需求的大數據平台要具備的基本的功能,來決定平台搭建過程中使用的大數據處理工具和框架。

❻ 大數據關鍵技術有哪些

大數據關鍵技術涵蓋數據存儲、處理、應用等多方面的技術,根據大數據的處理過程,可將其分為大數據採集、大數據預處理、大數據存儲及管理、大數據處理、大數據分析及挖掘、大數據展示等。

1、大數據採集技術

大數據採集技術是指通過 RFID 數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得各種類型的結構化、半結構化及非結構化的海量數據。

因為數據源多種多樣,數據量大,產生速度快,所以大數據採集技術也面臨著許多技術挑戰,必須保證數據採集的可靠性和高效性,還要避免重復數據。

2、大數據預處理技術

大數據預處理技術主要是指完成對已接收數據的辨析、抽取、清洗、填補、平滑、合並、規格化及檢查一致性等操作。

因獲取的數據可能具有多種結構和類型,數據抽取的主要目的是將這些復雜的數據轉化為單一的或者便於處理的結構,以達到快速分析處理的目的。

3、大數據存儲及管理技術

大數據存儲及管理的主要目的是用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。

4、大數據處理

大數據的應用類型很多,主要的處理模式可以分為流處理模式和批處理模式兩種。批處理是先存儲後處理,而流處理則是直接處理。

(6)大數據實現方式擴展閱讀:

大數據無處不在,大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、體能和娛樂等在內的社會各行各業都已經融入了大數據的印跡。

1、製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業,利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

5、電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

❼ 大數據選址是如何實現的

大數據選址為零售業創業者獲得了深刻、全面的洞察能力,並提供了前所未有的空間與潛力。
何為大數據選址?
大數據時代下的精準選址是指通過大數據進行整合分析,獲取用戶的喜好和行為需求,對商圈消費群體的購買力進行分析,找出適合店面的絕佳位置。
大數據精準選址的核心可以概括為幾大關鍵詞:用戶、需求、峰值以及熱力分布。
以往的店面選址方式,是先根據當地的城市,對城市商圈、人口流動量、周圍的小區、以及實際住戶量等等, 做出詳細的對比和考察。然後再通過自身的經濟情況,選出一個自己能夠承擔得了,且地段好的店面位置。
而大數據選址,則為店面選址制定了更加詳細周密的計劃,將選址細化為兩個流程。
第一步先鎖定商圈,選址系統內有著全國熱力值分布的整合數據,系統根據加盟商提供的區域,根據外賣峰值的數據進行按比例分成,通過區域內外賣的需求量鎖定商圈。
根據外賣峰值鎖定商圈是有一定的科學依據,據研究發現,人們在追求高效率的生活中,存在一個就近原則。在食客選擇外賣的時候,無論是在配送時間或者是距離,都是優先考慮到的問題。
外賣峰值高的商圈有著大量的消費群體,也就蘊含著巨大的商機,而用外賣反襯堂食,在日常營業中有效的引流,更能刺激消費。
在鎖定好商圈以後,第二步就是確定店面的位置了,營運師傅會親自上門進行考察,對鎖定的商圈進行分析。
根據不同項目所針對的消費群體以及加盟商自身的經濟狀況,選出一個客流量旺盛且地段好的店面位置。
開啟餐飲作為最早一批大數據選址系統的嘗試者,在8月份正式全面上線,上線一月之內就受到其合作商的一致好評,幫助了加盟商快速精確地確定店面,縮短了開業前的准備時間。實踐證明,大數據選址系統確確實實存在著優越性!
大數據選址系統之所以受到合作商的關注,是因為他們深知選址的重要性。對開店創業者來說,選址關系著店鋪的發展前途,關系著店鋪經營目標的實現,關系著市場的火爆程度,還關系著顧客需求的滿足。可以說,做好了選址,開店創業就成功了一半。
阿拉丁智店「慧選址」在國內獨家實現了店鋪選址相關所有權威數據源的集成和整合。
數據方面,基於三大運營商15億去標識化的手機信令數據、BAT網民上網和搜索特徵數據、全國銀行卡消費數據,以及全國寫字樓數據、小區數據和全量POI數據,阿拉丁智店「慧選址」實現了任選地理區域全量用戶全時段、全方位覆蓋。通過3700個用戶標簽,可以精準篩選和鎖定目標客群。目前,我們日處理5480億條上網記錄信息、670億位置記錄信息,成功識別4200個手機品牌、20萬個互聯網產品、7000餘款APP、10.5萬個終端型號和4億個URL。
選址演算法和模型方面,我們通過核密度模型、空間插值模型、ODPA模型、力導向布局模型、商圈分析模型、價值因素模型等經典演算法和模型的開發,為零售企業的選址提供了智能化保障。
目前,阿拉丁智店已經為麥當勞、星巴克、工商銀行、武漢某知名連鎖超市、中國福彩、殘聯等上千家政府機構和企業提供了智能選址服務,取得了明顯收益和效果,受到客戶的高度評價。

