導航:首頁 > 網路數據 > 大數據在安全問題

大數據在安全問題

發布時間:2023-07-15 06:58:47

大數據應用需注意哪些安全問題

1、法規流程方面


跟著雲核算、大數據技能的逐漸運用,數據自身的形狀、數據運用的方法都在不斷添加和變化,且這種發展趨勢會變得越來越快。那麼企業在這種大趨勢下如何確保在法規流程上的系統性、時代感是需求優先考慮的要素。


2、系統建造方面


數據安全自身不會產生價值,所以很多時分在系統建造初期為了快速構建,往往把安全相關的才能優先順序放低,乃至在很長一段時間缺失。數據在系統中裸奔,一旦出現數據走漏將會引起不可預知的損失。


另一方面由於在系統建造初期對安全才能的忽視,導致後期添加安全才能會變得更加困難,乃至需求調整系統架構,無形之中添加了企業的投入本錢。


3、管理者認知方面


跟著近來大大小小的數據安全事情頻頻發生,給企業和個人帶來了嚴重後果,企業管理層在對保證數據安全上基本高度一致。


但只做到意識形狀上的認知是不夠的,乃至對企業的安全建造起到反作用。管理者如果只重視數據自身的安全,就會導致安全系統的建造片面,終無法達到對數據進行安全管控的作用。殊不知要保證數據安全不只是在數據層面。


關於大數據應用需注意哪些安全問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

② 大數據安全問題有哪些類型

【導讀】大數據運用有助於公司改善事務運營並猜測職業趨勢。然而,這項技能可能會被歹意利用,如果沒有適當的數據安全策略,黑客就有可能對用戶隱私造成重大要挾。那麼,大數據安全問題有哪些類型呢?

1、散布式體系

大數據解決方案將數據和操作散布在許多體繫上,以便更快地進行處理和分析。這種散布式體系能夠平衡負載,並避免發生單點故障。然而,這樣的體系很簡單遭到安全要挾,黑客只需攻擊一個點就能夠滲透到整個網路。因而,網路犯罪分子能夠很簡單地獲取敏感數據並損壞連網體系。

2、數據拜訪

大數據體系需求拜訪控制來約束對敏感數據的拜訪,否則,任何用戶都能夠拜訪機密數據,有些用戶可能將其用於歹意目的。此外,網路犯罪分子能夠侵入與大數據體系相連的體系,以盜取敏感數據。因而,運用大數據的公司需求查看並驗證每個用戶的身份。

3、不正確的數據

網路犯罪分子能夠經過操縱存儲的數據來影響大數據體系的精確性。為此,網路罪犯分子能夠創立虛偽數據,並將這些數據提供給大數據體系,例如,醫療機構能夠運用大數據體系來研究患者的病歷,而黑客能夠修正此數據以生成不正確的診斷成果。這種有缺陷的成果不簡單被發現,公司可能會持續運用不精確的數據。此類網路攻擊會嚴重影響數據完整性和大數據體系的性能。

4、侵略隱私權

大數據體系通常包括機密數據,這是許多人十分關懷的問題。這樣的大數據隱私要挾現已被全球的專家們評論過了。此外,網路犯罪分子經常攻擊大數據體系,以損壞敏感數據。

以上就是小編今天給大家整理分享關於「大數據安全問題有哪些類型?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。

