⑴ 從大數據平台到數據治理,智慧醫院大數據何去何從
背景:上周看了阿里章劍鋒寫的一篇大數據文章,加上對健康醫療大數據相關政策的分析,想就醫院大數據的建設說幾點看法,畢竟國家健康大數據戰略下智慧醫院大數據是必然先驅,有大數據抱負的醫院信息科大部分還在摸著石頭找過河的路,而其他行業的經驗還是很有借鑒意義的。
2019年6月,中國衛生信息與健康醫療大數據學會會長金小桃(中國衛生信息學會會長)在6月20日的2019(14th)中國衛生信息技術/健康醫療大數據應用交流大會上發布《新一代醫院數據中心建設指南》(盡管找遍網路都沒找到這個指南,可能還在整理中...)
而基本同一時間,國家衛健委統計信息中心初版了《醫院數據治理框架、技術與實現》,對「醫院大數據」明確為「醫院數據」,這也是我一直在解釋的名詞,正符合大數據的正確引導和深度理解。
2019年的廈門CHIME,中國醫院協會信息專業委員會發布了《醫療機構醫療大數據平台建設指南(徵求意見稿)》。在結合2015年以來的每年一批的健康醫療大數據國家戰略政策指導,大數據國家戰略的決心和國家支持引導的力度可見一斑,而醫院側信息化的現階段熱點就是醫院信息平台,信息平台的熱方向就是醫院大數據和人工智慧,當然這脫離不了首先建設完備的醫院信息化系統。我們再來看一個政策:
2018年4月,國家衛生健康委員會規劃與信息司發布了《全國醫院信息化建設標准與規范(試行)》。它是在2016年《醫院信息平台應用功能指引》和2017年《醫院信息建設應用技術指引(試行)》基礎上,形成的較為完整的醫院信息系統體系框架。在《醫院信息平台應用功能指引》明確醫院信息化功能和在《醫院信息化建設應用技術指引》上明確了醫院信息化技術。看醫院信息化完整地圖,雲計算、大數據、物聯網以及傳統信息化支撐的是金字塔頂端的人工智慧,最近幾年AI大數據經常被一起稱呼,不可能脫離信息化基礎和大數據基礎去建設AI的空中樓閣。所以大數據和AI找同一廠家(或者同一生態圈)建設會是最好的選擇,畢竟做AI的一定先做數據,但是做數據的卻不一定做得好AI,看市場上那麼多數據搬運工公司就清楚了,這也是造成醫院大數據前期建設重數量輕質量的主要原因。
再來看大數據的宏觀發展環境,從2009年閃亮登場到2015年泡沫頂峰,已經邁過了甘特曲線的2個關鍵節點,現在正處於穩步發展。
大數據技術的2個維度是我覺得章劍鋒最深刻的大數據概念解析,垂直的技術棧維度和水平的數據流維度,也就是垂直的平台+應用,水平的數據處理。何為大數據?這一輪數據到大數據的概念,水平維度的數據處理理論正式出現已經30年了並沒有大變化(這個維度數據大數據都應該稱為數據處理),而聚變的是技術棧維度:hadoop、spark、storm、flink等等,但是閃亮的hadoop不也在沒落么,因為技術為業務而生,符合業務需求的才是最合理的技術。而醫院大數據建設出的第二個比較大的問題就是追求新技術典型如hadoop,就醫院數據體量和應用需求,hadoop真不是最佳實踐,而繁雜的運維和龐大高昂的資源硬體成本可能是壓垮信心的根本原因。
再來看醫院大數據上雲,盡管很多人覺得國內是數據隱私和數據安全比較寬松的環境,但是醫院數據側一直都比較謹慎。雖然最近國內出了政策,允許醫院將患者數據對患者開發,但是把醫院數據放在廠家提供的雲上,對於大型三甲醫院目前依然不現實。醫院除了診療水平,最重要的資產就是醫院數據,醫院數據又比較敏感,醫院本身是要遵從嚴格監管的,所以按照當前形勢,更適合醫院的還是數據在醫院(很多醫院通過免費大數據戰略合作協議讓醫院數據上醫某雲)。
還是回到大數據平台,伴隨著大數據概念火熱,hadoop缺在逐步沒落,就大數據技術棧本身,不存在hadoop架構和oracle架構的選擇(在這個點上大量概念混淆,oracle和hive HDFS只是存儲方案的差異,hadoop是大數據完整技術棧),只存在數據存儲架構的選擇,根據數據量、數據使用方式、數據分析方式決策更合理的架構,選了hadoop就不能用oracle嗎?這是醫院大數據平台建設里經常混淆的點。根據應用場景選擇存儲方案,根據數據分析需求選擇技術棧,如果不清楚需求,何不來個混合架構搞個萬金油?其實醫院大數據,oracle是可以用的,國產化另論。如果定了oracle是不是就不能用hadoop了呢?
