導航:首頁 > 網路數據 > 大數據三個重要的技術問題

大數據三個重要的技術問題

發布時間:2023-06-29 20:51:59

A. 大數據技術應用需要注意什麼

現在很多數據科學家都是在研究大數據的技術,很多人只是聽過大數據這個詞,但是對大數據還是不太了解的,對於大數據現在需要解決的關鍵問題不是很明朗。今天我們在這篇文章中給大家講一講大數據技術的基礎應用需要注意什麼。
就目前而言,大數據需要解決的關鍵問題就是數據、知識、服務、數據採集和管理,挖掘分析獲取知識,知識規律進行應用轉化為持續服務。只要我們解決好這三個問題,才算大數據應用落地,那麼從學習角度講,大數據學習特別要注重數據科學的實踐應用能力,而且實踐要重於理論。從模型,特徵,誤差,實驗,測試到應用,每一步都要考慮是否能解決現實問題,模型是否具備可解釋性,要勇於嘗試和迭代,模型和軟體包本身不是萬能的。
我們還需要考慮大數據如何走出實驗室和工程化落地,這就對我們有四點要求,一是不能閉門造車;二是要走出實驗室充分與業界實際決策問題對接;三是關聯關系和因果關系都不能少,不能描述因果關系的模型無助於解決現實問題;四是注重模型的迭代和產品化,持續升級和優化,解決新數據增量學習和模型動態調整的問題。所以,大數據學習一定要清楚我們是在做數據科學還是數據工程,各需要哪些方面的技術能力,現在處於哪一個階段等,不然為了技術而技術,是難以學好和用好大數據的。
我們在學習大數據的時候,還是要注意幾個關鍵的問題,一是重視可視化和業務決策,大數據分析結果是為決策服務,而大數據決策的表現形式,可視化技術的優劣起決定性作用;二是,從整個大數據技術棧來考慮技術選型和技術路線的確定;三是建模問題處於核心地位,模型的選擇和評估至關重要。一般來說,在課堂和實驗室中,多數模型的評估是靜態的,少有考慮其運行速度、實時性及增量處理,因此多使用復雜的臃腫模型,其特徵變數往往及其復雜。四是開發語言的選擇,基礎框架系統Java是必須掌握的,應用級的機器學習和數據分析庫Python是必須掌握的,而要深入各種框架和學習庫的底層,這些都是我們需要注意到事情。
以上的內容就是小編為大家介紹的大數據技術應用需要注意的知識,需要強調的是,大家在學習知識的時候還是要注重上述提到的內容,希望這篇文章能夠給大家帶來幫助。

B. 大數據的關鍵技術

大數據的關鍵技術:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用,其中包括大數據檢索、大數據可視化、大數據應用、大數據安全等。

技術是解決問題的方法及方法原理,是指人們利用現有事物形成新事物,或是改變現有事物功能、性能的方法。技術應具備明確的使用范圍和被其它人認知的形式和載體,

如原材料(輸入)、產成品(輸出)、工藝、工具、設備、設施、標准、規范、指標、計量方法等。技術與科學相比,技術更強調實用,而科學更強調研究;技術與藝術相比,技術更強調功能,藝術更強調表達。

引證解釋

技藝;法術。《史記·貨殖列傳》:「醫方諸食技術之人,焦神極能,為重糈也。」宋陸游《老學庵筆記》卷三:「忽有一道人,絕隱遲亦美風表,多技術…… 張若水 介之來謁。」

清侯方域《再與賈三兄書》:「蓋足下之性好新異,喜技術,作之不必果成,成之不攜困必果用,然凡可以嘗試為之者,莫不為之。」Technology;Art;Skill;Technique在勞動生產方面的經驗、知識和技巧,也泛指其他操作方面的技巧。

知識技能和操作技巧。周而復《上海的早晨並李》第一部七:「張學海是滬江紗廠保全部的青年工人,思想進步,對機器特別有興趣,有空就鑽研技術。」

李准《李雙雙小傳》六:「兩個人見面, 雙雙 總要說他們豬場的新鮮事。比如一個豬下了十個豬娃呀,人工授精的新技術呀。」

C. 大數據時代的三大技術支撐分別是

分布式處理技術

分布式處理系統可以將不同地點的或具有不同功能內的或擁有不同數據容的多台計算機用通信網路連接起來,在控制系統的統一管理控制下,協調地完成信息處理任務。比如Hadoop。