③ 大數據面臨哪些安全與隱私問題

(一)大數據遭受異常流量攻擊
大數據所存儲的數據非常巨大,往往採用分布式的方式進行存儲,而正是由於這種存儲方式,存儲的路徑視圖相對清晰,而數據量過大,導致數據保護,相對簡單,黑客較為輕易利用相關漏洞,實施不法操作,造成安全問題。由於大數據環境下終端用戶非常多,且受眾類型較多,對客戶身份的認證環節需要耗費大量處理能力。由於APT攻擊具有很強的針對性,且攻擊時間長,一旦攻擊成功,大數據分析平台輸出的最終數據均會被獲取,容易造成的較大的信息安全隱患。
(二)大數據信息泄露風險
大數據平台的信息泄露風險在對大數據進行數據採集和信息挖掘的時候,要注重用戶隱私數據的安全問題,在不泄露用戶隱私數據的前提下進行數據挖掘。需要考慮的是在分布計算的信息傳輸和數據交換時保證各個存儲點內的用戶隱私數據不被非法泄露和使用是當前大數據背景下信息安全的主要問題。同時,當前的大數據數據量並不是固定的,而是在應用過程中動態增加的,但是,傳統的數據隱私保護技術大多是針對靜態數據的,所以,如何有效地應對大數據動態數據屬性和表現形式的數據隱私保護也是要注重的安全問題。最後,大數據的數據遠比傳統數據復雜,現有的敏感數據的隱私保護是否能夠滿足大數據復雜的數據信息也是應該考慮的安全問題。
(三)大數據傳輸過程中的安全隱患
數據生命周期安全問題。伴隨著大數據傳輸技術和應用的快速發展,在大數據傳輸生命周期的各個階段、各個環節,越來越多的安全隱患逐漸暴露出來。比如,大數據傳輸環節,除了存在泄漏、篡改等風險外,還可能被數據流攻擊者利用,數據在傳播中可能出現逐步失真等。又如,大數據傳輸處理環節,除數據非授權使用和被破壞的風險外,由於大數據傳輸的異構、多源、關聯等特點,即使多個數據集各自脫敏處理,數據集仍然存在因關聯分析而造成個人信息泄漏的風險。
基礎設施安全問題。作為大數據傳輸匯集的主要載體和基礎設施,雲計算為大數據傳輸提供了存儲場所、訪問通道、虛擬化的數據處理空間。因此,雲平台中存儲數據的安全問題也成為阻礙大數據傳輸發展的主要因素。
個人隱私安全問題。在現有隱私保護法規不健全、隱私保護技術不完善的條件下,互聯網上的個人隱私泄露失去管控,微信、微博、QQ等社交軟體掌握著用戶的社會關系,監控系統記錄著人們的聊天、上網、出行記錄,網上支付、購物網站記錄著人們的消費行為。但在大數據傳輸時代,人們面臨的威脅不僅限於個人隱私泄露,還在於基於大數據傳輸對人的狀態和行為的預測。近年來,國內多省社保系統個人信息泄露、12306賬號信息泄露等大數據傳輸安全事件表明,大數據傳輸未被妥善處理會對用戶隱私造成極大的侵害。因此,在大數據傳輸環境下,如何管理好數據,在保證數據使用效益的同時保護個人隱私,是大數據傳輸時代面臨的巨大挑戰之一。
(四)大數據的存儲管理風險
大數據的數據類型和數據結構是傳統數據不能比擬的,在大數據的存儲平台上,數據量是非線性甚至是指數級的速度增長的,各種類型和各種結構的數據進行數據存儲,勢必會引發多種應用進程的並發且頻繁無序的運行,極易造成數據存儲錯位和數據管理混亂,為大數據存儲和後期的處理帶來安全隱患。當前的數據存儲管理系統,能否滿足大數據背景下的海量數據的數據存儲需求,還有待考驗。不過,如果數據管理系統沒有相應的安全機制升級,出現問題後則為時已晚。

④ 大數據存在的安全問題有哪些

【導讀】互聯網時代,數據已成為公司的重要資產,許多公司會使用大數據等現代技術來收集和處理數據。大數據的應用,有助於公司改善業務運營並預測行業趨勢。那麼,大數據存在的安全問題有哪些呢?今天就跟隨小編一起來了解下吧!

