㈠ 大數據處理的五大關鍵技術及其應用
作者 | 網路大數據
來源 | 產業智能官
數據處理是對紛繁復雜的海量數據價值的提煉,而其中最有價值的地方在於預測性分析,即可以通過數據可視化、統計模式識別、數據描述等數據挖掘形式幫助數據科學家更好的理解數據,根據數據挖掘的結果得出預測性決策。其中主要工作環節包括:
大數據採集 大數據預處理 大數據存儲及管理 大數據分析及挖掘 大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。一、大數據採集技術
數據是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。重點要突破分布式高速高可靠數據爬取或採集、高速數據全映像等大數據收集技術;突破高速數據解析、轉換與裝載等大數據整合技術;設計質量評估模型,開發數據質量技術。
大數據採集一般分為:
大數據智能感知層:主要包括數據感測體系、網路通信體系、感測適配體系、智能識別體系及軟硬體資源接入系統,實現對結構化、半結構化、非結構化的海量數據的智能化識別、定位、跟蹤、接入、傳輸、信號轉換、監控、初步處理和管理等。必須著重攻克針對大數據源的智能識別、感知、適配、傳輸、接入等技術。
基礎支撐層:提供大數據服務平台所需的虛擬伺服器,結構化、半結構化及非結構化數據的資料庫及物聯網路資源等基礎支撐環境。重點攻克分布式虛擬存儲技術,大數據獲取、存儲、組織、分析和決策操作的可視化介面技術,大數據的網路傳輸與壓縮技術,大數據隱私保護技術等。
二、大數據預處理技術
完成對已接收數據的辨析、抽取、清洗等操作。
抽取:因獲取的數據可能具有多種結構和類型,數據抽取過程可以幫助我們將這些復雜的數據轉化為單一的或者便於處理的構型,以達到快速分析處理的目的。
清洗:對於大數據,並不全是有價值的,有些數據並不是我們所關心的內容,而另一些數據則是完全錯誤的干擾項,因此要對數據通過過濾「去噪」從而提取出有效數據。
三、大數據存儲及管理技術
大數據存儲與管理要用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。重點解決復雜結構化、半結構化和非結構化大數據管理與處理技術。主要解決大數據的可存儲、可表示、可處理、可靠性及有效傳輸等幾個關鍵問題。開發可靠的分布式文件系統(DFS)、能效優化的存儲、計算融入存儲、大數據的去冗餘及高效低成本的大數據存儲技術;突破分布式非關系型大數據管理與處理技術,異構數據的數據融合技術,數據組織技術,研究大數據建模技術;突破大數據索引技術;突破大數據移動、備份、復制等技術;開發大數據可視化技術。
開發新型資料庫技術,資料庫分為關系型資料庫、非關系型資料庫以及資料庫緩存系統。其中,非關系型資料庫主要指的是NoSQL資料庫,分為:鍵值資料庫、列存資料庫、圖存資料庫以及文檔資料庫等類型。關系型資料庫包含了傳統關系資料庫系統以及NewSQL資料庫。
開發大數據安全技術:改進數據銷毀、透明加解密、分布式訪問控制、數據審計等技術;突破隱私保護和推理控制、數據真偽識別和取證、數據持有完整性驗證等技術。
四、大數據分析及挖掘技術
大數據分析技術:改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
數據挖掘就是從大量的、不完全的、有雜訊的、模糊的、隨機的實際應用數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
數據挖掘涉及的技術方法很多,有多種分類法。根據挖掘任務可分為分類或預測模型發現、數據總結、聚類、關聯規則發現、序列模式發現、依賴關系或依賴模型發現、異常和趨勢發現等等;根據挖掘對象可分為關系資料庫、面向對象資料庫、空間資料庫、時態資料庫、文本數據源、多媒體資料庫、異質資料庫、遺產資料庫以及環球網Web;根據挖掘方法分,可粗分為:機器學習方法、統計方法、神經網路方法和資料庫方法。