雲技術

大數據常和雲計算聯繫到一起,因為實時的大型數據集分析需要分布式處理框架來向數十、數百或甚至數萬的電腦分配工作。可以說,雲計算充當了工業革命時期的發動機的角色,而大數據則是電。

存儲技術

大數據可以抽象地分為大數據存儲和大數據分析,這兩者的關系是:大數據存儲的目的是支撐大數據分析。到目前為止,還是兩種截然不同的計算機技術領域:大數據存儲致力於研發可以擴展至PB甚至EB級別的數據存儲平台;大數據分析關注在最短時間內處理大量不同類型的數據集。

D. 大數據三大核心技術:拿數據、算數據、賣數據!

大數據的由來

對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

1

麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數據的應用領域

大數據無處不在,大數據應用於各個行業,包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內的 社會 各行各業都已經融入了大數據的印跡。

製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

汽車 行業,利用大數據和物聯網技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。

互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

能源行業,隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

物流行業,利用大數據優化物流網路,提高物流效率,降低物流成本。

城市管理,可以利用大數據實現智能交通、環保監測、城市規劃和智能安防。

體育 娛樂 ,大數據可以幫助我們訓練球隊,決定投拍哪種 題財的 影視作品,以及預測比賽結果。

安全領域,政府可以利用大數據技術構建起強大的國家安全保障體系,企業可以利用大數據抵禦網路攻擊,警察可以藉助大數據來預防犯罪。

個人生活, 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為習慣,為其提供更加周到的個性化服務。

大數據的價值,遠遠不止於此,大數據對各行各業的滲透,大大推動了 社會 生產和生活,未來必將產生重大而深遠的影響。

大數據方面核心技術有哪些?

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數據處理框架,主要分為下面幾個方面:數據採集與預處理、數據存儲、數據清洗、數據查詢分析和數據可視化。

數據採集與預處理

對於各種來源的數據,包括移動互聯網數據、社交網路的數據等,這些結構化和非結構化的海量數據是零散的,也就是所謂的數據孤島,此時的這些數據並沒有什麼意義,數據採集就是將這些數據寫入數據倉庫中,把零散的數據整合在一起,對這些數據綜合起來進行分析。數據採集包括文件日誌的採集、資料庫日誌的採集、關系型資料庫的接入和應用程序的接入等。在數據量比較小的時候,可以寫個定時的腳本將日誌寫入存儲系統,但隨著數據量的增長,這些方法無法提供數據安全保障,並且運維困難,需要更強壯的解決方案。

Flume NG

Flume NG作為實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據,同時,對數據進行簡單處理,並寫到各種數據接收方(比如文本,HDFS,Hbase等)。Flume NG採用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數據源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數據,讀取成功之後會刪除channel中的信息。

NDC

Logstash

Logstash是開源的伺服器端數據處理管道,能夠同時從多個來源採集數據、轉換數據,然後將數據發送到您最喜歡的 「存儲庫」 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數據來源捕捉事件,能夠以連續的流式傳輸方式,輕松地從您的日誌、指標、Web 應用、數據存儲以及各種 AWS 服務採集數據。

Sqoop

Sqoop,用來將關系型資料庫和Hadoop中的數據進行相互轉移的工具,可以將一個關系型資料庫(例如Mysql、Oracle)中的數據導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數據導入到關系型資料庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapRece 作業(極其容錯的分布式並行計算)來執行任務。Sqoop 的另一大優勢是其傳輸大量結構化或半結構化數據的過程是完全自動化的。

流式計算

流式計算是行業研究的一個熱點,流式計算對多個高吞吐量的數據源進行實時的清洗、聚合和分析,可以對存在於社交網站、新聞等的數據信息流進行快速的處理並反饋,目前大數據流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結構是有一個主節點(nimbus)和多個工作節點(supervisor)組成的主從結構,主節點通過配置靜態指定或者在運行時動態選舉,nimbus與supervisor都是Storm提供的後台守護進程,之間的通信是結合Zookeeper的狀態變更通知和監控通知來處理。nimbus進程的主要職責是管理、協調和監控集群上運行的topology(包括topology的發布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務後生成並監控worker(jvm進程)執行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。

