導航:首頁 > 網路數據 > 應屆生大數據常問演算法

應屆生大數據常問演算法

發布時間:2023-07-15 08:03:17

大數據常用的各種演算法

我們經常談到的所謂的​​ 數據挖掘 是通過大量的數據集進行排序,自動化識別趨勢和模式並且建立相關性的過程。那現在市面的數據公司都是通過各種各樣的途徑來收集海量的信息,這些信息來自於網站、公司應用、社交媒體、移動設備和不斷增長的物聯網。

比如我們現在每天都在使用的搜索引擎。在自然語言處理領域,有一種非常流行的演算法模型,叫做詞袋模型,即把一段文字看成一袋水果,這個模型就是要算出這袋水果里,有幾個蘋果、幾個香蕉和幾個梨。搜索引擎會把這些數字記下來,如果你想要蘋果,它就會把有蘋果的這些袋子給你。

當我們在網上買東西或是看電影時,網站會推薦一些可能符合我們偏好的商品或是電影,這個推薦有時候還挺准。事實上,這背後的演算法,是在數你喜歡的電影和其他人喜歡的電影有多少個是一樣的,如果你們同時喜歡的電影超過一定個數,就把其他人喜歡、但你還沒看過的電影推薦給你。 搜索引擎和推薦系統 在實際生產環境中還要做很多額外的工作,但是從本質上來說,它們都是在數數。

當數據量比較小的時候,可以通過人工查閱數據。而到了大數據時代,幾百TB甚至上PB的數據在分析師或者老闆的報告中,就只是幾個數字結論而已。 在數數的過程中,數據中存在的信息也隨之被丟棄,留下的那幾個數字所能代表的信息價值,不抵其真實價值之萬一。 過去十年,許多公司花了大價錢,用上了物聯網和雲計算,收集了大量的數據,但是到頭來卻發現得到的收益並沒有想像中那麼多。

所以說我們現在正處於「 數字化一切 」的時代。人們的所有行為,都將以某種數字化手段轉換成數據並保存下來。每到新年,各大網站、App就會給用戶推送上一年的回顧報告,比如支付寶會告訴用戶在過去一年裡花了多少錢、在淘寶上買了多少東西、去什麼地方吃過飯、花費金額超過了百分之多少的小夥伴;航旅縱橫會告訴用戶去年做了多少次飛機、總飛行里程是多少、去的最多的城市是哪裡;同樣的,最後讓用戶知道他的行程超過了多少小夥伴。 這些報告看起來非常酷炫,又冠以「大數據」之名,讓用戶以為是多麼了不起的技術。

實際上,企業對於數據的使用和分析,並不比我們每年收到的年度報告更復雜。已經有30多年歷史的商業智能,看起來非常酷炫,其本質依然是數數,並把數出來的結果畫成圖給管理者看。只是在不同的行業、場景下,同樣的數字和圖表會有不同的名字。即使是最近幾年炙手可熱的大數據處理技術,也不過是可以數更多的數,並且數的更快一些而已。

在大數據處理過程中會用到那些演算法呢?

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的較佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是較佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——較佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數較大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的較大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-較大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-較大演算法在概率模型中尋找可能性較大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其較大可能估計值;第二步是較大化,較大化在第一步上求得的較大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、較大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到較大的流。它優勢被定義為找到這樣一個流的值。較大流問題可以看作更復雜的網路流問題的特定情況。較大流與網路中的界面有關,這就是較大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的較大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton's method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。較早的適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Schönhage-Strassen演算法——在數學中,Schönhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待較大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

⑵ 大數據演算法有哪些

有很多事應該是直接進行一些用數據證明就可以進行計算,所以這個安排了部分少的。

⑶ 學習大數據需要掌握哪些基礎

學習大數據需要掌握以下基礎:
數據結構和演算法:學習大數據需要具備扎實的數據結構和演算法基礎,包括數組、鏈表、棧、隊列、樹、圖等數據結構,以及排序、查找、圖演算法等常用演算法。
資料庫和圓搏SQL:熟悉常用資料庫和SQL語言的使用,包括MySQL、Oracle、SQL Server等關系型資料庫,以及NoSQL資料庫(如MongoDB、Redis)的使用。
編程語言:需要掌握至少一門編程語言,如java、Python、C++等。特別是Python語言在大數據領域的應用越來越廣泛。
Linux操作系統和Shell腳本:大數據處理通常在分布式環境下進行,需要熟悉Linux操作系統的使用和Shell腳本的編寫,以便於在Linux環境下進行數據處理和分析。
統計學和機器學習:大數據分析離不開統計學和機器學習的基礎,需要掌握相關的理橘絕祥論知識和應用技能。
大數據技術和工具:掌握常用的大數據技術和工具,如Hadoop、Spark、Hive、Pig、Kafka、Flink等,了解它們的原理和使用方法。
數據可視化和報表分析:掌握數據可視化和報表分析的基礎知識和技能,能夠通過圖表和報表展示數據分析的結果,使得分析結果更加直觀、清晰。
總之,學習大數據需要掌握多方宏滾面的基礎知識和技能,這些基礎將為大數據的處理和分析提供堅實的基礎,並為日後的學習和發展奠定基礎。

