『壹』 如何看待大數據時代
我覺得大數據時代的到來是與時俱進的。它是一個發展到了自然而然的結果,並且我們一定要順應大數據時代的發展。只有這樣,我們才能夠在大數據時代的到來時候,找到一個好的工作,體驗到一個好的生活。
『貳』 《大數據時代》的讀後感
認真品味一部名著後,你有什麼領悟呢?現在就讓我們寫一篇走心的讀後感吧。那麼如何寫讀後感才能更有感染力呢?以下是我幫大家整理的《大數據時代》優秀讀後感範文,希望能夠幫助到大家。
這書讀起來不費勁,沒有太多晦澀的理論,所以也比較快速的用了幾天的中午休息時間讀完了。
網上到處都是推薦此書的文章,贊為大數據的經典之作。可是,我讀了一遍下來,卻沒有這種經典之感,只是必須嘆服作者思維嚴密、涉獵廣泛,書中有關大數據的例子真是不少,會給我們的閱讀帶來一定的舒適感和現實感。
已經看過太多網上的關於大數據的文章、案例分析,但是我認為大數據僅僅是一種手段,是我們分析認識世界的諸多手段中的一種。我們既不要拒絕排斥大數據的應用,但也沒必要神話大數據。
在讀此書過程中,稍帶也看了幾部關乎大數據分析的影片,有本書中提到的《少數派報告》,還有《永無止境》、《源代碼》。少數派報告中,人類藉助先知的超能力獲取對犯罪的預測和提前打擊,但是書中和影片中都提到的有一個悖論的問題:如果你預測某犯罪要發生,所以去提前抓捕,阻止了案件的發生,但案件沒有發生,又以什麼為依據來抓捕嫌疑人呢?!所以,我認為大數據的應用在預測方面的作用,不應該涉及任何行政司法等嚴肅方向。因為,人是善變的,也許在預測之後的時間里,由於其它因素影響,t她的決定就突然改變,預測就徹底無效了。大數據,更應該在提供思路、途徑方向,在我們還沒有發現其原理之前,先依照大數據的分析去做些突破常規、有創造性的事情。
從古至今,對數據的統計應用一直沒有中斷過,我們人類在發揮聰明才智的過程中,創造了文字記錄歷史,通過積累和總結為人類的文明發展做出了極大的貢獻。只不過,現在我們利用計算機系統對日益暴漲的數據信息能夠處理的數據量更大、想法更多了。在這個角度上,大數據其實不過是人類信息化發展歷史中的一個必然過程。
大數據爆發的背景,是計算機普及應用、工作和生活信息化、網路尤其是互聯網的發達等因素,為之提供了能夠使用的超大規模數據化信息。就如計算機與人下棋的程序一樣,掌握了足夠的棋局數據、能夠推算每一步之後的可能,快速的運算能力是實現這些的基礎。
大數據本身是無意識的,或者叫無目的,是因為使用的人的發現或主觀意識,才從中抓取到符合所想或支持所想的一些數據和比例。人才是核心。別以為有個所謂的大數據中心就能夠揮斥方遒、指點江山了。這也是我說要對大數據去神化的一點。書中所舉例子,成功的案例其實都基本是一個打破常規、奇思異想的人或一個具備創新思維的團隊,而這個人或團隊一旦陷入對現有模式的僵化應用或崇拜,失敗的結果也是必然。我想說的是,無論是大數據還是快數據什麼的玩意,都僅僅是我們了解世界了解社會的一個角度一種手段,都始終無法擺脫依賴於人的思考這個根本。別一葉障目不見泰山的意味有了大數據就擁有了整個世界,你的心有多大,舞台才有多大。只有當你的思考抵達,那些個曾經沒有價值的數據垃圾,才會煥發出價值!不要荒廢了你的思考這個核心!