Zookeeper

Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那麼對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數據的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監控集群中機器的變化,實現了類似於心跳機制的功能。

數據存儲

Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。

HBase

HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。HBase是一種Key/Value系統,部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用伺服器,來增加計算和存儲能力。

Phoenix

Phoenix,相當於一個Java中間件,幫助開發工程師能夠像使用JDBC訪問關系型資料庫一樣訪問NoSQL資料庫HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應用提供統一的資源管理和調度,它的引入為集群在利用率、資源統一管理和數據共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。

Mesos

Mesos是一款開源的集群管理軟體,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。

Redis

Redis是一種速度非常快的非關系資料庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內存的鍵值對數據持久化到硬碟中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。

Atlas

Atlas是一個位於應用程序與MySQL之間的中間件。在後端DB看來,Atlas相當於連接它的客戶端,在前端應用看來,Atlas相當於一個DB。Atlas作為服務端與應用程序通訊,它實現了MySQL的客戶端和服務端協議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節,同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動後會創建多個線程,其中一個為主線程,其餘為工作線程。主線程負責監聽所有的客戶端連接請求,工作線程只監聽主線程的命令請求。

Ku

Ku是圍繞Hadoop生態圈建立的存儲引擎,Ku擁有和Hadoop生態圈共同的設計理念,它運行在普通的伺服器上、可分布式規模化部署、並且滿足工業界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數據分析能力。Ku不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數據分析的要求。Ku的應用場景很廣泛,比如可以進行實時的數據分析,用於數據可能會存在變化的時序數據應用等。

在數據存儲過程中,涉及到的數據表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數據進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁碟上的存儲。

數據清洗

MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,」Map(映射)」和」Rece(歸約)」,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。

隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。

Oozie

Oozie是用於Hadoop平台的一種工作流調度引擎,提供了RESTful API介面來接受用戶的提交請求(提交工作流作業),當提交了workflow後,由工作流引擎負責workflow的執行以及狀態的轉換。用戶在HDFS上部署好作業(MR作業),然後向Oozie提交Workflow,Oozie以非同步方式將作業(MR作業)提交給Hadoop。這也是為什麼當調用Oozie 的RESTful介面提交作業之後能立即返回一個JobId的原因,用戶程序不必等待作業執行完成(因為有些大作業可能會執行很久(幾個小時甚至幾天))。Oozie在後台以非同步方式,再將workflow對應的Action提交給hadoop執行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數的狀態信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調度以及對工作流執行過程中的監控等;Azkaban Executor Server用來調度工作流和任務,記錄工作流或者任務的日誌。

流計算任務的處理平台Sloth,是網易首個自研流計算平台,旨在解決公司內各產品日益增長的流計算需求。作為一個計算服務平台,其特點是易用、實時、可靠,為用戶節省技術方面(開發、運維)的投入,幫助用戶專注於解決產品本身的流計算需求

數據查詢分析

Hive

Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數據,它完全依賴於HDFS和MapRece。可以將Hive理解為一個客戶端工具,將SQL操作轉換為相應的MapRece jobs,然後在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapRece程序的過程,它的出現可以讓那些精通SQL技能、但是不熟悉MapRece 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規模數據集上很方便地利用SQL 語言查詢、匯總、分析數據。

Hive是為大數據批量處理而生的,Hive的出現解決了傳統的關系型資料庫(MySql、Oracle)在大數據處理上的瓶頸 。Hive 將執行計劃分成map->shuffle->rece->map->shuffle->rece…的模型。如果一個Query會被編譯成多輪MapRece,則會有更多的寫中間結果。由於MapRece執行框架本身的特點,過多的中間過程會增加整個Query的執行時間。在Hive的運行過程中,用戶只需要創建表,導入數據,編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。

Impala

Impala是對Hive的一個補充,可以實現高效的SQL查詢。使用Impala來實現SQL on Hadoop,用來進行大數據實時查詢分析。通過熟悉的傳統關系型資料庫的SQL風格來操作大數據,同時數據也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapRece批處理,而是通過使用與商用並行關系資料庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統計函數查詢數據,從而大大降低了延遲。Impala將整個查詢分成一執行計劃樹,而不是一連串的MapRece任務,相比Hive沒了MapRece啟動時間。