機器學習中,可細分為歸納學習方法(決策樹、規則歸納等)、基於範例學習、遺傳演算法等。統計方法中,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、費歇爾判別、非參數判別等)、聚類分析(系統聚類、動態聚類等)、探索性分析(主元分析法、相關分析法等)等。神經網路方法中,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。
數據挖掘主要過程是:根據分析挖掘目標,從資料庫中把數據提取出來,然後經過ETL組織成適合分析挖掘演算法使用寬表,然後利用數據挖掘軟體進行挖掘。傳統的數據挖掘軟體,一般只能支持在單機上進行小規模數據處理,受此限制傳統數據分析挖掘一般會採用抽樣方式來減少數據分析規模。
數據挖掘的計算復雜度和靈活度遠遠超過前兩類需求。一是由於數據挖掘問題開放性,導致數據挖掘會涉及大量衍生變數計算,衍生變數多變導致數據預處理計算復雜性;二是很多數據挖掘演算法本身就比較復雜,計算量就很大,特別是大量機器學習演算法,都是迭代計算,需要通過多次迭代來求最優解,例如K-means聚類演算法、PageRank演算法等。
從挖掘任務和挖掘方法的角度,著重突破:
可視化分析。數據可視化無論對於普通用戶或是數據分析專家,都是最基本的功能。數據圖像化可以讓數據自己說話,讓用戶直觀的感受到結果。 數據挖掘演算法。圖像化是將機器語言翻譯給人看,而數據挖掘就是機器的母語。分割、集群、孤立點分析還有各種各樣五花八門的演算法讓我們精煉數據,挖掘價值。這些演算法一定要能夠應付大數據的量,同時還具有很高的處理速度。 預測性分析。預測性分析可以讓分析師根據圖像化分析和數據挖掘的結果做出一些前瞻性判斷。 語義引擎。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。語言處理技術包括機器翻譯、情感分析、輿情分析、智能輸入、問答系統等。 數據質量和數據管理。數據質量與管理是管理的最佳實踐,透過標准化流程和機器對數據進行處理可以確保獲得一個預設質量的分析結果。預測分析成功的7個秘訣
預測未來一直是一個冒險的命題。幸運的是,預測分析技術的出現使得用戶能夠基於歷史數據和分析技術(如統計建模和機器學習)預測未來的結果,這使得預測結果和趨勢變得比過去幾年更加可靠。
盡管如此,與任何新興技術一樣,想要充分發揮預測分析的潛力也是很難的。而可能使挑戰變得更加復雜的是,由不完善的策略或預測分析工具的誤用導致的不準確或誤導性的結果可能在幾周、幾個月甚至幾年內才會顯現出來。
預測分析有可能徹底改變許多的行業和業務,包括零售、製造、供應鏈、網路管理、金融服務和醫療保健。AI網路技術公司Mist Systems的聯合創始人、首席技術官Bob fridy預測:「深度學習和預測性AI分析技術將會改變我們社會的所有部分,就像十年來互聯網和蜂窩技術所帶來的轉變一樣。」。
這里有七個建議,旨在幫助您的組織充分利用其預測分析計劃。
1.能夠訪問高質量、易於理解的數據
預測分析應用程序需要大量數據,並依賴於通過反饋循環提供的信息來不斷改進。全球IT解決方案和服務提供商Infotech的首席數據和分析官Soumendra Mohanty評論道:「數據和預測分析之間是相互促進的關系。」
了解流入預測分析模型的數據類型非常重要。「一個人身上會有什麼樣的數據?」 Eric Feigl - Ding問道,他是流行病學家、營養學家和健康經濟學家,目前是哈佛陳氏公共衛生學院的訪問科學家。「是每天都在Facebook和谷歌上收集的實時數據,還是難以訪問的醫療記錄所需的醫療數據?」為了做出准確的預測,模型需要被設計成能夠處理它所吸收的特定類型的數據。
簡單地將大量數據扔向計算資源的預測建模工作註定會失敗。「由於存在大量數據,而其中大部分數據可能與特定問題無關,只是在給定樣本中可能存在相關關系,」FactSet投資組合管理和交易解決方案副總裁兼研究主管Henri Waelbroeck解釋道,FactSet是一家金融數據和軟體公司。「如果不了解產生數據的過程,一個在有偏見的數據上訓練的模型可能是完全錯誤的。」
