Ⅰ 如何做電商數據分析
目前我也從事數據分析,主要用到的是數據透視表;主要是提供一些報表供領導參考。其實我感覺應該用到了5W2H分析法,領導還跟我說過SWTO矩陣分析法,讓我下去仔細研究。
據說數據分析要有以下的一些步驟:明確分析思路,數據收集,收集存儲,數據整理,數據分析,數據呈現,報告撰寫等。
電商的數據分析,我個人以為,應該至少有銷量分析,包括銷量,銷售額,客戶人數,地區分布,top30等,我們公司還有頁碼分析;倉庫分析,包括庫存清倉表,庫存預警表,銷售渠道分析;購買意向性分析,季節性,促銷活動等對銷售的影響等。具體問題具體分析,我知道的另一家電商分析卻採用的是數學模型分析預測的。電商數據分析,往往可以通過這樣幾個步驟:
1.建立完整的數據追蹤體系
2.對獲取到的數據報表進行分析,找出其中問題
3.針對從數據中找到的問題提出解決方案,評估解決方案的實現成本,並著手改進
一、首先建立數據追蹤體系。
電商網站中比不可少的是網站的點擊流數據,這個數據通常可以通過安裝數據追蹤工具來實現:如GoogleAnalytics,CNZZ等。需要注意的是,電商網站中往往會涉及到網站銷售,因此需要對網站數據統計工具進行配置,獲得銷售訂單數據。
除此之外,除了點擊流數據還需要其他數據,比如不同的銷售渠道會涉及到不同的數據:
1.搜索引擎優化,搜索引擎站長工具後台數據,其他SEO數據
2.搜索引擎營銷(競價)競價後台數據
3.社交媒體:社交媒體後台數據
4.展示類廣告投放廣告搭晌畝投放平台數據等
從這些後台中拉出報表,看趨勢,按照不同的維度細分,找謹改出問題
三、提出解決方案
根據數據中發現的問題,結合業務需要,給出解決的方法。重要的是需要評估好工作量和成本,不可以做盲目的改動。電商數據積累的越來越多,人工處理分析很苦難,這就要藉助大數據分析工具了,推薦大數據可視化分析工具大數據魔鏡,有5個版本,雲平台版本,永久免費,基礎企業版離線安裝使用也是免費的,另外還有標准企業版,高級企業版和hadoop版,可以針對大數據的企業的需求定製解決方案,做的很專業。謝謝採納也是學徒級別,學習中!經濟基知森礎環境(網路可達性、物流可達性、支付可得性);
市場活躍狀況及供需關系(網路活躍度指數、網路消費價格指數、網路經營價格指數、網路融資環境指數);
經濟規模走勢(網路消費指數、網路投資指數、網路貿易指數);
經濟總量(電子商務經濟增加值、電子商務就業量)
洛陽儒墨科技公司——產業電商經濟數據監測、預測與政策模擬平台
Ⅱ 電商數據分析常用方法有哪些
1.對比分析
橫向對比:簡單的說就是和誰對比?假如說我們上個月店鋪的成交額增長了30%,那麼我們是不是應該開心呢?
這里我們還要參考競爭對手的成交額,數據時代,我們可以很輕易的拿到競爭對手的相關數據。
縱向對比:我們可以把近15天的成交額以線條的形式顯示出來,這樣就可以很清楚的看到近期的成交額是否達到預期,有沒有下降趨勢,當然我們也可以以季度、月或周為單位。
2.轉化分析
這里牽涉到一個問題,評判一家電商企業需要用到的一些日常統計指標:
店鋪的目標用戶數量:一家店鋪的成交量,反映的是這家店鋪對於市場的影響以及用戶對於產品的滿意度。
平均消費金額:店鋪每年平均每位用戶消費了多少,以此來定位目標人群,確定是否達到盈利的指標。
用戶的復購率:判別產品滿意度,假如用戶購買過一次後,還會購買第二次,說明用戶對於你的產品還是很滿意的,這樣既節省了市場推廣費用,用戶也會推薦給更多朋友來夠買。
3.留存分析
我們通過活動等形式把用戶引流到我們的流量池裡,但是經過一段時間後,用戶可能就會慢慢的流失了。那些留下來或者經常訪問我們店鋪的用戶稱之為留存。
我們常常用到的日活躍用戶量、月活躍用戶量、季度活躍用戶量,來檢測我們店鋪的流量。有的時候可能會看到我們的日活,在一段時期內都是逐漸增加的,以為是非常好的現象,但是如果沒有做留存分析的話,這個結果很可能是一個錯誤的。
留存是產品的核心,用戶只有留下來,我們的產品才能不斷增長。如果我們什麼都不做的話,用戶很快的就流失了。
4.產品比價
大部分電商公司會頻繁搞促銷,一般來說每次打的旗幟無非是全網最低,但是如何才能確定是全網最低呢?