Hive 適合於長時間的批處理查詢分析,而Impala適合於實時互動式SQL查詢,Impala給數據人員提供了快速實驗,驗證想法的大數據分析工具,可以先使用Hive進行數據轉換處理,之後使用Impala在Hive處理好後的數據集上進行快速的數據分析。總的來說:Impala把執行計劃表現為一棵完整的執行計劃樹,可以更自然地分發執行計劃到各個Impalad執行查詢,而不用像Hive那樣把它組合成管道型的map->rece模式,以此保證Impala有更好的並發性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。

Spark

Spark擁有Hadoop MapRece所具有的特點,它將Job中間輸出結果保存在內存中,從而不需要讀取HDFS。Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。Spark 是在 Scala 語言中實現的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數據集。

Nutch

Nutch 是一個開源Java 實現的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr

Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業級搜索應用的全文搜索伺服器。它對外提供類似於Web-service的API介面,用戶可以通過http請求,向搜索引擎伺服器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,並得到XML格式的返回結果。

Elasticsearch

Elasticsearch是一個開源的全文搜索引擎,基於Lucene的搜索伺服器,可以快速的儲存、搜索和分析海量的數據。設計用於雲計算中,能夠達到實時搜索,穩定,可靠,快速,安裝使用方便。

還涉及到一些機器學習語言,比如,Mahout主要目標是創建一些可伸縮的機器學習演算法,供開發人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數據流圖進行數值計算的開源軟體庫TensorFlow等,常用的機器學習演算法比如,貝葉斯、邏輯回歸、決策樹、神經網路、協同過濾等。

數據可視化

對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。主流的BI平台比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數等。

在上面的每一個階段,保障數據的安全是不可忽視的問題。

基於網路身份認證的協議Kerberos,用來在非安全網路中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網路環境下通信,向另一個實體以一種安全的方式證明自己的身份。

控制許可權的ranger是一個Hadoop集群許可權框架,提供操作、監控、管理復雜的數據許可權,它提供一個集中的管理機制,管理基於yarn的Hadoop生態圈的所有數據許可權。可以對Hadoop生態的組件如Hive,Hbase進行細粒度的數據訪問控制。通過操作Ranger控制台,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、資料庫、表、欄位許可權。這些策略可以為不同的用戶和組來設置,同時許可權可與hadoop無縫對接。