作者說大數據只講結果不講原因。這個狀態我認為僅僅是一個過渡時期的表現,如果要實現對大數據分析應用的更加精準、甚至可以作為某種依據,必然要獲得對大數據分析的果的可靠解釋,也從而能對我們現有的行為、制度等獲得新的認識,來進行可行的改變、升級或者重造,大數據的指導意義才發揮更深。
人們都說,中外著述的差距有時是很大的,中國的作家習慣鋪墊和描繪,將簡單的事情復雜化;國外的就相反,喜歡直搗要害,將復雜的事情抽象簡單化。不知道是不是我不很適應國外這類書籍的緣故,對大數據時代一書,我沒有感受到很多的震撼和腦洞大開感,也許和現在各類大數據的文章太多有關,已經把此書的觀點各自領用發揮了一番,也許是我還沒有領會到精華所在。既然人們都奉為經典,那我想或許我應該隔一段時間、換個姿勢,再重讀此書,看看是不是會有新的感受吧。
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鍾情於務虛的觀點。新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。
三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
如今說起新媒體和互聯網,必提大數據,似乎不這樣說就OUT了。而且人雲亦雲的居多,不少談論者甚至還沒有認真讀過這方面的經典著作——舍恩佰格的《大數據時代》。維克托·邁爾舍恩伯格何許人也?他現任牛津大學網路學院互聯網研究所治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人。他的咨詢客戶包括微軟、惠普和IBM等全球企業,他是歐盟互聯網官方政策背後真正的制定者和參與者,他還先後擔任多國政府高層的智囊。這位被譽為:大數據時代的預言家「的牛津教授真牛!那麼,這位大師說的都是金科玉律嗎?並不一定,讀大師的作品一定要做些功課才好讀懂,才能能與之進行一場思想上的對話。
舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:
一、更多:不是隨機樣本,而是全體數據。
二、更雜:不是精確性,而是混雜性。
三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?
我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。
我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。
世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。
大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。
在風險社會中信息安全問題日趨凸顯。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考的答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考的答案。此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的.數據資源,可見大數據時代對公共衛生也產生了重大的影響!在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
現在已經進入到了二十一世紀了,當今社會已經擺脫了上個世紀的那種消息滯後的時代了,我們最應該感謝的就是科學的進步為我們帶來了這么多便利。與此同時,科學的進步還為我們帶來了「大數據」這個讓人類減少了很多工作量的東西。
在這個學期的名著導讀課上我們就被要求讀:《大數據時代》這本書。《大數據時代》是國外大數據系統研究的先河之作,本書作者維克托·邁爾·舍恩伯格被譽為「大數據時代的預言家」,他是一個特別厲害的人,他作為一個教師,他曾經在哈佛大學、牛津大學、耶魯大學和新加坡國立大學等多所世界前列名校任教的經歷。他作為一個科學家,早在2010年就在《經濟學人》上發布了長達14頁對大數據應用的前瞻性研究。他是十餘年潛心研究數據科學的技術權威。他是最早洞見大數據時代發展趨勢的數據科學家之一,也是最受人尊敬的權威發言人之一。現任牛津大學網路學院互聯網治理與監管專業教授,曾任哈佛大學肯尼迪學院信息監管科研項目負責人,哈佛國家電子商務研究中網路監管項目負責人;曾任新加坡國立大學李光耀學院信息與創新策略研究中心主任。並擔任耶魯大學、芝加哥大學、弗吉尼亞大學、聖地亞哥大學、維也納大學的客座教授。
他作為一個研究學者,他的學術成果斐然,有一百多篇論文公開發表在《科學》《自然》等著名學術期刊上,他同時也是哈佛大學出版社、麻省理工出版社、通信政策期刊、美國社會學期刊等多家出版機構的特約評論員。他是備受眾多世界知名企業信賴的信息權威與顧問。他的咨詢客戶包括微軟、惠普和IBM等全球頂級企業;"大數據"在網路上搜索到的解釋是:稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。
大數據不僅改變了公共衛生領域,整個商業領域都因為大數據而重新洗牌。購買飛機票就是一個很好的例子。就像書中寫到2003年,奧倫·埃齊奧尼准備乘坐從西雅圖到洛杉磯的飛機去參加弟弟的婚禮。他知道飛機票越早預訂越便宜,於是他在這個大喜日子來臨之前的幾個月,就在網上預訂了一張去洛杉磯的機票。在飛機上,埃齊奧尼好奇地問鄰座的乘客花了多少錢購買機票。當得知雖然那個人的機票比他買得更晚,但是票價卻比他便宜得多時,他感到非常氣憤。於是,他又詢問了另外幾個乘客,結果發現大家買的票居然都比他的便宜。
飛機著陸之後,埃齊奧尼下定決心要幫助人們開發一個系統,用來推測當前網頁上的機票價格是否合理。作為一種商品,同一架飛機上每個座位的價格本來不應該有差別。但實際上,價格卻千差萬別,其中緣由只有航空公司自己清楚。
埃齊奧尼表示,他不需要去解開機票價格差異的奧秘。他要做的僅僅是預測當前的機票價格在未來一段時間內會上漲還是下降。這個想法是可行的,但操作起來並不是那麼簡單。這個系統需要分析所有特定航線機票的銷售價格並確定票價與提前購買天數的關系。
在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。在這樣的大環境下,常引起我更多的思考和擔憂。
大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。
『叄』 大數據時代究竟帶來了什麼
數據,讓一切有跡可循,讓一切有源可溯。我們每天都在產生數據,創造大數據和使用大數據,只是,你,仍然渾然不知。
網路知道和知乎問答里一直孝毀襲有小夥伴在問這個問題,比如「大數據時代,生活和思維發生了哪些變」、「大數據時代給我們的生活帶來了哪些好處呢?」以及「大數據時代生活將會有怎樣的變化」等等。看著大家熱火朝天的在了解大數據、認識大數據和討論大數據,北大青鳥認為這說明大數據已經漸漸被大眾所接受,也標志著大數據產業正在走向成熟化和大眾化。
那麼大數據時代給我們的生活帶來了哪些便利與好處呢?
