A. 大數據的預測功能是增值服務的核心
大數據的預測功能是增值服務的核心
從走在大數據發展前沿的互聯網新興行業,到與人類生活息息相關的醫療保健、電力、通信等傳統行業,大數據浪潮無時無刻不在改變著人們的生產和生活方式。大數據時代的到來,給國內外各行各業帶來諸多的變革動力和巨大價值。
最新發布的報告稱,全球大數據市場規模將在未來五年內迎來高達26%的年復合增長率——從今年的148.7億美元增長到2018年的463.4億美元。全球各大公司、企業和研究機構對大數據商業模式進行了廣泛地探索和嘗試,雖然仍舊有許多模式尚不明朗,但是也逐漸形成了一些成熟的商業模式。
兩種存儲模式為主
互聯網上的每一個網頁、每一張圖片、每一封郵件,通信行業每一條短消息、每一通電話,電力行業每一戶用電數據等等,這些足跡都以「數據」的形式被記錄下來,並以幾何量級的速度增長。這就是大數據時代帶給我們最直觀的沖擊。
正因為數據量之大,數據多為非結構化,現有的諸多存儲介質和系統極大地限制著大數據的挖掘和發展。為更好地解決大數據存儲問題,國內外各大企業和研究機構做了許許多多的嘗試和努力,並不斷摸索其商業化前景,目前形成了如下兩種比較成熟的商業模式:
可擴展的存儲解決方案。該存儲解決方案可幫助政府、企業對存儲的內容進行分類和確定優先順序,高效安全地存儲到適當存儲介質中。而以存儲區域網路(SAN)、統一存儲、文件整合/網路連接存儲(NAS)的傳統存儲解決方案,無法提供和擴展處理大數據所需要的靈活性。而以Intel、Oracle、華為、中興等為代表的新一代存儲解決方案提供商提供的適用於大、中小企業級的全系存儲解決方案,通過標准化IT基礎架構、自動化流程和高擴展性,來滿足大數據多種應用需求。
雲存儲。雲存儲是一個以數據存儲和管理為核心的雲計算系統,其結構模型一般由存儲層、基礎管理、應用介面和訪問層四層組成。通過易於使用的API,方便用戶將各種數據放到雲存儲裡面,然後像使用水電一樣按用量進行收費。用戶不用關心數據的存儲介質、網路狀況以及安全性的管理,只需按需向提供方購買空間。
源數據價值水漲船高
在紅紅火火的大數據時代,隨著數據的累積,數據本身的價值也在不斷升值,這種情況很好地反應了事物由量變到質變的規律。例如有一種罕見的疾病,得病率為十萬分之一,如果從小樣本數據來看非常罕見,但是擴大到全世界70億人,那麼數量就非常龐大。以前技術落後,不能將該病情數字化集中研究,所以很難攻克。但是,我們現在把各種各樣的數據案例搜集起來統一分析,我們很快就能攻克很多以前想像不到的科學難題。類似的例子,不勝枚舉。
正是由於可以通過大數據挖掘到很多看不見的價值,源數據本身的價值也水漲船高。一些掌握海量有效數據的公司和企業找到了一條行之有效的商業路徑:對源數據直接或者經過簡單封裝銷售。在互聯網領域,以Facebook、twitter、微博為代表的社交網站擁有大量的用戶和用戶關系數據,這些網站正嘗試以各種方式對該源數據進行商業化銷售,Google、Yahoo!、網路[微博]等搜索公司擁有大量的搜索軌跡數據以及網頁數據,他們可以通過簡單API提供給第三方並從中盈利;在傳統行業中,中國聯通[微博](3.44, 0.03, 0.88%)、中國電信[微博]等運營商擁有大量的底層用戶資料,可以通過簡單地去隱私化,然後進行銷售盈利。
各大公司或者企業通過提供海量數據服務來支撐公司發展,同時以免費的服務補償用戶,這種成熟的商業模式經受住了時間的考驗。但是對於任何用戶數據的買賣,還需處理好用戶隱私信息,通過去隱私化方式,來保護好用戶隱私。
預測是增值服務的核心
在大數據基礎上進行深度挖掘,所衍生出來的增值服務,是大數據領域最具想像空間的商業模式。大數據增值服務的核心是什麼?預測!大數據引發了商業分析模式轉變,從過去的樣本模式到現在的全數據模式,從過去的小概率到現在的大概率,從而能夠得到比以前更准確的預測。目前形成了如下幾種比較成熟的商業模式。
個性化的精準營銷。一提起「垃圾簡訊」,大家都很厭煩,這是因為本來在營銷方看來是有價值的、「對」的信息,發到了「錯」的用戶手裡。通過對用戶的大量的行為數據進行詳細分析,深度挖掘之後,能夠實現給「對」的用戶發送「對」的信息。比如大型商場可以對會員的購買記錄進行深度分析,發掘用戶和品牌之間的關聯。然後,當某個品牌的忠實用戶收到該品牌打折促銷的簡訊之後,一定不是厭煩,而是欣喜。如優捷信達、中科嘉速等擁有強大數據處理技術的公司在數據挖掘、精準廣告分析等方面擁有豐富的經驗。