一、分布式系統

大數據解決方案將數據和操作分布在許多系統中,以實現更快的處理和分析。這種分布式系統可以平衡負載,避免單點故障。但是這樣的系統容易受到安全威脅,黑客只要攻擊一個點就可以滲透整個網路。

二.數據存取

大數據系統需要訪問控制來限制對敏感數據的訪問,否則,任何用戶都可以訪問機密數據,有些用戶可能會出於惡意使用。此外,網路犯罪分子可以入侵與大數據系統相連的系統,竊取敏感數據。因此,使用大數據的公司需要檢查和驗證每個用戶的身份。

三.數據不正確

網路犯罪分子可以通過操縱存儲的數據來影響大數據系統的准確性。因此,網路犯罪分子可以創建虛假數據,並將這些數據提供給大數據系統。比如醫療機構可以利用大數據系統研究患者的病歷,而黑客可以修改這些數據,產生不正確的診斷結果。

四.侵犯隱私

大數據系統通常包含機密數據,這是很多人非常關心的問題。這樣的大數據隱私威脅已經被全世界的專家討論過了。此外,網路犯罪分子經常攻擊大數據系統以破壞敏感數據。這種數據泄露已經成為頭條新聞,導致數百萬人的敏感數據被盜。

五、雲安全性不足

大數據系統收集的數據通常存儲在雲中,這可能是一個潛在的安全威脅。網路犯罪分子破壞了許多知名公司的雲數據。如果存儲的數據沒有加密,並且沒有適當的數據安全性,就會出現這些問題。

以上就是小編今天給大家整理分享關於「大數據存在的安全問題有哪些?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。

⑤ 大數據安全問題 這六點你知道了嗎

【導讀】當涉及到大數據和分析時,列出企業應該遠離的陷阱清單也同樣重要,大多數組織為其成功實施項目工作,都已經制定了一套大數據的最佳做法。那麼大數據安全問題有哪些?我們在進行大數據分析的時候需要注意什麼呢?下面我們就來具體了解一下。

1、需要某些安全審核

在每個系統開發中,幾乎都是需要安全審核的地方,特別是在大數據不安全的地方。但是,考慮到使用大數據已經帶來了廣泛的挑戰,這些安全審核通常被忽略,這些審核只是添加到列表中的另一件事。這種態度與以下事實結合在一起:許多公司仍需要能夠設計和實施此類安全審核的合格人員。

2、使訪問變得困難

使大數據生態系統有效的另一個重要因素是粒度訪問控制。根據等級、許可權可以授予不同人員不同級別的主數據訪問許可權。名義上,訪問控制使大數據更加安全。但是,隨著組織使用大量數據,增加復雜的控制面板可能變得更加微妙,並可能為更多潛在漏洞打開門戶。

3、分散的框架

使用大數據的公司可能需要在不同系統之間分布數據分析。例如,Hadoop是一種開放源代碼軟體,旨在在大數據生態系統中進行靈活和分散的計算。但是,該軟體初根本沒有安全性,因此在分散的框架中有效的安全性仍然是要實現的挑戰。

4、實時合規

實時大數據分析在公司的競爭中越來越受歡迎。但是,實時實施這種工具更加復雜,並且還會產生大量的數據。

此類工具的開發方式應使它們在現實中不存在威脅時能夠規避對違規行為的錯誤警告。因此,發現此類錯誤警告可能很耗時。他們分散了白帽黑客的注意力,使其免受真正的故障和攻擊並浪費資源。

5、數據來源

找到我們的數據來源確實有助於確定違規的來源。你可以使用元數據來跟蹤數據流。無論如何,即使對於大型公司,元數據管理也是一個自我戰略問題。如果沒有正確的框架,實時跟蹤此類非結構化數據將是一個挑戰。盡管這是一個持續存在的問題,但它並不是大數據問題。

6、使數據易受攻擊

如今,所有數據都是數字化的,並且數量巨大,黑客始終可以在惡意內部人員的幫助下找到進入入侵的方式。如果他們以某種方式可以訪問你的關鍵數據,他們可以根據自己的目的進行修改,甚至刪除其中的一些數據。這就是為什麼完全依賴物聯網、大數據和實時數據分析的公司限制訪問並採取某些步驟來檢測假數據形成的原因。這是其數據保護協議的關鍵部分。