⑷ 大數據挖掘常用的演算法有哪些

1、預測建模:將已有數據和模型用於對未知變數的語言。

分類,用於預測離散的目標變數。

回歸,用於預測連續的目標變數。

2、聚類分析:發現緊密相關的觀測值組群,使得與屬於不同簇的觀測值相比,屬於同一簇的觀測值相互之間盡可能類似。

3、關聯分析(又稱關系模式):反映一個事物與其他事物之間的相互依存性和關聯性。用來發現描述數據中強關聯特徵的模式。

4、異常檢測:識別其特徵顯著不同於其他數據的觀測值。

有時也把數據挖掘分為:分類,回歸,聚類,關聯分析。

⑸ 大數據分析方法,求助!

現在大數據分析越來越受歡迎.首先,由於各種網路平台收集了越來越多的數據,如何鄭伏整理這些數據,生成有用的東西?這就是大數據分析的目的.以下是一些常見的大數據喊缺攜分析方法.

大數據挖掘:定義目標,分析問題.在開始大數據處理之前,必須確定處理數據的目標,然後開始數據挖掘.

例如,統計近三年畢業生的各種情況.應該收集有關畢業生的信息.大數據挖掘:建立模型,收集數據,通過網路爬蟲類,或者通過往年的扮殲數據資料,建立相應的數據挖掘模型,收集數據,獲得大量的原始數據.

大數據挖掘:導入並准備數據.通過工具和腳本,將原始轉換為MySQL、數據文本等可處理的數據.大數據分析演算法:機器學慣用機器學習的方法處理收集的數據.根據具體問題來決定.

這里有很多方法.常見的方法是人工神經網路、隨機森林樹、LMS演算法.

大數據分析目標:語義引擎.在處理大數據的時候,往往會花費大量的時間和費用,所以每次生成的報告後,都應該支持語音發動機功能,這樣才能讓數據自己說話,人們從中提交數據就可以了.

大數據分析目標:產生可視化報告,便於人工分析.通過軟體處理大量數據後.然後可視化結果,便於人類分析.常見的軟體有splunk等.

大數據分析目標:預測性.通過大數據分析演算法,應該對數據進行一定的推斷,這樣的數據更具指導性.

⑹ 大數據常見問題有哪些

為什麼大數據工程師被稱為企業最需要的人才?


大數據是能為企業創造價值的源動力,大數據的應用能夠為企業提升訂單量、交易額、合理規劃商業布局以及對用戶進行精準營銷、挖掘深層次用戶,大數據工程師是最能為企業賺錢的人,最能幫助高層指定正確戰略決策的人群,因此自然會收到企業的重視。


為什麼大數據工程師一入職就能成為IT金領?


最主要的原因是大數據工程師可以為企業創造價值,而不是消耗企業的成本,再有就是大數據本身對人才技術層面和行業層面都有較高的要求,普通開發人員難於勝任,因此會造成入職即成為金領的現狀。


為什麼大數據也要學JAVA?


整個大數據體系是構建在java平台之上的,java作為大數據平台的基礎架構支持,直接決定了大數據架構的穩定性、高效性、擴展性等等,因此只有掌握底層的java核心技術,才能夠保證上層建築的穩定運行。


為什麼大數據也要學Python?


在一些數據分析領域,python提供了比較多的演算法庫實現,並且python由於其簡單性,會加快開發速度,對很多常規的任務都能夠使用python來完成,而且對於非計算機人員,python是比較容易接受和上手的語言,因此python在開發中也是較常見的語言。


關於大數據常見問題有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

閱讀全文

與應屆生大數據常問演算法相關的資料

熱點內容
wiiu文件夾游戲怎麼轉格式 瀏覽:350
iphone5文稿與數據怎麼刪除 瀏覽:145
java匿名函數參數 瀏覽:215
excel怎麼將csv文件內容分列 瀏覽:550
文件路徑不轉義字元 瀏覽:285
怎樣使用手機鎖屏密碼 瀏覽:802
如何將pdf文件規格縮小 瀏覽:421
魔獸世界70治療升級 瀏覽:103
linuxarm線程數量 瀏覽:880
資料庫的重要性是什麼 瀏覽:881
toolboxjs安裝 瀏覽:85
安卓3g上網卡代碼 瀏覽:306
vuejsjs數據綁定 瀏覽:323
企鵝號視頻app叫什麼 瀏覽:157
indd文件用ps打不開 瀏覽:759
磁碟清理後找不到文件 瀏覽:379
會計學科代碼 瀏覽:507
文件夾選項沒有了xp 瀏覽:167
win7更改文件格式 瀏覽:195
對件內文件排序通常按照什麼順序 瀏覽:12

友情鏈接