這時候需要我們去搭建一個比價系統,這個比價系統的目的主要是為了去抓取各大電商平台商品的價格。通過各大電商平台的價格以及優惠額,來制定你自己的策略。
關於電商數據分析常用方法有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
Ⅲ 大數據在電商行業的應用是怎樣的如何利用大數據做競品分析
如圖說明大數據在電商的應用已經很全面了,現在隨著市場流量成本變高,流量獲取困難,版很多品牌方已經認識到權利用數據指導業務,管理業務的重要性。
而利用大數據做競品調研主要市場銷量銷額的份額、熱銷SKU、品牌方的定價、促銷政策、投放渠道等幾個維度,可以了解用戶的需求發現市場潛在機會,對比品牌間在市場的競爭力,跟自己的業務情況結合分析做出營銷策略。
大數據分析關鍵點是對海量數據的挖掘,清理、處理,要麼自己組建數據分析團隊,需要一個全面的技術過硬的團隊搭建還是不容易的,要麼是第三方合作,購買數據報告,市場數據分析全面但是成本太高了,或者用第三方數據分析Saas軟體。提供數據源可視化的觀測分析、像是慢慢買、奧維雲網、魔鏡都是做大數據分析系統的,只是每個深耕不同行業、數據源獲取的方式不一樣。
Ⅳ 如何做電商數據分析
目前我也從事數據分析,主要用到的是數據透視表;主要是提供一些報表版供領導參考。其實我感覺應該權用到了5W2H分析法,領導還跟我說過SWTO矩陣分析法,讓我下去仔細研究。
據說數據分析要有以下的一些步驟:明確分析思路,數據收集,收集存儲,數據整理,數據分析,數據呈現,報告撰寫等。
電商的數據分析,我個人以為,應該至少有銷量分析,包括銷量,銷售額,客戶人數,地區分布,top30等,我們公司還有頁碼分析;倉庫分析,包括庫存清倉表,庫存預警表,銷售渠道分析;購買意向性分析,季節性,促銷活動等對銷售的影響等。具體問題具體分析,我知道的另一家電商分析卻採用的是數學模型分析預測的。
Ⅳ 電商需要掌握的數據分析要素有哪些
1. 店鋪的點擊量數
這是最能分析一個店鋪運營結果的數據。一家銷量高、推廣效果好的店鋪,通常點擊率都非常高,這和最後店鋪的營業額有直接關系,如果點擊率不高,可以從這個數據中獲取,從而分析原因,進而可以作為改善運營、提高轉化率的一種方式。
2. 訪客分析
只有全面分析客戶,才能了解他的價值,進而進行有針對性的營銷。需要注意以下幾點:1。區域比例訪客比較分析產品類別中搜索度較高的三個詞,快速找出客戶所在位置,完美投遞。還可以分析主要客戶群,根據客戶群准確定位,做好客戶需求。
3. 直通車公式分析
賣家可以通過直通車更准確的分析網店的數據,然後進行合理的調整。數據可以從以下幾個方面進行分析:1 .轉化率點擊轉化率=總交易量/點擊量X100 %;2.投入產出比投入產出比=交易總額/成本;3.平均點擊成本平均點擊成本=成本/點擊量;商家可以很好的利用這些方面的數據分析來准確的分析直通車數據。當賣家利用直通車做好對網店的流量、訪客、各種數據的分析,就能讓自己的網店運營更精準,銷量也會穩步增長。
關於電商需要掌握的數據分析要素有哪些,環球青藤小編今天就先和您分享到這里了。如若您對互聯網營銷有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於文案優化、廣告營銷文案寫作的方法及素材等內容,可以點擊本站的其他文章進行學習。
Ⅵ 一個企業,特別是電商類的,如何進行大數據分析
大數據不僅僅意味著數據大,最重要的是對大數據進行分析,只有通過分析才能獲取很多智能的、深入的、有價值的信息。下面介紹大數據分析的五個基本方面——
預測性分析能力:數據挖掘可以讓分析員更好地理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
數據質量和數據管理:通過標准化的流程和工具對數據進行處理,可以保證一個預先定義好的高質量的分析結果。