關於大數據安全問題,就介紹到這里了,如果您還想了解更多關於大數據工程師的技巧及素材等內容,可以通過其他文章進行學習,或者找專業的老師進行咨詢了解,掌握自己的學習方向。

⑥ 大數據時代,如何保證網路安全

從兩態則個方面說下這個安全問題:

1.數據泄露,這是最常見的安全問題。作為普通個人,需要注意如下幾點:

(1)不要隨意瀏覽賭博色情網站、注冊賬號、安裝軟體、甚至使用破解軟體,其中很可能包含木馬或者釣魚程序,一定要清楚自己的操作會有什麼後果,不清楚的情況下可以問問身邊的朋友。

(2)保護好自己的密碼,因為基本上每個網站或應用都需要賬號密碼,要記住很多密碼確實很難,所帆中棚以很多人就記錄在電腦中,沒有任何保護,這也是比較危險的。簡單點的防範措施就培坦是使用幾個能記得住的密碼,切記不要使用生日,過於簡單的數字,很容易被猜出來。另外注意不要在來歷不明的網站上注冊賬號,以免密碼被偷窺。

(3)現在使用指紋、刷臉的應用很多,一定不要在不知名的應用上提交這些信息,免得身份被盜用。平時在社交媒體上分享時也要注意,不要暴露太多個人信息,比如家庭情況、孩子學校情況等,以免被別有用心的人利用。前段時間還有新聞報道從照片中成功提取指紋信息的案例,所以一定要注意盡量少分享隱私信息。

2.數據丟失或損壞,這也是一件很讓人抓狂的事。電腦硬碟壞了,手機進水了,網站倒閉了,都有可能導致數據找不回來的情況發生。對於企業一般會把自己的核心數據存儲多份,多個機房備份,甚至多個城市備份,很少發生數據找不回來的情況。對於個人,建議使用知名的雲備份服務,將自己的數據在雲端存儲一份,當然也要注意設置好訪問許可權,避免數據泄露。

安全沒有百分百,只能做到盡量安全。不僅是個人需要注意保護自己的信息,企業也有責任保護好自己用戶的信息,政府也有責任監督企業做好信息安全。

⑦ 大數據安全面臨哪些風險及如何防護

現如今大數據已經逐漸改變了我們的生活方式,成為必不可少的存在,在我們享野首受大數據給我們帶來的便利時,安全性無論對於企業還是個人都是必須要解決的重大課題。

總結大數據面臨的三大風險問題如下

1.個人隱私問題凸顯

例如大數據中的精準營銷定位功能,通常是依賴於高度採集個人信息,通過多種關聯技術分析來實現信息推廣,精準營銷。企業會掌握用戶大量的數據,不排除隱私部分的敏感數據,一旦伺服器遭到不法分子攻擊導致數據泄露,很可能危及用戶的隱私、財產甚至是人身安全。

2.數據准確與權威性

大數據通過各種渠道獲取大量數據進行計算分析,企業通常直接通過分析結果進行支持決策,有時候企業只看結果,卻忽略了源頭數據的准確性,不準確的數據直接影響大數據分析的結果和企業的利益,錯誤的指導會對企業帶來一定的風險與損失。

3.基礎設施維護壓力

數據量越大,對基礎設施的性能要求就越高,同樣對於網路的安全、恢復、防範依賴性就越強,一定程度上對企業設施安全的維護造成了壓力,基礎設施建設不完善、維護不到位,抱有沒出問題就得過且過的態度,時刻面臨被攻擊的危險可能。

針對上述問題的防護措施如下

1.對用戶早脊嘩而言

雖然在互聯網時代下要完全保護自己的隱私是比較困難的,但也要加強自身信息的防範意識。注冊賬號時,遵循最少原則,不要隨意泄露敏感信息,降陸行低隱私信息被泄露的危險;