這里又引申到另一個問題,Hadoop、Spark、Flink等大數據技術的發展,醫院大數據建設技術要求必提,但是真正建了之後會發現好像哪裡不對勁,難道大數據就是這么高大上到信息科要大量學習新技能嗎?能用的技術才是好技術,自己都用不了的一定有問題。其實醫院信息科真正需要的不應該是Hadoop、Spark、Flink等大數據技術的堆砌,應該是信息科都可以簡單上手操作做數據治理,以這些技術為基礎的能解決業務問題的產品。也即真正的易操作、專業化、流程化、全鏈路的數據平台(絕對不是hadoop),這個平台准備後續專門介紹。
智慧醫院從大數據平台的建設到數據治理平台建設,大部分是從技術棧的hadoop轉向數據專業治理本身,也就是從垂直的技術棧維度轉換為橫向的數據流維度,還是要平台,而此平台已經不再hadoop。數據治理到底如何做呢?參見前一篇文章《如何做數據治理》,數據治理最早成熟應用是在零售業、銀行業,以及運營商,現在每個AI互聯網公司都會有數據部門,醫院數據治理可能還是先解決自身的業務問題本身,能不能發展到數據中台,還要看醫院戰略,而不是各種廣告中的概念。
還有一點需要補充的,中美貿易摩擦,美對中進行了嚴格的出口管制,無論從硬體還是軟體,能支持國產化會是一個更好的選擇。
最後,數據治理本身是一個重運維重交付重實施的事情,當前市場大量充斥草台班子的數據搬運,沒有深度長期的價值挖掘,再好的搬運工做的也是勞民傷財的事,參考谷歌和梅奧的十年戰略合作協議,這才是醫院大數據真正有遠見的規劃。
簡單總結下,智慧醫院大數據發展趨勢:
1. 政策會頻繁頒布,醫院大數據(數據)建設一定是必然,目前已經開始穩步發展;
2. 大數據平台概念會褪去,醫院真正需要的一定是全產業鏈整合的數據管理平台;
3. 智慧醫院會更加重視數據流即數據治理本身,現階段還需要一套簡單上手的平台輔助;
4. 智慧醫院大數據中心依舊以私有雲機房為最佳方案;
5. 智慧醫院大數據中心需要兼容國產化需求;
6. 找一家AI大數據公司作為長期戰略合作夥伴將更加現實,畢竟只講大數據的大部分都是數據搬運工;
⑵ 「醫療數據說」近百家企業僅跑出4家獨角獸醫療大數據「金礦」待啟
醫療大數據概念是從何時出現的?