可視化分析:不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求,可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
語義引擎:由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析、提取、分析數據,語義引擎需要被設計成能夠從「文檔」中智能提取信息。
數據挖掘演算法:可視化是給人看的,數據挖掘就是給機器看的,集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值,這些演算法不僅要處理大數據的量,也要處理大數據的速度。
據我所知多瑞科輿情數據分析站大數據分析還可以。針對單個網站上的海量數據,無遺漏搜集整理歸檔,並且支持各種圖文分析報告;針對微博或網站或微信,活動用戶投票和活動用戶評論互動信息整理歸檔,統計分析精準預測製造新數據;針對某個論壇版塊數據精準採集,數據歸類,出分析報告,准確定位最新市場動態;針對某個網站監測用戶的操作愛好,評定最受歡迎功能;針對部分網站,做實時數據抽取,預警支持關注信息的最新擴散情況;針對全網數據支持定向採集,設置關鍵詞搜集數據,也可以劃分區域或指定網站搜集數據針對電商網站實時監測評論,歸類成文檔,支持出報告。
大數據會影響整個社會的發展,主要看是想要利用數據做什麼了
Ⅶ 電子商務行業大數據分析採用的演算法及模型有哪些
第一、RFM模型通過了解在網站有過購買行為的客戶,通過分析客戶的購買行為來描述客戶的價值,就是時間、頻率、金額等幾個方面繼續進行客戶區分,通過這個模型進行的數據分析,網站可以區別自己各個級別的會員、鐵牌會員、銅牌會員還是金牌會員就是這樣區分出來的。同時對於一些長時間都沒有購買行為的客戶,可以對他們進行一些針對性的營銷活動,激活這些休眠客戶。使用RFM模型只要根據三個不同的變數進行分組就可以實現會員區分。
第二、RFM模型
這個應該是屬於數據挖掘工具的一種,屬於關聯性分析的一種,就可以看出哪兩種商品是有關聯性的,例如衣服和褲子等搭配穿法,通過Apriori演算法,就可以得出兩個商品之間的關聯系,這可以確定商品的陳列等因素,也可以對客戶的購買經歷進行組套銷售。
第三、Spss分析
主要是針對營銷活動中的精細化分析,讓針對客戶的營銷活動更加有針對性,也可以對資料庫當中的客戶購買過的商品進行分析,例如哪些客戶同時購買過這些商品,特別是針對現在電子商務的細分越來越精細,在精細化營銷上做好分析,對於企業的營銷效果有很大的好處。
第四、網站分析
訪問量、頁面停留等等數據,都是重要的流量指標,進行網站數據分析的時候,流量以及轉化率也是衡量工作情況的方式之一,對通過這個指標來了解其他數據的變化也至關重要。
Ⅷ 電商數據分析指標都有哪些該如何進行分析
此文是對最近學習的電商相關知識點做一個鞏固
傳統零售利用二八法則生存,電商靠長尾理論積累銷售。
傳統零售是小數據,電商是大數據。
傳統零售是「物流」,零售過程就是商品的流動;電商是「信息流」,顧客通過搜索、比較、評論、分享產生信息,達到購買的目的。
傳統零售注重體驗感,電商注重服務和效率。
傳統零售是做加法,電商是做乘法。傳統零售是通過一家家店擴大影響力,電商通過資金的投入迅速搶占市場。
傳統零售的主要成本是房租和人工成本,電商的主要成本是物流和營銷成本。
總結:電商和傳統零售雖有千萬種差別,但總歸都是零售,融合是二者註定的趨勢,即現在火熱的新零售。
傳統零售的數據主要是進銷存數據、顧客數據和消費數據。電商的數據卻復雜得多,數據來源渠道也很多樣化
電商數據來源廣泛,常規的流量數據、交易數據、會員數據在品牌的交易平台都有提供。一些第三方網站也提供數據源及分析功能。
1、網路統計:包括流量相關的網站統計、推廣統計、移動統計三部分內容。分析內容包括趨勢分析、來源分析、頁面分析、訪客分析、定製分析和優化分析。