2.對企業而言

加強數據安全管理,實現數據的治理與清洗,從源頭保證數據的一致性、准確性。首先升級基礎伺服器環境,建立多重防護、多級互聯體系結構,確保大數據處理環境可信度。其次全方位實時監控、審計、防護,防止敏感數據泄露、丟失,確保數據風險可控,並不斷通過體系化的大數據安全評估,形成數據安全治理的閉環管理;

3.對政策而言

應該加強對數據信息的保護,對數據的使用進行一定的監管與限制,對非法盜用、濫用數據信息者嚴懲,之後加強對技術安全研發使用的推廣與實施,保證數據安全,加強對數據治理的力度。

大數據時代的到來,可以為我們的生活帶來切實的利益,行業的數據規范正在建立並逐步趨於完善,對於我們來說,既不要因為安全風險問題而排斥大數據,也不要疏忽於對個人/企業信息的保護,合理看待和利用大數據,讓其發揮真正的價值。

⑧ 大數據安全層面的風險主要包括

大數據在應用和存儲中存在著一系列安全風險,包括以下幾個層面:
數據泄露風險:大數據的存儲和傳輸,容易面臨數據泄露的風險。這些數據可能是敏感性數據,如個人身份信息、財務信息、醫療記錄等。
數據完整性風險:大數據存儲和傳輸中,數據可能會遭受損壞、篡改或丟失,因此需要採取保護措施,保證大數據的完整性。
許可權管理風險:「大數據時代」涉及眾多數據源,管理人員要對各類數據源的許可權進行仔細的分析和考慮,設置合適的許可權,避免數據泄漏、篡改等風險。
命令注入風險:黑客利用安全漏洞,通過構造特殊的輸入進行攻擊,從而在系統內執行惡意命令,造成系統癱瘓、用戶數據丟失等風險。
惡意軟體攻擊:惡意軟體是指那些被創建來入侵計算機、網路或移動設備的軟體,通過惡意指令來獲取敏感數據,竊取隱私信息,或者破壞系統的完整性。
供應鏈風險:大數據往往依賴於雲服務、第三方應用等,這些供應商存在安全問題時,會直接影響大數據的安全。
數據處理風險:大數據可能存在各種數據處理問題,如特徵選擇錯誤、處沒爛理數據集不準確、應用演算法核閉缺陷等,從而導致大數據的隱私和安全問題。
這些安全風險需要引起我們的注意,企業或個人在使用、處理與存儲大數據時,應制定安全策略和措施,加強數據管理與安枯氏漏全運維,從而有效地緩解數據的安全風險。

閱讀全文

與大數據在安全問題相關的資料

熱點內容
java輸出流緩沖區內容清除 瀏覽:823
廣告軟體下載的app在哪裡 瀏覽:242
聯通和電信的用戶名和密碼 瀏覽:630
如何裝linux雙系統 瀏覽:816
wiiu文件夾游戲怎麼轉格式 瀏覽:350
iphone5文稿與數據怎麼刪除 瀏覽:145
java匿名函數參數 瀏覽:215
excel怎麼將csv文件內容分列 瀏覽:550
文件路徑不轉義字元 瀏覽:285
怎樣使用手機鎖屏密碼 瀏覽:802
如何將pdf文件規格縮小 瀏覽:421
魔獸世界70治療升級 瀏覽:103
linuxarm線程數量 瀏覽:880
資料庫的重要性是什麼 瀏覽:881
toolboxjs安裝 瀏覽:85
安卓3g上網卡代碼 瀏覽:306
vuejsjs數據綁定 瀏覽:323
企鵝號視頻app叫什麼 瀏覽:157
indd文件用ps打不開 瀏覽:759
磁碟清理後找不到文件 瀏覽:379

友情鏈接