早期,醫療大數據並非一個單獨行業,更多的作為產業中的一個「元素」。上世紀90年代末,包括東軟、衛寧 健康 、萬達信息等老牌信息化廠商在公立醫院建立根據地,為我國醫療大數據發展打下了基礎。
經過十多年的 探索 ,國內的醫療大數據產業鏈已經初步形成。政策對於醫療大數據的監管和整合逐步推進,產業中也出現了以醫療大數據存儲、挖掘、分析以及應用的創業企業。但總體來看,我國醫療大數據的發展速度並不快。
這一方面歸咎於我國大數據的總量大,但質量較低、分散分布、不完整等特點;另一方面,由於醫療行業的高度政策導向性,國家對於醫療大數據的管控步伐走的仍然比較保守。
億歐大 健康 對國內醫療大數據領域的企業進行了盤點,發現這些企業呈現出三大特徵,並且在醫療大數據藍海里,仍有座「金礦」亟待被挖掘。
根據醫療大數據產業鏈,億歐大 健康 將其梳理為三個維度:基礎層、技術層和應用層。基礎層負責數據的採集、轉換,技術層專注數據存儲、加工、清洗和分析,應用層則聚焦在數據的價值挖掘的場景應用上。
在億歐大 健康 的盤點中,有部分企業如騰訊、華大基因等企業在三個維度均有覆蓋,也有例如博識醫療雲等企業專注於醫療大數據的部分環節。
從上述三大層面來看,企業規模分異較為明顯。 基礎層多集中在上市公司,且多為醫療器械和醫療信息化企業。 由於近幾年新成立的創業公司大多並沒有太長時間用來沉澱數據,這一行為甚至與其商業化的方向相悖,因此,醫療 健康 大數據的「供給端」集中出現在與實體醫院相連的HIT廠商和醫療器械尤其是智能可穿戴設備中。
細觀技術層中的企業,大多是以提供醫療 健康 技術解決方案的形式進行服務。 這一類公司通常首先立足於某一病種,並以AI技術和數據加工分析能力為技術壁壘,服務覆蓋醫療機構、葯企、保險等幾大角色。不同的是,各公司所覆蓋的細分和范圍有所差異。有意思的是,技術層的公司融資輪次都不高,在33家中,B輪及以下的企業有23家,上市公司僅有3家。
這一現象在應用層雖然有所緩解,但企業的體量分異仍然很明顯。在應用層統計的34家企業中,B輪及以下公司占據50%,不過,表格中出現不少上市公司的身影。這一方面體現出上市公司醫療逐漸開始注意到了醫療大數據這塊「肥肉」,另一方面,也不可避免的加劇了醫療大數據應用層的競爭程度。
很顯然,相比AI應用於醫療輔助診斷或是互聯網醫療,醫療大數據遠還沒有到達爆發的節點,對比其他行業,應用程度也沒有零售、金融等行業成熟。但根據IDC Digital的預測,截至2020年醫療數據量將達40萬億GB,是2010年的30倍。
這是一片潛在的金礦,那麼在醫療 健康 產業中,大數據有哪些應用場景?億歐大 健康 總結出了6個方向。
1、大數據+醫葯研發。 在初步應用中,醫療大數據在縮短研發周期、降低研發成本、處理患者數據、模擬疾病模式等方面均有出色的表現,這給入局者們增強了不少信心。
2、大數據+臨床決策。 在醫療機構信息化建設的架構上,醫療大數據可以對臨床決策起到很好的輔助作用。目前來看,醫療大數據在輔助臨床精準醫療、疾病風險預測方面應用較多,例如在患者出現某症狀之前就計算出患病概率和時間節點,以便在臨床上進行早期干預。
3、大數據+互聯網醫療。 曾有行業人士表示,互聯網+醫療的核心內容是大數據。在這一場景中,企業比較多的做法是將大數據和互聯網醫院、養老、 健康 管理和居民電子 健康 檔案相結合,並輔助政府進行區域性 健康 信息管理。
4、大數據+醫療保險。 除了助力醫療保險精準服務、精確管理和科學決策,在醫療保險中,大數據還在例如單病種、DRGs等支付標准設計、完善葯品數據和統一標准、完善醫保智能監控系統等方面有巨大的發揮空間。