2.找到合適的模式
SAP高級分析產品經理Richard Mooney指出,每個人都痴迷於演算法,但是演算法必須和輸入到演算法中的數據一樣好。「如果找不到適合的模式,那麼他們就毫無用處,」他寫道。「大多數數據集都有其隱藏的模式。」
模式通常以兩種方式隱藏:
模式位於兩列之間的關系中。例如,可以通過即將進行的交易的截止日期信息與相關的電子郵件開盤價數據進行比較來發現一種模式。Mooney說:「如果交易即將結束,電子郵件的公開率應該會大幅提高,因為買方會有很多人需要閱讀並審查合同。」
模式顯示了變數隨時間變化的關系。「以上面的例子為例,了解客戶打開了200次電子郵件並不像知道他們在上周打開了175次那樣有用,」Mooney說。
3 .專注於可管理的任務,這些任務可能會帶來積極的投資回報
紐約理工學院的分析和商業智能主任Michael Urmeneta稱:「如今,人們很想把機器學習演算法應用到海量數據上,以期獲得更深刻的見解。」他說,這種方法的問題在於,它就像試圖一次治癒所有形式的癌症一樣。Urmeneta解釋說:「這會導致問題太大,數據太亂——沒有足夠的資金和足夠的支持。這樣是不可能獲得成功的。」
而當任務相對集中時,成功的可能性就會大得多。Urmeneta指出:「如果有問題的話,我們很可能會接觸到那些能夠理解復雜關系的專家」 。「這樣,我們就很可能會有更清晰或更好理解的數據來進行處理。」
4.使用正確的方法來完成工作
好消息是,幾乎有無數的方法可以用來生成精確的預測分析。然而,這也是個壞消息。芝加哥大學NORC (前國家意見研究中心)的行為、經濟分析和決策實踐主任Angela Fontes說:「每天都有新的、熱門的分析方法出現,使用新方法很容易讓人興奮」。「然而,根據我的經驗,最成功的項目是那些真正深入思考分析結果並讓其指導他們選擇方法的項目——即使最合適的方法並不是最性感、最新的方法。」
羅切斯特理工學院計算機工程系主任、副教授shanchie Jay Yang建議說:「用戶必須謹慎選擇適合他們需求的方法」。「必須擁有一種高效且可解釋的技術,一種可以利用序列數據、時間數據的統計特性,然後將其外推到最有可能的未來,」Yang說。
5.用精確定義的目標構建模型
這似乎是顯而易見的,但許多預測分析項目開始時的目標是構建一個宏偉的模型,卻沒有一個明確的最終使用計劃。「有很多很棒的模型從來沒有被人使用過,因為沒有人知道如何使用這些模型來實現或提供價值,」汽車、保險和碰撞修復行業的SaaS提供商CCC信息服務公司的產品管理高級副總裁Jason Verlen評論道。
對此,Fontes也表示同意。「使用正確的工具肯定會確保我們從分析中得到想要的結果……」因為這迫使我們必須對自己的目標非常清楚,」她解釋道。「如果我們不清楚分析的目標,就永遠也不可能真正得到我們想要的東西。」
6.在IT和相關業務部門之間建立密切的合作關系
在業務和技術組織之間建立牢固的合作夥伴關系是至關重要的。客戶體驗技術提供商Genesys的人工智慧產品管理副總裁Paul lasserr說:「你應該能夠理解新技術如何應對業務挑戰或改善現有的業務環境。」然後,一旦設置了目標,就可以在一個限定范圍的應用程序中測試模型,以確定解決方案是否真正提供了所需的價值。
7.不要被設計不良的模型誤導
模型是由人設計的,所以它們經常包含著潛在的缺陷。錯誤的模型或使用不正確或不當的數據構建的模型很容易產生誤導,在極端情況下,甚至會產生完全錯誤的預測。
沒有實現適當隨機化的選擇偏差會混淆預測。例如,在一項假設的減肥研究中,可能有50%的參與者選擇退出後續的體重測量。然而,那些中途退出的人與留下來的人有著不同的體重軌跡。這使得分析變得復雜,因為在這樣的研究中,那些堅持參加這個項目的人通常是那些真正減肥的人。另一方面,戒煙者通常是那些很少或根本沒有減肥經歷的人。因此,雖然減肥在整個世界都是具有因果性和可預測性的,但在一個有50%退出率的有限資料庫中,實際的減肥結果可能會被隱藏起來。