1、節約時間,更有效率
先看看我們身邊經常用到的一些服務,比如我們經常用到的快遞、外賣和共享單車,這些APP的後台都有一張「大數據」。快遞後台會根據數百億歷史地址去做預測,用大數據演算法來做智能分單取代了原來的人工分單,可以最大程度地優化路線,降低人工配單時間,還能減少錯誤操作,節省人力成本。快遞只是整個物流領域里漏出的一隻角,大數據技術可以幫助全部環節的物流供給與需求匹配,優化資源配給,另外,根據消費者習慣偏好,大數據可提前預測消費者需求,將商品物流環境和客戶的需求同步,提前計算出運輸路線和配送路線,緩解物流壓力,提高用戶滿意度。
2、讓人們更容易借到錢,讓老賴無處遁形
對於普通人來說,開通信用卡需要提供收入學歷等證明;在農村,你需要向信用社借錢,也需要提供可抵押的不動產等。現階段的信用卡是容易辦到了,可是額度還是遠遠滿足不了剁手黨的需求。去銀行借錢也很不方便,拿號,排隊,填一大堆單子等等。
對於辦理信用卡和貸款來說,銀行需要的都是「指定數據」,指定的收入證明,指定的不動產證明等。而互聯網金融(如:螞蟻花唄、螞蟻借唄和京東白條),他們需要的數據更多,但是這些數據不需要完全由借錢的人來提供,他們會根據借貸人在電子商務的消費數據、綁定的銀行卡數據、行為數據等等來做評分余薯授信。
3、大數據讓人更加聰明更智慧
人的智慧是無窮的,但是人的計算能力和記憶力是有上限的。就拿我們最愛玩的《王者榮耀》來說,你知道哪個英雄的勝率最高嗎?有人會回答是武則天,也有人回答是諸葛亮,更有人回答是亞瑟,但是通過後台統計分析了廣大玩家數以巧兄萬計的數據來看,2017年6月的最新數據,《王者榮耀》勝率最高的前3英雄分別為牛魔、蔡文姬和宮本武藏。根據官方提供的這份數據,用戶可以做出最優的選擇,更有效率的王者。
『肆』 讀《大數據時代》心得體會
讀《大數據時代》心得體會(一)
讀了《大數據時代》後,感覺到一個大變革的時代將要來臨。雖然還不怎麼明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。
“在小數據時代,我們會假象世界是怎樣運作的,然後通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了。”書中幾乎肯定要顛覆統計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。
近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統,跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限於傳統的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。
當我們人類的數據收集和處理能力達到拍位元組甚至更大之後,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性後,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基於一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!
《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先後變化關系規則。兩者似乎是做同一件事。可大數據要的“不是因果關系,而是相關關系”,“知道是什麼就夠了,沒必要知道為什麼”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基於因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。
可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。
其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最後把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那麼大數據會不會通過正視混雜性,放棄因果關系最後反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區別在於人有邏輯思維而機器沒有。《大數據時代》也擔心“最後做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。
還好我知道自己對什麼統計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。
所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。
讀《大數據時代》心得體會(二)
信息時代的到來,我們感受到的是技術變化日新月異,隨之而來的是生活方式的轉變„„我們這樣評論著的信息時代已經變為曾經。如今,大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什麼信息時代轉變為了大數據時代?大數據時代帶給了我們什麼?