5、大數據+ 健康 管理。 「 健康 管理」這把火並不是伴隨著大數據的興起而燒起來的,但准確來說,是大數據讓「精準 健康 管理」開始在行業中成為一代網紅,其中玩家包括妙 健康 、 健康 有益等在內的公司。當下,大數據 健康 管理更多地建立在EHR(電子 健康 檔案)和EMR(電子病歷)兩種整理方式上。
6、大數據+智能診斷。 醫學影像和輔助診斷的細分應用是醫療大數據最成熟的落地場景之一,但對於當下AI+醫療企業較為苦惱的事情是,一方面數據量級並不足夠大,另一方面數據孤島情況嚴重,這是制約其發展的很大一個因素。但無論如何,大數據+智能診斷仍廣泛被行業所看好。在商業化落地上,這些企業的步伐也相對較快。
總體來看,醫療大數據的應用場景眾多,但應用程度大多處於中度乃至弱;在上述表格中近百家醫療大數據企業,僅有丁香園、微醫、零氪、思路迪邁入獨角獸行列;除此之外,國內專注於醫療大數據的新資本也屈指可數。
這一系列現狀實則展現了醫療大數據是一片藍海,而藍海之下蘊含的是巨大的商業價值。 在三醫聯動、分級診療等新政策的加持下,以及國家對於醫療 健康 大數據的逐步規整中,作為全行業底層支撐的醫療大數據,勢必將迎來爆發的一天。
近年來,隨著我國醫療需求攀升,醫療機構、葯企、保險公司正不斷尋求產業升級新機會,醫療 健康 大數據發展勢如破竹。億歐大 健康 頻道策劃了【醫療數據說】系列專訪和選題報道,聚焦大數據給醫療產業鏈各環節帶來的顛覆和變革。
如果您有合適的企業推薦,請聯系億歐大 健康 頻道負責人郭銘梓(微信:Lelion8742390)。
⑶ 京頤科技攜手騰訊雲發布雲智慧醫療聯合解決方案
中新網8月9日電 8日,京頤 科技 與騰訊雲在昆明召開雲智慧醫療聯合解決方案交流會,正式發布了雙方共同打造的雲智慧醫療聯合解決方案,推動醫療行業全面雲化,致力構建「雲端」智慧醫療新生態,為百姓 健康 保駕護航。
與騰訊雲牽手
近年來,國家一直致力於推動雲計算、大數據在醫療領域的應用,尤其是伴隨5G、網路安全性能的提高,大數據、雲計算在醫療行業的應用越來越廣泛和深入。
在此背景下,京頤 科技 攜手騰訊雲重磅打造雲智慧醫療聯合解決方案,加速醫療信息化雲端轉型。
據介紹,京頤 科技 深耕醫療信息化15餘年,擁有6500多家各類型醫療機構,其中包括300家以上三級醫院。京頤在行業內較早涉足雲計算、互聯網,是國內最早涉足雲HIS的廠商之一。早在2015年,京頤就積極籌劃雲HIS產品的開發,並於2016年為安徽亳州建設了安徽省等級最高、全國首例區域雲模式平台。在發展的過程中,京頤不斷豐富和拓展雲HIS的功能,目前京頤雲HIS涵蓋了臨床、管理、便民等40多個功能模塊,已幫助安徽利辛縣第二人民醫院、雲南牟定縣中醫醫院、內蒙古自治區第四醫院等多家二甲及以上醫院實現信息系統的全雲化,成為雲模式的實踐者。
對於雙方合作,騰訊雲泛政府行業生態合作總監夏璞表示,騰訊雲充分利用自身數據計算和平台支持等優勢,與京頤多年豐富的醫療行業積累實現整合和互補,共建雲端智慧醫療新生態。
構建「雲上」智慧醫療
此次合作,京頤 科技 和騰訊雲在技術生態和優質資源上實現了整合,雙方深度合作,打造出穩定、可靠、安全的雲智慧醫療聯合解決方案,讓優質醫療服務觸手可及,讓智能化醫療服務普惠民眾。
雲智慧醫療聯合解決方案採用雲計算集中部署基於SaaS模式的醫療IT基礎設施服務,集成雲HIS、雲EMR、雲LIS、雲PACS、雲 健康 體檢、供應鏈雲平台、雲HRP、掌上辦公、雲HCRM、雲培訓等多種成熟的雲產品,助力各級醫院打造「雲上」智慧醫院,構建覆蓋診前、診中、診後的一體化醫療服務體系,提升醫療管理及服務能力。
針對區域醫療衛生互聯互通建設需求,雲智慧醫療致力於為區域建設覆蓋各級醫療機構的統一雲平台,構建雙向轉診、會診、綜合支付及教學等醫療衛生一體化管理模式,能夠實現區域內醫療衛生信息資源的集中統管、統一調配、按需服務,實現區域互聯互通、數據共享,提升基層醫療機構醫療質量與管理水平。