企業經營的決策指導。針對大量的用戶數據,運用成熟的數據挖掘技術,分析得到企業運營的各種趨勢,從而給企業的決策提供強有力的指導。例如,汽車銷售公司,可以通過對網路上用戶的大量評論進行分析,得到用戶最關心和最不滿意的功能,然後對自己的下一代產品進行有針對性的改進,以提升消費者的滿意度。
總體來說,從宏觀層面來看,大數據是我們未來社會的新能源;從企業微觀層面來看,大數據分析和運用能力正成為企業的核心競爭力。深入研究和積極探索大數據的商業模式,對企業的未來發展有至關重要的意義。
B. 《大數據時代生活、工作與思維的大變革》pdf下載在線閱讀,求百度網盤雲資源
《大數據時代》([英] 維克托•邁爾•舍恩伯格(Viktor Mayer-Schönberger))電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:
書名:大數據時代
作者:[英] 維克托•邁爾•舍恩伯格(Viktor Mayer-Schönberger)
譯者:周濤
豆瓣評分:7.5
出版社:浙江人民出版社
出版年份:2012-12
頁數:261
內容簡介:
《大數據時代》是國外大數據研究的先河之作,本書作者維克托•邁爾•舍恩伯格被譽為「大數據商業應用第一人」,擁有在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多個互聯網研究重鎮任教的經歷,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。
維克托•邁爾•舍恩伯格在書中前瞻性地指出,大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,並用三個部分講述了大數據時代的思維變革、商業變革和管理變革。
維克托最具洞見之處在於,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這就顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
本書認為大數據的核心就是預測。大數據將為人類的生活創造前所未有的可量化的維度。大數據已經成為了新發明和新服務的源泉,而更多的改變正蓄勢待發。書中展示了谷歌、微軟、亞馬遜、IBM、蘋果、facebook、twitter、VISA等大數據先鋒們最具價值的應用案例。
作者簡介:
他是十餘年潛心研究數據科學的技術權威,他是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。他曾先後任教於世界最著名的幾大互聯網研究學府。現任牛津大學網路學院互聯網治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人,哈佛國家電子商務研究中網路監管項目負責人;曾任新加坡國立大學李光耀學院信息與創新策略研究中心主任。並擔任耶魯大學、芝加哥大學、弗吉尼亞大學、聖地亞哥大學、維也納大學的客座教授。
他的學術成果斐然,有一百多篇論文公開發表在《科學》《自然》等著名學術期刊上,他同時也是哈佛大學出版社、麻省理工出版社、通信政策期刊、美國社會學期刊等多家出版機構的特約評論員。
他是備受眾多世界知名企業信賴的信息權威與顧問。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業;而他自己早在1986年與1995年就擔任兩家軟體公司的總裁兼CEO,由他的公司開發的病毒通用程序,成為當時奧地利最暢銷的軟體產品。1991年躋身奧地利軟體企業家前5名之列,2000年 被評為奧地利薩爾斯堡州的年度人物。
他也是眾多機構和國家政府高層的信息政策智囊。他一直專注於信息安全與信息政策與戰略的研究,是歐盟專家之一,也是世界經濟論壇、馬歇爾計劃基金會等重要機構的咨詢顧問,同時他以大數據的全球視野,熟悉亞洲信息產業的發展與戰略布局,先後擔任新加坡商務部高層、汶萊國防部高層、科威特商務部高層、迪拜及中東政府高層的咨詢顧問。