❽ 大數據解決方案都有哪些

在信息時代的我們,總會聽到一些新鮮詞,比如大數據,物聯網,人工智慧等等。而現在,物聯網、大數據、人工智慧已經走進了我們的生活,對於很多人看到的大數據的前景從而走進了這一行業,對於大數據的分析和解決是很多人不太了解的,那麼大數據的解決方案都有哪些呢?一般來說,大數據的解決方案就有Apache Drill、Pentaho BI、Hadoop、RapidMiner、Storm、HPCC等等。下面就給大家逐個講解一下這些解決方案的情況。

第一要說的就是Apache Drill。這個方案的產生就是為了幫助企業用戶尋找更有效、加快Hadoop數據查詢的方法。這個項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。

第二要說的就是Pentaho BI。Pentaho BI 平台和傳統的BI 產品不同,它是一個以數據流程為中心的,面向解決方案的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,這樣一來就方便了商務智能應用的開發。Pentaho BI的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項復雜的、完整的商務智能解決方案。

然後要說的就是Hadoop。Hadoop 是一個能夠對海量數據進行分布式處理的軟體框架。不過Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。另外,Hadoop 依賴於社區伺服器,所以Hadoop的成本比較低,任何人都可以使用。

接著要說的是RapidMiner。RapidMiner是世界領先的數據挖掘解決方案,有著先進的技術。RapidMiner數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。

Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。 Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來,其它知名的應用企業包括Groupon、淘寶、支付寶、阿里巴巴、Admaster等等。

最後要說的就是HPCC。什麼是HPPC呢?HPCC是High Performance Computing and Communications(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆比特網路技術,擴展研究和教育機構及網路連接能力。

通過上述的內容,想必大家已經知道了大數據的解決方案了吧,目前世界范圍內擁有的大數據解決方案種類較多,只有開發並使用好最先進的,最完備的大數據解決方案,一個公司,甚至一個國家才能走在世界前列。

❾ 大數據技術常用的數據處理方式有哪些

大數據技術常用的數據處理方式,有傳統的ETL工具利用多線程處理文件的方式;有寫MapRece,有利用Hive結合其自定義函數,也可以利用Spark進行數據清洗等,每種方式都有各自的使用場景。

在實際的工作中,需要根據不同的特定場景來選擇數據處理方式。

1、傳統的ETL方式

傳統的ETL工具比如Kettle、Talend、Informatica等,可視化操作,上手比較快,但是隨著數據量上升容易導致性能出問題,可優化的空間不大。

2、Maprece

寫Maprece進行數據處理,需要利用java、python等語言進行開發調試,沒有可視化操作界面那麼方便,在性能優化方面,常見的有在做小表跟大表關聯的時候,可以先把小表放到緩存中(通過調用Maprece的api),另外可以通過重寫Combine跟Partition的介面實現,壓縮從Map到rece中間數據處理量達到提高數據處理性能。

3、Hive

在沒有出現Spark之前,Hive可謂獨占鰲頭,涉及離線數據的處理基本都是基於Hive來做的,Hive採用sql的方式底層基於Hadoop的Maprece計算框架進行數據處理,在性能優化上也不錯。

4、Spark

Spark基於內存計算的准Maprece,在離線數據處理中,一般使用Spark sql進行數據清洗,目標文件一般是放在hdf或者nfs上,在書寫sql的時候,盡量少用distinct,group by recebykey 等之類的運算元,要防止數據傾斜。

閱讀全文

與大數據實現方式相關的資料

熱點內容
wiiu文件夾游戲怎麼轉格式 瀏覽:350
iphone5文稿與數據怎麼刪除 瀏覽:145
java匿名函數參數 瀏覽:215
excel怎麼將csv文件內容分列 瀏覽:550
文件路徑不轉義字元 瀏覽:285
怎樣使用手機鎖屏密碼 瀏覽:802
如何將pdf文件規格縮小 瀏覽:421
魔獸世界70治療升級 瀏覽:103
linuxarm線程數量 瀏覽:880
資料庫的重要性是什麼 瀏覽:881
toolboxjs安裝 瀏覽:85
安卓3g上網卡代碼 瀏覽:306
vuejsjs數據綁定 瀏覽:323
企鵝號視頻app叫什麼 瀏覽:157
indd文件用ps打不開 瀏覽:759
磁碟清理後找不到文件 瀏覽:379
會計學科代碼 瀏覽:507
文件夾選項沒有了xp 瀏覽:167
win7更改文件格式 瀏覽:195
對件內文件排序通常按照什麼順序 瀏覽:12

友情鏈接