信息和數據的定義。維基網路解釋:信息,又稱資訊,是一個高度概括抽象概念,是一個發展中的動態范疇,是進行互相交換的內容和名稱,信息的界定沒有統一的定義,但是信息具備客觀、動態、傳遞、共享、經濟等特性卻是大家的共識。數據:或稱資料,指描述事物的符號記錄,是可定義為意義的實體,它涉及到事物的存在形式。它是關於事件之一組離散且客觀的事實描述,是構成信息和知識的原始材料。數據可分為模擬數據和數字數據兩大類。數據指計算機加工的“原料”,如圖形、聲音、文字、數、字元和符號等。從定義看來,數據是原始的處女地,需要耕耘。信息則是已經處理過的可以傳播的資訊。信息時代依賴於數據的爆發,只是當數據爆發到無法駕馭的狀態,大數據時代應運而生。這是否是《大數據時代》一書所未曾闡述的背景材料?
在《大數據時代》一書中,大數據時代與小數據時代的區別:1、思維慣例。大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什麼”,而不需要知道“為什麼”。作者語言絕對,卻反思其本質區別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利於預測未來。3、結構。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭並進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而並非相離互斥。
數據未來的故事。數據的發展,給我們帶來什麼預期和啟示?銀行業天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的業務發展空間、可以有更精準的決策判斷能力、可以有更優秀的經營管理能力„„可以這些都基於數據的收集、整理、駕馭、分析能力,基於脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風雲變換,穩健贏取未來。
讀《大數據時代》心得體會(三)
這本書里主要介紹的是大數據在現代商業運作上的應用,以及它對現代商業運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現象入手,繼而通過對現象的解剖提出對這一現象的解釋。然後在通過解釋在對未來進行預測,並對未來可能出現的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了Google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20XX年美國的H1N1的爆發地與傳播方向以及可能的潛在患者的事情。Google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發一兩個周之後才可以弄到相關的數據。同時Google的預測與政府數據的相關性高達97%,這也就意味著Google預測數據的置信區間為3%,這個數字遠遠小於傳統統計學上的常規置信區間5%!而這個數字就是大數據時代預測結果的相對准確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近於總體的時候,通過計算得到的描述性數據將無限的趨近於事件本身的性質。而之前採取的“樣本<總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們採取抽樣的方式來測量事物。而互聯網終端與計算機的出現使數據的獲取、存儲與處理難度大大降低,因而相對准確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了IBM追求高精確性的電腦翻譯計劃的失敗與Google只是將所有出現過的相應的文字語句掃描並儲存在詞庫中,所以無論需要翻譯什麼,只要有聯系Google詞庫就會出現翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以Google的電腦翻譯的計劃的成功,表明大數據時代對准確性的追求並不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其准確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之後,維克托又預測了一個在大數據時代催生的重要職業——數據科學家,這是一群數學家、統計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群傢伙的面前展現得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發,比如你在相關的社交網站發表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現了一個新的世界。
讀《大數據時代》心得體會(四)
利用周末,一口氣讀完了塗子沛的大作《大數據》。這本書很好看,行文如流水,引人入勝。書中,你讀到的不是大數據技術,更多是與大數據相關的美國政治、經濟、社會和文化的演進。作為一名信息化從業者,讀完全書,我深刻感受到了在信息化方面中國與美國的各自特色,也看到了我們與美國的差距。有幾個方面的體會,但窺一斑基本能見全貌。