2、谷歌分析:包括流量分析工具、內容分析、社交分析、移動分析、轉化分析、廣告分析幾部分內容。
3、Crazy egg熱力圖:主要特色是對頁面熱點追蹤分析的熱力圖。
4、CNZZ數據專家(友盟):包括站長統計、全景統計、手機客戶端、雲推薦、廣告管家、廣告效果分析和數據中心等。
還有一些無需埋點監測數據的產品,如GrowingIO、神策數據、諸葛io等。
以下為用思維導圖進行梳理的電商數據分析指標,總共包括六大類
對訪問你網站的訪客進行分析,基於這些數據指標可以網頁進行改進
這里需要注意兩個點
1)影響因素不同:UV 價值更受流量質量的影響;而客單價更受賣的貨的影響;
2)使用場景不同:UV 價值可以用來評估頁面 / 模塊的創造價值的潛力;客單價可以用來比較品類和商品特徵,但一個頁面客單價高,並不代表它創造價值的能力強,只能得出這個頁面的品類更趨近於是賣高價格品類的。
如果網站是為了幫助客戶盡快完成他們的任務(比如:購買,答疑解惑),那麼在線時長應當是越短越好;如果希望客戶一同參與到網站的互動中來,那麼時間越久會越好。所以,分析在線時長是否越長越好,要根據產品定位來具體分析
從注冊到成交整個過程的數據,幫助提升商品轉化率。
對於一個新電商來說,積累數據,找准營運方向比賣多少貨,賺多少錢更重要。這個階段主要 關注流量指標 ,指標如下:
對於已經經營一段時間的電商,通過數據分析 提高店鋪銷量 就是首要任務。此階段的重點指標是 流量和銷售指標 ,指標如下:
對於已經有規模的電商,利用數據分析 提升整體營運水平 就很關鍵。重點指標如下:
數據指標分為追蹤指標、分析指標和營運指標,營運指標就是績效考核指標。一個團隊的銷售額首先是追蹤出來的,其次是分析出來的,最後才是績效考核出來的。銷售追蹤自然是按天、按時段說話,分析一般是以周和月為單位,績效考核常常是以月為主、以年為輔。
執行人員側重過程指標,管理層側重結果指標。對於數據分分析人員來說要學會根據職位提供不同的數據。
1、無流量不電商,對於流量分析,我們常用漏斗圖來做分析,幾乎每個流量的細分都可以用到漏斗圖。
2、漏斗圖就是一個細分和溯源的過程,通過不同的層次分解從而找到轉化的邏輯。
3、漏斗圖的弱點,就是反應一條轉化路徑的形態,我們可以稍加修改實現漏斗圖的對比功能。
1、流量的質量分為質和量兩方面,只有質沒有量的流量是沒有多少實際價值的,流量的質體現在不同的營銷目的上,例如獲得點擊、注冊、收藏、購買或者獲取利潤的目的。
2、可以通過四象限分析圖來對比分析流量的質量。下圖是針對購買的轉化率和流量的四象限圖,其中第一象限的流量應該是高質量的,流量和轉化率均高於平均值;第二象限渠道的流量轉化率高,但量不大,通過搜索來的流量大部分屬於此類;第四象限流量屬於質低量高,站外購買的流量這種情況比較多;第三象限屬於質低量低的雙低流量,不用特別維護,任其發展即可。
3、圖中的Y軸可以根據具體的分析目的替換成點擊率、注冊率、收藏率、ROI(單元產出)等進行對比分析。
四象限分析圖中,X軸、Y軸、分析對象都可以根據不同的目的進行替換。
4、散點圖的四象限分析可以結合趨勢,或者演變成四象限氣泡圖,氣泡圖的大小為ROI,這種四象限圖信息量更大。
1、電商的銷售針對比傳統零售復雜很多,主要復雜在流量的多層次多渠道上,互聯網的好處是幾乎能將用戶的每個動作記錄下來,然後我們從中找到關鍵點進行診斷即可。下圖,是一個類似杜邦分析的圖,從值(圖中紅色)和率(圖中藍色)兩個方面,訂單、新客、老客三個維度將銷售額拆成五個層次,每個層次間具有加或乘的邏輯關系。
2、銷售額是一個結果指標,圖中的20個指標是過程指標,每個指標的變化都會影響最終的銷售額,基本都是正相關。(折扣和銷售額的關聯會稍微復雜一些)
3、通過上圖,使用對比、細分的原則分析可以判斷出哪兒些指標變化對銷售額產生了影響。
參考書籍為《數據化管理——洞悉零售及電子商務運營》