所著《大數據》一書是開國外大數據系統研究的先河之作,而在這之前,他已經在《經濟學人》上和數據編輯肯尼斯.尼爾-庫克耶一起,發表了長達14頁的大數據專題文章,成為最早洞見大數據時代趨勢的數據科學家之一。而他的《刪除》一書,同樣被認為是關於數據的開創性作品,並且創造了「被遺忘的權利」的概念而在媒體圈和法律圈得到廣泛運用。該書獲得美國政治科學協會頒發的唐•K•普賴斯獎,以及媒介環境學會頒發的馬歇爾•麥克盧漢獎。同時受到《連線》、《自然》《華爾街日報》《紐約時報》等各大權威媒體廣泛好評。
C. 大數據時代的大變革
大數據時代的大變革
在雲計算仍處於「雲里霧里」而亟待落地的今天,IT的浩瀚天空中突然傳來了天使的號角聲——大數據時代來了!大數據,開啟了一個徹頭徹尾的變革年代,更開啟了一個蘊含無窮多機會的年代。誰能夠「號准」大數據時代的「脈搏」,誰就能夠在全球IT業的新一輪角逐中獨領風騷。
令人充滿想像的大數據,究竟「大」在何處?
今天,我們再也不能用狹隘的視角來審視大數據了。因為今天的大數據,不僅體現為數據量的驚人增長,更前所未有地引入了正在不斷擴展中的數據類型。從量的增長來看,IDC報告顯示,未來10年全球大數據將增加50倍。而剛剛過去的2011年,就產生了1.8ZB(1.8萬億GB)的大數據,這相當於每個美國人按每分鍾發3條微博的速度,不停發布2.6976萬年。與此同時,社會上的各行各業,從電信、IT業,到金融、證券、保險、航空、酒店服務業等,地球上的各種存在,從每個人到每棵樹、每朵花乃至每粒沙子,無一例外地都在成為大數據的生成者。在量和面上的雙重積累,讓我們不難想像和接受數據大爆炸的現實——2020年的全球數據使用量將達到35.2ZB(1ZB=10億TB)。
猶如一座富礦的大數據,究竟該如何「開采」?
這是一個令人著迷的問題,因為與正確答案相伴的將是誰都渴望的巨大商業成功。當前,伴隨著變革的發生,傳統的互聯網企業已經站在了大數據時代的最前沿。作為探索的先鋒,他們能否笑到最後,是否會成為「先烈」?這一問題盡管很難回答,但至少為成功的覬覦者提供了充分的借鑒和參考。
作為後PC時代的四大巨頭,Facebook、谷歌、蘋果、亞馬遜正在成為大數據的擁有者和使用者。在自覺或不自覺間,Facebook已然成為業界第一個生成大數據的「巨鱷」,而其他三巨頭仍在努力中。蘋果依靠操作系統和顛覆性的終端,正在努力打造大數據的生成之地;谷歌主要依靠操作系統、搜索引擎和「Google+」平台整合終端產品,以儲備可以利用的大數據;亞馬遜作為雲計算的最早倡導者之一,則通過網路平台、雲計算平台和閱讀終端,期望建立起一個電子商務垂直領域的大數據匯集地。雖然巨頭們的策略各有不同,但利用種種手段整合碎片化的數據進而加以利用的趨勢,已經再明顯不過了。
相比這四大巨頭,電信運營商的探索才剛剛起步。「日內瓦的電信運營商,正在針對市民活動的可視化展開研究。」天雲科技副總雷濤在近日舉行的雲計算大會雲基地專場上指出,「通過在用戶手機上安裝感測器,就能夠記錄下大量的位置信息,從而使得市民活動可視化,這對建立一個智慧城市,進行人口規劃、區域規劃都具有重要意義。」事實上,一個個再簡單不過的位置信息背後,隱藏著巨大的、待挖掘的價值,這個價值對於各行各業都具有關鍵的作用。例如,房地產開發商就很渴望知道高端用戶最頻繁出入的區域,而這些區域就是商業地產的最佳候選地。而除了位置信息外,電信運營商能夠挖掘的信息和數據,仍有無窮無盡的空間,包括了用戶喜好、消費能力等等。
在企業的自發行為以外,國家級的戰略支持已經浮出水面。美國,作為ICT強國,嗅覺最為敏銳。2012年3月29日,奧巴馬政府公布了「大數據研發計劃」,目標在於改進當前人們從海量和復雜的數據中獲取知識的能力,而這是美國繼高速網路和超級計算中心之後的另一個重大科技項目。據悉,首批共有6個聯邦部門宣布投資2億美元,共同提高收集、儲存、保留、管理、分析和共享海量數據所需核心技術的先進性,並形成合力,同時增加大數據技術開發和應用所需人才的供給。顯然,先行一步的美國,已經把大數據當作了其ICT產業再度在全球崛起的重要契機。在找准了崛起的方向之後,富有行動力的美國,自然就會毫不拖泥帶水地實施下去。
大數據,正在撬動全世界的神經,無論是國家、企業,還是每一個獨立存在的個人,都將成為大數據時代的貢獻者和受益者。但問題是,你准備好了嗎?