一是政府業務資料庫公開的廣度和深度。近年來,隨著我國信息公開工作的推進,各級政府都在通過政府門戶網站建設積極推進網上政務信息公開,但我們的信息公開,現階段還主要是政府的政策、法律法規、標准、公文通告、工作職責、辦事指南、工作動態、人事任免等行政事務性信息的公開。當然,實時的政府業務資料庫公開也已經取得很大進步。在中國政府門戶網,可以查詢一些公益資料庫,如國家統計局的經濟統計數據、環保部數據中心提供的全國空氣、水文等數據,氣象總局提供的全國氣象數據,民航總局提供的全國航班信息等;訪問各個部委的網站,也能查到很多業務數據,如發改委的項目立項庫、工商局的企業信用庫、國土資源部的土地證庫、國家安監總局的煤礦安全預警信息庫、各類工程招標信息庫等等。這是一個非常大的進步,也是這么多年電子政務建設所取得的成效和價值!但是,政務業務資料庫中的很多數據目前還沒有實現公開,很多數據因為部門利益和“保密”等因素,還僅限於部門內部人員使用,沒有公開給公眾;已經公開的數據也僅限於一部分基本信息和統計信息,更多數據還沒有被公開。從《大數據》一書中記錄的美國數據公開的實踐來看,美國在數據公開的廣度和深度都比較大。美國人認為“用納稅人的錢收集的數據應該免費提供給納稅人使用”,盡管美國政府事實上對數據的公開也有抵觸,但民願不可違,美國政府的業務數據越來越公開,尤其是在奧巴馬政府簽署《透明和開放的政府》文件後,開放力度更加大。DATA.GOV是美國聯盟政府新建設的統一的數據開放門戶網站,網站按照原始數據、地理數據和數據應用工具來組織開放的各類數據,累積開放378529個原始和地理數據集。在中國尚沒有這樣的數據開放的網站。另外,由於制度的不同,美國業務信息公開的深度也很大,例如,網上公布的美國總統“白宮訪客記錄”公布的甚至是造訪白宮的各類人員的相關信息;美國的FedSpending網站,能夠逐條跟蹤、記錄、分析聯邦政府每一筆財政支出。這在中國,目前應該還沒有實現。
二是對政府對業務數據的分析。目前,中國各級政府網站所提供的業務數據基本上還是數據表,部分網站能提供一些統計圖,但很少能實現數據的跨部門聯機分析、數據關聯分析。這主要是由於以往中國政務信息化的建設還處於部門建設階段。美國在這方面的步伐要快一些,美國的DATA.GOV網站,不僅提供原始數據和地理數據,還提供很多數據工具,這些工具很多都是公眾、公益組織和一些商業機構提供的,這些應用為數據處理、聯機分析、基於社交網路的關聯分析等方面提供手段。如DATA.GOV上提供的白宮訪客搜索工具,可以搜尋到訪客信息,並將白宮訪客與其他微博、社交網站等進行關聯,提高訪客的透明度。
三是關於個人數據的隱私。在美國,公民的隱私和自有不可侵犯,美國沒有個人身份證,也不能建立基於個人身份證號碼的個人信息的關聯,建立“中央數據銀行”的提案也一再被否決。這一點,在中國不是問題,每個公民有唯一的身份信息,通過身份證信息,可以獲取公民的基本信息。今後,隨著國家人口基礎資料庫等基礎資源庫的建設,公民的社保、醫療等其他相關信息也能方便獲取,當然信息還是限於政府部門使用,但很難完全保證整合起來的這些個人信息不被泄露或者利用。
數據是信息化建設的基礎,兩個大國在大數據領域的互相學習和借鑒,取長補短,將推進世界進入信息時代。我欣喜地看到,美國政府20XX年啟動了“大數據研發計劃”,投資2億美元,推動大數據提取、存儲、分析、共享、可視化等領域的研究,並將其與超級計算和互聯網投資相提並論。同年,中國政府20XX年也批復了“十二五國家政務信息化建設工程規劃”,總投資額估計在幾百億,專門有人口、法人、空間、宏觀經濟和文化等五大資源庫的五大建設工程。開放、共享和智能的大數據的時代已經來臨!
我精心推薦
『伍』 大數據時代,人們的生活會怎麼改變
現代的生活不再是自行車滿大街跑,出行的便利,物質的豐厚,信息的快速交流,都離不開大數據,在這個大數據時代,我們的生活確實發生了很大的變化。
比如說最受歡迎的淘寶,支付寶,微信等這些都離不開大數據,當你打開網頁瀏覽你喜歡的物品時,等你下次進入頁面時就會發現,頁面出現了上一次你瀏覽的物品的同類,這種神奇正是大數據的影響,大數據不僅改變著人們的購物方式,還影響著人們的出行,現在的共享單車,滿大街的都是,方便了人們的最後一站,同時也很環保的,還有共享汽車的出現,同樣方便了百姓的生活。
最為常見的就是購物時物流信息的跟蹤,網上買東西時,賣家發貨後,大數據就會顯示你的貨物到哪裡了,預計啥時候到你身邊,這些都是大數據帶給我們的便利,大數據方便了人們生活的方方面面,無論是衣食住行,還是吃喝玩樂,都會有所應用,和以前比真的是發生了很大的變化。現在的銷售一部分都是靠在網上賣,或者是實體店與物聯網相結合,醫療方面,遠程醫療診斷,遠程手術指導等都和我們的大數據密不可分。
現代快速發展的經濟,人們在大數據時代,壓力也是越來越大,總之為了生活,為了我們更好的明天每個人都在忙忙碌碌,所以,我們要感謝大數據帶給我們的一切,珍惜大數據帶給我們的所有美好。
『陸』 大數據時代帶來了什麼
當在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的溝通越來越緊密,生活也越來越方便春賣讓,大數據就是這個高科技時代的產物.大數據時代帶來了什麼?