推動醫療全面邁入雲端
相對於傳統的建設模式,雲模式具有統一規劃、統一部署、免維護等優勢,醫療機構不需要自行建設機房、自行購買硬體伺服器、操作系統、資料庫等基礎設施,即可實現信息系統短期內快速部署,系統配置靈活,擴展方便。
由於採用了先進的雲模式,雲智慧醫療聯合解決方案為醫療插上騰飛的翅膀。京頤 科技 攜手騰訊雲將面向衛生主管部門、區域醫療、各級醫療機構、醫聯體、醫共體等提供基於雲的醫療衛生信息系統,建設無機房、無伺服器、無系統、免維護的統一雲平台,醫療衛生各應用場景所需的數據收集、存儲、傳遞、處理等都能夠在雲平台中操作,大幅縮短建設周期及成本。
京頤集團董事長李志博士表示,雲計算帶我們進入了一個IT的嶄新時代,也將一定會改變我們醫療信息化領域的方方面面,京頤 科技 期待在為各級衛健委、醫療機構的支持下,在騰訊公司的技術幫助下,為客戶提供創新有益的解決方案,提高效率、提升智能化應用、保障醫療安全。
據悉,京頤 科技 攜手騰訊雲打造的雲智慧醫療聯合解決方案目前已在揭西縣中醫醫院上線,以較低的成本和資源投入,推動醫院業務系統快速實現雲端遷移和部署。這是京頤 科技 攜手騰訊雲建設的首家雲上智慧醫院,展現了雙方務實的態度及強大的產品落地能力。
未來,京頤 科技 將攜手騰訊雲憑借新產品的技術深度和覆蓋廣度加速布局,推動雲智慧醫療聯合解決方案在政府及各類型醫療機構中廣泛應用,促進行業轉型升級。
來「中國網」(CIIC_China)官方微信,回復「部位」,告訴你一個減肥小秘訣
⑷ 醫療大數據平台推進醫學道德形態重構
醫療大數據平台推進醫學道德形態重構
大數據時代的到來使醫學呈現出個體化發展趨勢,而基因技術的應用又使精準醫學凸顯。個體化醫療與精準醫療的結合,預示了大數據時代醫療變革的方向:通過數字化人體引發醫療健康革命。
大數據時代,一種潛在的變化正在顯現,掌控個人的醫療過程和醫療保健成為變化的核心。醫療大數據平台的運營會隨著規模的擴大和效率的提高而關涉總體人類健康、社會公共善、共享的倫理和個人醫療服務方面的改善,從而推進醫學道德形態的革命性重構。
首先,通過個體化醫學改善總體形態的人類健康。數字化人體和基因組學的重要意義在於:通過大數據技術和基因篩查技術的融合運用,帶來醫學重心的轉移或變化。它提供給人們的醫學勸告主要有兩條:其一,預防比治療更重要;其二,醫學只有遵循個體化科學才能帶來整體人類健康狀況的實質性改善。在大數據時代,手機將成為生命線,它使邊遠地區的人們獲得所需要的醫療服務,並通過數據反饋為社區創造一個數字化的網路系統。通過大數據,以患者為中心的醫療可以不受時空限制,在健康培訓、在線診斷、預防和災疫應對等領域一展所長。
其次,通過構建公共健康之善疏解醫患緊張。數字化時代醫學道德形態重構的重點,是通過個體化科學構建公共善,並由此疏解醫患緊張關系。生命倫理學對個體化權利的強調和對總體人口健康的強調之間存在明顯斷裂。然而,個人自主或自我決定如果沒有基於「數字化人體+基因測序」的個體化醫學的支持,只能是一種抽象的權利原則。醫療大數據提供給個人的健康或診療指南,無論對病人還是對醫生,都類似於航海圖。這為人們提供了一個從未有過的世界觀,它使病人真正成為醫學的中心。
再次,通過融合的醫學展現開放共享的倫理。隨著數字化時代的來臨,各國政府都認識到數據開放的重要性,出台了數據開放的法令。醫療大數據將患者作為醫療信息的點連成一片數據之海。因此,一種開放共享的醫療信息技術系統可以通過相關關系的挖掘而預測某些疾病的分布或流行。數據的開放共享將帶來一系列融合,進而將快速成熟的數字化、非醫學領域的移動設備、雲計算和社交網路與蓬勃發展的基因組學、生物感測器和先進成像技術的數字化醫學領域合為一體。醫學或醫療技術可能因為更偏重預防而體現「上醫醫未病之病」的理念。