D. 《大數據時代》01 什麼是大數據
今天我們第一本解讀的是《大數據時代》這本書。
大數據是這幾年特別火的一個詞,那究竟什麼是大數據呢?
字面意思可以理解為大數據就是數量巨大的數據,而這些巨大的數據再結合雲計算、人工智慧、物聯網等技術會對於我們的生活、工作都會帶來翻天覆地的影響。
芝加哥大學商學院教授、麥肯錫公司創始人,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
而我們今天所講的這本《大數據時代》是國外大數據研究的先河之作,本書作者舍恩伯格被譽為「大數據商業應用第一人」。舍恩伯格在書中前瞻性地指出,大數據帶來的信息風暴正在變革我們的生活、工作和思維,大數據開啟了一次重大的時代轉型,並用三個部分講述了大數據時代的思維變革、商業變革和管理變革。對於身處於大數據時代額我們可謂是會產生異常極大的思維方式的變革。
舍恩伯格最具洞見之處在於,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這就顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
下面我們就進入到《大數據時代》這本書中去吧。
首先來看第一個話題大數據的思維變革
大數據與三個重大的思維變革有關,而這三個轉變是相互作用的。
一.不是隨機樣本,而是全體數據
解釋一下就是分析事物相關的所有數據,而不是僅僅依靠分析少量的數據樣本。
二是不是精確性,而是混雜性
就是要接受數據的紛繁復雜,而不再追求准確性。
三是不是因果關系,而是相關關系
即不再追求難以摸索的因果關系,轉而關注事物的相關關系。
這三個在大數據時代思維變革的轉變我們會在接下來節目中一一講解。
今天我們這一節先講解:不是隨機樣本,而是全體樣本,這一思維的變革。
小數據時代的隨機抽樣
為什麼這么說呢?在我們過去技術並不發達的時候,只能用少量數據來進行隨機采樣是最高效的方式,即利用最少的數據來獲取更多的信息。
在19世紀時美國的人口普查中,因為數據的變化超過了當時的人口普查統計分析能力,有人提出到數據無比龐大時可以進行有目的的選擇,具有選出代表性的樣本是最恰當的方式,這就是隨機抽樣。並且還非常有見解的提出:采樣分析的精確性是隨著采樣隨機性的增加而大幅的提高與樣本的數量增加關系並不大,也就是說,隨機采樣樣本的隨機性比數量的多少更為重要。
而在當時,政府確實也採用了隨機調查的方式來對於經濟和人口進行了200多次小規模的調查,除此之外,在商業領域也會採用隨機調查的方式來抽取部分商品來檢查商品的質量安全。
隨機抽樣取得了巨大的成功,成為了現代社會,現代測量領域的主心骨,但這只是一條捷徑,是不可能收集和分析全部數據情況下的選擇,他本身就有很多的缺陷。
隨機抽樣的缺陷
第一,它的成功依賴於采樣的絕對隨機性,但在實現中絕對的隨機性是非常困難,一旦分析過程中存在任何「偏見」,分析結果就會相去甚遠。
第二,隨機采樣不適宜用於考察此類別的情況,也就是說隨機抽樣,一旦繼續細分錯誤率會大大增加,比如說你想調查大學生玩手機的情況,您採取的調查結果可能會有3%的誤差,但如果又把這個調查結果根據性別地域、收入來進行細分,那結果就會變得更為不準確。
因此當人們想要了解更深層次的細分領域的情況,採用隨機采樣的方法顯然是不可取的,在宏觀領域起作用的方法,在微觀領域上失去了作用,隨機采樣就像是模擬照片,列印再遠看會是非常不錯,但是一旦聚焦在某個點,就會變得模糊不清。