在當今社會,大數據的應用越來越突出他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據發展的領域都在協助企業不斷發展新業務,創新運營模式.有了大數據這個概念,對消費者行為的判斷、產品銷售量的預測、正確的營銷范圍和庫存補給得到了全面的改善和優化.
大數據在互聯網行業是指互聯網公司在日常運營中生成、積累的用戶網路行為數據的現象.這些數據的規模太大,不能用g或t來衡量.
大數據有多大?一組名為網上一天的數據告訴我們,一天中,互聯網產生的所有內容都可以刻上1.68億張DVD發送的郵件多達2940億封(相當於美國兩年的紙質信件數量)的社區投稿達到200萬封(相當於時代雜志770年的文字數量)的銷售手機為37台.8萬台,比世界上每天出生的嬰兒數量高37台.1萬?
截止到2012年,數據量從TB(1024GB=1TB)水平上升到PB(1024TB=1PB)、EB(1024PB=1EB)甚至ZB(1024EB=1ZB)水平.國際數據公司(IDC)的研究結果配陸顯示,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量達到1.82ZB相當於世界上每個人產生200GB以上的數據.截止到2012年,人類生產的所有印刷材料的數據量為200PB,全人類歷史上所說的所有的數據量約為5EB.IBM的研究表明,人類文明整體獲得的所有數據中,90%是在過去兩年扒局內產生的.到了2020年,世界上產生的數據規模將達到今天的44倍.每天全世界上傳5億張以上的照片,每分鍾共享20小時的視頻.但是,即使是人們每天創造的所有信息,包括語音通話、電子郵件和信息在內的各種通信,上傳的所有照片、視頻和音樂,其信息量也無法與每天創造的人們自己的數字信息量匹配.
這種走勢會持續下去.我們現在還處於所謂物聯網的初級階段,而隨著技術的成熟,我們的設備、交通工具和快速發展的可穿戴技術可以相互連接和溝通.科學技術的進步將創造、捕捉和管理信息的成本降低到了2005年的六分之一,從2005年開始,硬體、軟體、人才、服務上使用的商業投資也增加了50%,達到了4000億美元.
大數據的精髓
『柒』 大數據時代給我們的生活帶來了哪些好處呢
1.大數據方便我們的生活:
自助繳水、電、燃氣、電視費,汽車搖號、手機充值、違章內查詢、公積金查容詢、手機代開發票、查詢法院案件進度……這些,都在一個APP可以搞定,這就是運用大數據促進保障和改善民生的典型案例。此外,大數據還運用到智能家居中,智能照明系統等。
2.大數據為醫療提供便利:
數據完善了世界的醫療保健,隨著醫療記錄的數字化,醫生和其他醫療保健專業人員可以跟蹤他們的患者,還可以幫助遠方的患者。許多急救醫療專業人士正在利用大數據和技術來提高拯救患者生命的能力,全球醫療保健不僅可以讓從業人員與他人分享知識,還可以在疾病蔓延至疫情蔓延之前隔離和防治疾病。
3.大數據讓出行更加智慧:
如今,人們的出行越來越離不開大數據的幫助,利用電子地圖,初來乍到的遊客可以在陌生的城市自由行走;忙碌一天的上班族可以查詢最快回家的交通方式;計程車司機通過語音導航,知曉前方道路情況,避免堵車或超速違章……
大數據還是緩解交通壓力的利器,它可以預測未來交通情況,為改善交通狀況提供優化方案,這有助於交通部門提高對道路交通的把控能力,防止和緩解交通擁堵。
『捌』 大數據時代對你來說意味著什麼
大數據時代對我們而言意味著方便、便捷。
毫無疑問,我們已經進入了大時代的前期,產品日新月異,高新技術也不斷發展為我們而服務。
就拿手機來說,各種APP層出不窮,外賣、計程車、租賃、旅遊等等都可以通過手機來達到你的目的。衣食住行面面俱到,人們不用出門就可以知道天下事。