最後,通過開放整合的專家團隊提供個體化醫療服務。基於網路平台的醫療技術實踐,使得醫學團隊的診療模式成為未來醫療診治的基本模式。大數據時代的醫療技術實踐,為「團隊醫學」提供了新的形式,醫學不再是個體醫生的單打獨斗,而是基於網域空間的專家團隊為患者提供量身定製的個體化醫療服務。以團隊形式為個體提供醫療健康服務,建構了真正以患者為中心的醫學道德形態。從個體收集到的數據的大批匯總最終將會創建一種良性反饋的倫理性圏層,使健康計劃的所有參與者受益,並鼓勵愈來愈多的人參與進來。
大數據時代的健康革命,在技術形態上,取決於數字化人體基礎上的精準醫學模式的建立。無線感測器、大數據與基因組學的結合是其先鋒。這種醫學道德形態的重構凸顯了三大倫理道德難題。
第一,個人隱私及安全問題。在數字化、信息化時代,醫療行業面臨保護信息安全和保護個人隱私的雙重困擾。安全隱患和隱私風險之一,是員工使用自帶移動設備連接醫療系統的IT基礎設施所帶來的風險,這是惡意軟體侵入的最薄弱環節,被稱為醫療領域的「自帶設備」難題。推行移動化或個體化醫療計劃(或健康計劃)是許多頂尖級診所和醫院的計劃,實施過程必然會面臨該難題。除此之外,還面臨醫療大數據或精準醫學模式自身帶來的問題,比如醫療設備或監控器的數據失竊問題等。與此同時,醫院利用數據平台收集和分析某患者的敏感信息是否侵犯個人隱私?政府機構和企業對個人健康信息進行收集、監控和分析處理是否符合隱私規則?醫療數據、商業數據、科研數據等應遵循何種收集規則?參與者隱私的保護既是醫學研究得以展開的前提,又是一切健康計劃得以實施的前提。只有在保護個人隱私與充分利用資料庫之間尋求一種平衡,才能應對大數據時代醫學生命倫理學的隱私及安全倫理問題。
第二,數據的真實可靠問題。如何防範數據失信或失真是數據共享遭遇的基準層面的倫理挑戰。建立在數字化人體基礎上的醫療技術實踐,其本身就預設了一條不可突破的道德底線。由於人體及其健康狀態以數字化的形式被記錄、存儲和傳播,因此形成了與實體人相對應的鏡像人或數字人。失信或失真的數據,導致被預設為可信的精準醫療變得不可信。例如,如果有人擔心個人健康數據或基因數據對個人職業生涯和未來生活造成不利影響,當有條件採取隱瞞、不提供或提供虛假數據來玩弄數據系統時,這種情況就可能出現,進而導致電子病歷和醫療信息系統(HIT)以及個人健康檔案(HER)不準確。如何治理或防範數據失信或失真,是數字化時代數據共享面臨的一種倫理挑戰,它構成大數據時代生命醫學倫理學的重大課題。
第三,數字鴻溝或價值鴻溝帶來的挑戰。數字鴻溝指不同社會群體對於數字化技術或信息技術使用的巨大差異,分為接入、應用、知識、價值四個方面。隨著接入問題的逐步解決,應用和知識方面的鴻溝正在縮小,價值鴻溝變得越來越突出。這提示我們必須充分重視數字化健康革命帶來的價值觀變革。只有縮小價值鴻溝,使人們認識到,個體化醫療和精準醫學基礎上的個人健康革命,是一種將個體與總體進行融合的醫學變革,它展現了數字化時代健康革命的價值核心即以患者為中心的醫學道德形態,才能讓更多的人參與到醫療大數據平台建設之中。
大數據、基因組學、移動醫療和精準醫學的基本原理,是連通最小行動者和最大數據計算之總體,這是現代醫療技術在大數據時代展現的倫理特質。大數據對個人和集體相互關系的重新定位無論對個人還是集體都產生了不可低估的影響——它提供了在一個日益個體化的現代社會,個人與集體密不可分的結合方式,迫使個人重新思考集體性或總體性價值的時代意蘊。當然,這種思考必須以對個人的自由、尊嚴和權利的維護為前提。與此同時,從群體出發或從整體出發的倫理理念重新獲得了應有地位,並與強調關聯性思維、整體和諧理念的中國倫理文化構成一種內在契合。而這正是大數據時代生命醫學倫理學最引人矚目的發展方向。