全部數據的采樣方式
現在我們正在步入了大數據時代,我們需要一中新的數據採集模式----全數據模式,即樣本等於總體。
我們這個時代收集數據,並不像過去那樣困難,手機導航、社交網站、微博、微信這些隨時隨地或主動或被動的收集你所產生的信息,並且通過計算機就可以輕而易舉地完成數據處理。
採取全部數據的采樣方式,可以不用考慮隨機抽樣所考慮的隨機性,並且在細分領域也會發揮極大的作用,一個很好的例子,就是日本國民體育運動相撲之中所產生的非法操控比賽結果。
相撲比賽和其他比賽有所不同的就是選手需要在15場比賽之中的大部分場次獲得勝利,才能保持排名和收入。這樣一來就會出現收益不對稱的情況,比如說一個7勝7負的選手,遇到一個8勝6負的選手,比賽結果對於第一個選手會比對第二個選手更為重要。列維特和達根發現在這種情況下,需要贏的那個選手,最可能會贏,這是為什麼呢?有沒有可能是選手的求勝心呢?當然有可能,但並不是完全!有數據顯示需要贏的選手,求勝心,也只能把勝率增加25%。並且對於數據進一步分析發現,選手如果幫助上一次失利的一方的話,當他們再次相遇時,對方會回報回來。
這種情況在相撲界是顯而易見的,但若是隨機抽樣就無法發現這個情況。而大數據通過分析所有比賽,用極大的數據來捕捉到這個情況。
還有關於大數據應用的例子是:2009年,谷歌公司將5000萬條美國最頻繁的檢索詞條和美國疾控中心在2003年至2008年季節性流感傳播實際數據進行比較,成功預測了甲型H1N1流感的出現。
現在2021年,利用大數據來預測新冠肺炎的發展情況,已經成為我們日常新聞報道的一部分了。
在大數據時代的到來,讓我們可以利用技術,從不同角度更細致的觀察和研究數據的方方面面,使我們的調查更為精準。
回顧一下我們這一節所講的過去的調查是採用小部分的數據來進行抽樣調查,這一方法有顯著的缺點
首先是抽樣分析依賴於采樣的隨機性,而一旦數據出現」偏見「,結果便會大相徑庭
第二抽樣分析也只適用於宏觀分析,對於更加微觀的調查結果並不理想。
如今的技術環境已經有了很大的改善,在大數據時代進行抽樣分析就是在汽車時代騎馬一樣,我們要分析與事物相關的而所有數據,而不僅僅是少量的數據。
以上就是我們本期全部內容,下一期我會講到大數據時代下思維變革的後兩個思維變革。
我的節目首發平台是公眾號「悅讀深入思考」關注還有更多內容
E. 大數據時代的變革思維
大數據時代的變革思維
信息時代,數據深刻影響著銀行的未來發展。在全球龐大的人群和應用市場下,探索以大數據為基礎的解決方案,深入洞察復雜且充滿變化的市場成為了企業提高自身競爭力的重要手段。僅憑直觀感受,任何人都能感覺到大數據時代已經來了。
維克托 邁爾舍恩伯格——《大數據時代》一書作者,牛津大學網路學院互聯網研究所治理與監管專業教授,英國新聞周刊《經濟學人》曾經將維克托邁爾-舍恩伯格定義為大數據領域最受人尊敬的權威發言人之一。2010年,維克托 邁爾舍恩伯格就已經開始對該領域進行了系統而深入的研究,並在《經濟學人》上和數據編輯肯尼思庫克耶一起,發表了長達14頁的大數據專題文章,成為最早洞見大數據時代發展趨勢的數據科學家之一。
大數據時代的思維變換
維克托 邁爾舍恩伯格在《大數據時代》中最具洞見之處在於,他明確指出,大數據時代最大的轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道「是什麼」,而不需要知道「為什麼」。這顛覆了千百年來人類的思維慣例,對人類的認知和與世界交流的方式提出了全新的挑戰。