六、大數據展現與應用技術
大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。
在我國,大數據將重點應用於以下三大領域:商業智能 、政府決策、公共服務。例如:商業智能技術,政府決策技術,電信數據信息處理與挖掘技術,電網數據信息處理與挖掘技術,氣象信息分析技術,環境監測技術,警務雲應用系統(道路監控、視頻監控、網路監控、智能交通、反電信詐騙、指揮調度等公安信息系統),大規模基因序列分析比對技術,Web信息挖掘技術,多媒體數據並行化處理技術,影視製作渲染技術,其他各種行業的雲計算和海量數據處理應用技術等。
㈡ 大數據挖掘的演算法有哪些
數據挖掘本質還是機器學習演算法
具體可以參見《數據挖掘十大常見演算法》
常用的就是:SVM,決策樹,樸素貝葉斯,邏輯斯蒂回歸等
主要解決分類和回歸問題
㈢ 大數據分析工具詳盡介紹&數據分析演算法
大數據分析工具詳盡介紹&數據分析演算法
1、 Hadoop
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
Hadoop是一個能夠讓用戶輕松架構和使用的分布式計算平台。用戶可以輕松地在Hadoop上開發和運行處理海量數據的應用程序。它主要有以下幾個優點:
⒈高可靠性。Hadoop按位存儲和處理數據的能力值得人們信賴。
⒉高擴展性。Hadoop是在可用的計算機集簇間分配數據並完成計算任務的,這些集簇可以方便地擴展到數以千計的節點中。
⒊高效性。Hadoop能夠在節點之間動態地移動數據,並保證各個節點的動態平衡,因此處理速度非常快。
⒋高容錯性。Hadoop能夠自動保存數據的多個副本,並且能夠自動將失敗的任務重新分配。
Hadoop帶有用 java 語言編寫的框架,因此運行在 linux 生產平台上是非常理想的。Hadoop 上的應用程序也可以使用其他語言編寫,比如 C++。
2、 HPCC
HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
該項目主要由五部分組成:
1、高性能計算機系統(HPCS),內容包括今後幾代計算機系統的研究、系統設計工具、先進的典型系統及原有系統的評價等;
2、先進軟體技術與演算法(ASTA),內容有巨大挑戰問題的軟體支撐、新演算法設計、軟體分支與工具、計算計算及高性能計算研究中心等;
3、國家科研與教育網格(NREN),內容有中接站及10億位級傳輸的研究與開發;
4、基本研究與人類資源(BRHR),內容有基礎研究、培訓、教育及課程教材,被設計通過獎勵調查者-開始的,長期 的調查在可升級的高性能計算中來增加創新意識流,通過提高教育和高性能的計算訓練和通信來加大熟練的和訓練有素的人員的聯營,和來提供必需的基礎架構來支 持這些調查和研究活動;
5、信息基礎結構技術和應用(IITA ),目的在於保證美國在先進信息技術開發方面的領先地位。
3、 Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來,其它知名的應用企業包括Groupon、淘寶、支付寶、阿里巴巴、樂元素、Admaster等等。
Storm有許多應用領域:實時分析、在線機器學習、不停頓的計算、分布式RPC(遠過程調用協議,一種通過網路從遠程計算機程序上請求服務)、 ETL(Extraction-Transformation-Loading的縮寫,即數據抽取、轉換和載入)等等。Storm的處理速度驚人:經測 試,每個節點每秒鍾可以處理100萬個數據元組。Storm是可擴展、容錯,很容易設置和操作。
4、 Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google』s Dremel.