這本書的價值體現在三個方面:第一,關於大數據的思維變換,重在大數據變革時代的價值與觀念變化;第二,關於大數據影響商業變革的三個要素:即數據、技術與創新思維之間的互動;第三,是關於大數據泛化下的治理與隱私。
與中國企業相比,美國企業知道大數據價值並且能挖掘大數據的隱藏價值,從而獲得最大利益,可以說他們已經建立了大數據思維,從而促使他們不斷創新挖掘更好的數據。「美國收集的數據要比我們多得多,他們不光搜集可以理解的數據,他們也收集不能理解的數據,並且會花大量資源來存儲這些數據,讓數據一直有價值。」在維克托邁爾舍恩伯格看來,大多數企業還把大數據作為一種在市場營銷手段,但是大數據還可以幫助人們改變商業模式以及盈利模式,這才是大數據最大的價值所在。「美國與中國相比,最不同一點就在於他們有大數據思維,懂得如何利用大數據的價值,但這並不代表中國無法逾越美國,中國的優勢在於掌握數據量比較大,而在大數據時代『大』也是非常重要的。」
城市的發展需要大數據,沒有數據的輔佐城市就不會得到最優化的發展方案,大數據能幫助政府領導者進行更好的決策,尤其是公共政策的決策。城市需要知道如何建立基礎設施來收集數據,同時要利用大數據開拓思路,讓數據來說話,並且藉助多方力量,即便是大數據方面的專家,但是並不一定有最正確的決定或最有效的方法來利用大數據,所以政府在這方面需要多聽取私人企業或機構的意見,大數據時代合作、溝通、廣泛吸納意見是非常重要的。
維克托 邁爾舍恩伯格以倫敦為例談道:「倫敦政府其實是從一家私人企業買了關於人們交通模式的數據,讓政府驚訝的是人們的行動路線跟他們想像的完全不一樣,所以在這一方面的幫助他們更好的優化交通,包括高速公路、停車場,以減少城市擁堵。」
誰是大數據「贏家」?
大數據所面臨困境並不在技術方面,而是在數據流動方面。大數據時代,一個人的智慧不能幫助我們更好的利用大數據價值,所以要讓數據流動起來,讓不同的部門和不同的公司都參與進來,進而優化數據。
「更多的人會認為大數據只是用在企業營銷方面,但是如果讓他們知道大數據可以幫助孩子更好的學習、更好的生活居住條件,以及能夠解決城市交通、居住等問題,他們慢慢發現大數據的好處,他們就會關心大數據。」維克托邁爾舍恩伯格談道,「一方面,人們要信任大數據,不要害怕大數據暴露隱私,需要建立完善的大數據保護。不信任就導致人們不願意讓其他機構知道數據,如果不能使用這些數據就更談不上大數據的價值。所以只有讓他們信任數據,才能挖掘大數據價值。另一方面,一定要接受大數據使用限制問題,不要賦予大數據過多的意義。」
維克托 邁爾舍恩伯格理解的大數據贏家,並不是指本來就已經很成功而且在大數據時代同樣成功的的公司,「我認為大數據的最大贏家應該是一些默默無聞的公司,因為大數據而發生飛躍性的變化,所以大數據時代最大贏家不可能是那些已經掌握大量數據的大公司,而是新興創業、年輕人來工作的小公司,幫助他們在大數據時代成為非常有競爭力的企業。所以數據好比一座金山,但是數據在那裡放著,這座金山就不會屬於你,我們需要做的是了解並挖掘這些『金子』,成為大數據的贏家。」維克托邁爾 舍恩伯格如是說。
大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生「免疫能力」,適應大數據才能在這場變革中繼續生存下去。