據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。
該項目將會創建出開源版本的谷歌Dremel Hadoop工具(谷歌使用該工具來為Hadoop數據分析工具的互聯網應用提速)。而「Drill」將有助於Hadoop用戶實現更快查詢海量數據集的目的。
「Drill」項目其實也是從谷歌的Dremel項目中獲得靈感:該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在Android Market上的應用程序數據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。
通過開發「Drill」Apache開源項目,組織機構將有望建立Drill所屬的API介面和靈活強大的體系架構,從而幫助支持廣泛的數據源、數據格式和查詢語言。
5、 RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
功能和特點
免費提供數據挖掘技術和庫
100%用Java代碼(可運行在操作系統)
數據挖掘過程簡單,強大和直觀
內部XML保證了標准化的格式來表示交換數據挖掘過程
可以用簡單腳本語言自動進行大規模進程
多層次的數據視圖,確保有效和透明的數據
圖形用戶界面的互動原型
命令行(批處理模式)自動大規模應用
Java API(應用編程介面)
簡單的插件和推廣機制
強大的可視化引擎,許多尖端的高維數據的可視化建模
400多個數據挖掘運營商支持
耶魯大學已成功地應用在許多不同的應用領域,包括文本挖掘,多媒體挖掘,功能設計,數據流挖掘,集成開發的方法和分布式數據挖掘。
6、 Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。
Pentaho BI 平台,Pentaho Open BI 套件的核心架構和基礎,是以流程為中心的,因為其中樞控制器是一個工作流引擎。工作流引擎使用流程定義來定義在BI 平台上執行的商業智能流程。流程可以很容易的被定製,也可以添加新的流程。BI 平台包含組件和報表,用以分析這些流程的性能。目前,Pentaho的主要組成元素包括報表生成、分析、數據挖掘和工作流管理等等。這些組件通過 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技術集成到Pentaho平台中來。 Pentaho的發行,主要以Pentaho SDK的形式進行。
Pentaho SDK共包含五個部分:Pentaho平台、Pentaho示例資料庫、可獨立運行的Pentaho平台、Pentaho解決方案示例和一個預先配製好的 Pentaho網路伺服器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代碼的主體;Pentaho資料庫為 Pentaho平台的正常運行提供的數據服務,包括配置信息、Solution相關的信息等等,對於Pentaho平台來說它不是必須的,通過配置是可以用其它資料庫服務取代的;可獨立運行的Pentaho平台是Pentaho平台的獨立運行模式的示例,它演示了如何使Pentaho平台在沒有應用伺服器支持的情況下獨立運行;
Pentaho解決方案示例是一個Eclipse工程,用來演示如何為Pentaho平台開發相關的商業智能解決方案。
Pentaho BI 平台構建於伺服器,引擎和組件的基礎之上。這些提供了系統的J2EE 伺服器,安全,portal,工作流,規則引擎,圖表,協作,內容管理,數據集成,分析和建模功能。這些組件的大部分是基於標準的,可使用其他產品替換之。
7、 SAS Enterprise Miner
§ 支持整個數據挖掘過程的完備工具集
§ 易用的圖形界面,適合不同類型的用戶快速建模
§ 強大的模型管理和評估功能
§ 快速便捷的模型發布機制, 促進業務閉環形成
數據分析演算法
大數據分析主要依靠機器學習和大規模計算。機器學習包括監督學習、非監督學習、強化學習等,而監督學習又包括分類學習、回歸學習、排序學習、匹配學習等(見圖1)。分類是最常見的機器學習應用問題,比如垃圾郵件過濾、人臉檢測、用戶畫像、文本情感分析、網頁歸類等,本質上都是分類問題。分類學習也是機器學習領域,研究最徹底、使用最廣泛的一個分支。
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,機器學習頂級期刊)雜志發表了一篇有趣的論文。他們讓179種不同的分類學習方法(分類學習演算法)在UCI 121個數據集上進行了「大比武」(UCI是機器學習公用數據集,每個數據集的規模都不大)。結果發現Random Forest(隨機森林)和SVM(支持向量機)名列第一、第二名,但兩者差異不大。在84.3%的數據上、Random Forest壓倒了其它90%的方法。也就是說,在大多數情況下,只用Random Forest 或 SVM事情就搞定了。
KNN
K最近鄰演算法。給定一些已經訓練好的數據,輸入一個新的測試數據點,計算包含於此測試數據點的最近的點的分類情況,哪個分類的類型佔多數,則此測試點的分類與此相同,所以在這里,有的時候可以復制不同的分類點不同的權重。近的點的權重大點,遠的點自然就小點。詳細介紹鏈接
Naive Bayes
樸素貝葉斯演算法。樸素貝葉斯演算法是貝葉斯演算法裡面一種比較簡單的分類演算法,用到了一個比較重要的貝葉斯定理,用一句簡單的話概括就是條件概率的相互轉換推導。詳細介紹鏈接
樸素貝葉斯分類是一種十分簡單的分類演算法,叫它樸素貝葉斯分類是因為這種方法的思想真的很樸素,樸素貝葉斯的思想基礎是這樣的:對於給出的待分類項,求解在此項出現的條件下各個類別出現的概率,哪個最大,就認為此待分類項屬於哪個類別。通俗來說,就好比這么個道理,你在街上看到一個黑人,我問你你猜這哥們哪裡來的,你十有八九猜非洲。為什麼呢?因為黑人中非洲人的比率最高,當然人家也可能是美洲人或亞洲人,但在沒有其它可用信息下,我們會選擇條件概率最大的類別,這就是樸素貝葉斯的思想基礎。
SVM
支持向量機演算法。支持向量機演算法是一種對線性和非線性數據進行分類的方法,非線性數據進行分類的時候可以通過核函數轉為線性的情況再處理。其中的一個關鍵的步驟是搜索最大邊緣超平面。詳細介紹鏈接
Apriori
Apriori演算法是關聯規則挖掘演算法,通過連接和剪枝運算挖掘出頻繁項集,然後根據頻繁項集得到關聯規則,關聯規則的導出需要滿足最小置信度的要求。詳細介紹鏈接
PageRank
網頁重要性/排名演算法。PageRank演算法最早產生於Google,核心思想是通過網頁的入鏈數作為一個網頁好快的判定標准,如果1個網頁內部包含了多個指向外部的鏈接,則PR值將會被均分,PageRank演算法也會遭到LinkSpan攻擊。詳細介紹鏈接
RandomForest
隨機森林演算法。演算法思想是決策樹+boosting.決策樹採用的是CART分類回歸數,通過組合各個決策樹的弱分類器,構成一個最終的強分類器,在構造決策樹的時候採取隨機數量的樣本數和隨機的部分屬性進行子決策樹的構建,避免了過分擬合的現象發生。詳細介紹鏈接
Artificial Neural Network
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。
人工神經網路也具有初步的自適應與自組織能力。在學習或訓練過程中改變突觸權重值,以適應周圍環境的要求。同一網路因學習方式及內容不同可具有不同的功能。人工神經網路是一個具有學習能力的系統,可以發展知識,以致超過設計者原有的知識水平。通常,它的學習訓練方式可分為兩種,一種是有監督或稱有導師的學習,這時利用給定的樣本標准進行分類或模仿;另一種是無監督學習或稱無為導師學習,這時,只規定學習方式或某些規則,則具體的學習內容隨系統所處環境 (即輸入信號情況)而異,系統可以自動發現環境特徵和規律性,具有更近似人腦的功能。
㈣ 大數據量PageRank演算法
Step1:取部份數據,設定閾值,將沒有達到閾值的數據先行過濾。
Step2:重復Step1,直到所有數據完成過濾
Step3:重新設定閾值,重復Step1-2,直到得到PageRank.
㈤ 做了這么多年Java開發,如何快速轉行大數據
一、學習大數據是需要學習java和linux的
二、你有多年的java開發經驗,那麼可以直接跳過java課程部分,學習大數據技術!
三、分享一份大數據技術課程大綱供你了解參考