簡單說有三大核心技術:拿數據,算數據,賣數據。

E. 發展「大數據」聚焦三大問題

發展「大數據」聚焦三大問題

當前,對數量巨大、來源分散、格式多樣的數據進行採集、存儲和關聯分析,從中發現新知識、創造新價值、提升新能力的新一代信息技術和服務業態正快速發展。而為了進一步促進「大數據」的發展,日前,國務院印發了《大數據發展行動綱要》(以下簡稱《綱要》),聚焦三大問題,成為「大數據」未來發展的指南。
焦點一:加快政府數據開放共享
《綱要》指出,要加快政府數據開放共享,推動資源整合,提升治理能力。即要大力推動政府部門數據共享,穩步推動公共數據資源開放,統籌規劃大數據基礎設施建設,支持宏觀調控科學化,推動政府治理精準化,推進商事服務便捷化,促進安全保障高效化,加快民生服務普惠化。
從整體上看,政府數據的開放程度相較以前有了明顯好轉。在數據公開方式上,已經由紙質文件轉為線上線下結合,除了相應的官方網站外,還有微信、微博等線上平台與群眾進行互動答疑。在數據公開內容上,由此前「不解渴」的數據逐漸轉向群眾所需求的數據,達到真正的急人之所急、需人之所需。
然而,「數據平台」、「信息共享」、「互聯互通」等詞彙雖頻頻被政策文件提及,但實際上,僅僅是政府各部門間的數據共享就未能得到全面普及,從群眾的反饋上可見一斑。
購房時客戶需要填報十幾張表格,其中表格的重復率高達30%;辦理證件時需要來往各個部門開具相應證明,群眾為此跑斷腿;不同區域、不同部門的政府數據實現分割、壟斷式管理,產生一個個「數據孤島」,從而影響其社會服務效率。
由此可見,要實現政府各部門間的數據共享仍有很長一段路要走。雖然不同部門規則不一、層次不一等多方面原因造成了「數據孤島」,但破除「數據孤島」也是發展「大數據」的首要任務。因此,加快政府數據開放共享無疑是亮點之一,也是社會群眾所迫切需求的。
對於如何加快政府數據開放共享,《綱要》也提出若干措施,如加強頂層設計和統籌規劃,明確各部門數據共享的范圍邊界和使用方式;釐清各部門數據管理及共享的義務和權利,依託政府數據統一共享交換平台;大力推進國家人口基礎信息庫等國家基礎數據資源,以及金稅、金關、金財等信息系統跨部門、跨區域共享;加快各地區、各部門、各有關企事業單位及社會組織信用信息系統的互聯互通和信息共享,豐富面向公眾的信用信息服務,提高政府服務和監管水平等。
焦點二:推動產業創新發展
《綱要》指出,要推動產業創新發展,培育新興業態,助力經濟轉型。即要發展工業大數據、新興產業大數據、農業農村大數據、萬眾創新大數據,推進基礎研究和核心技術攻關,形成大數據產品體系,完善大數據產業鏈。
當前,新興產業對推動經濟發展、助力經濟轉型有著重要作用。然而,也正因為它是新興產業,所以擁有的資源比傳統產業少,發展環境也不如傳統產業。「大數據」的發展則能有效彌補新興產業缺少資源的短處,故而發展「大數據」能變相推動產業創新發展,亦能改變新興產業的盈利模式。
以發展萬眾創新大數據為例,對於初次創業的創客們,實施大數據創新行動計劃,鼓勵企業和公眾發掘利用開放數據資源,無疑能激發創新創業活力,減少許多不必要的創業彎路。
同時,利用大數據、雲計算等技術,對各領域知識進行大規模整合,搭建層次清晰、覆蓋全面、內容准確的知識資源庫群,亦能為創客們提供精準、高水平的知識服務,避免跨界發展的創客遇到知識盲區等。
此外,許多互聯網模式下的新興產業也可利用相應的網路平台積累自己的大數據,以自己的大數據衍生出其他服務,形成不同的盈利模式,百花齊放。
焦點三:強化安全保障
《綱要》指出,要強化安全保障,提高管理水平,促進健康發展。即要建立大數據安全評估體系,健全大數據安全保障體系,明確數據採集、傳輸、存儲、使用、開放等各環節保障網路安全的范圍邊界、責任主體和具體要求,強化安全支撐。
在信息化的時代,數據應用無處不在,數據的安全問題也隨之層出不窮。僅以個人數據為例,在消費途徑多樣化的大環境下,個人數據被留存在各種渠道上。從管理資金的金融系統到出行旅遊的交通系統,再到快捷消費的電子商務平台,個人數據無處不在,而要保護這些數據不被非法利用,則是難上加難。
然而,要發展「大數據」,就必須對數據的安全有所保障,營造一個安全的數據流通環境。一方面要在數據的獲取、存儲、使用等方面進行有效保障,如加大「大數據」安全保障體系建設、建立網路安全信息共享機制等;另一方面也要完善相關法律,利用法律的牙齒來進行刑事責任約束,對非法利用數據等違法行為加大懲處力度。
對此,《綱要》也提出舉措和目標,即在涉及國家安全穩定的領域採用安全可靠的產品和服務,到2020年,實現關鍵部門的關鍵設備安全可靠。完善網路安全保密防護體系。建設國家網路安全信息匯聚共享和關聯分析平台,促進網路安全相關數據融合和資源合理分配,提升重大網路安全事件應急處理能力等。

以上是小編為大家分享的關於發展「大數據」聚焦三大問題的相關內容,更多信息可以關注環球青藤分享更多干貨

F. 大數據挖掘的三個關鍵

大數據挖掘的三個關鍵:首先是大數據,即海量數據,他相當於土地資源、礦產資源,含有豐富的信息、價值,重點在於其來源、領域,不同的採集方式、採集來源含的信息和方向不同,同時他還涉及標准和存儲;其次是思維,即分析數據的思路,包括模式、方向和創新等;第三是技術,即處理數據的技術,是數據處理的手段,包括演算法、算力、建模.每個時期他們的價值不同,大數據發展的初期思維和技術的價值大;發展的中期,三者同等重要;發展的成熟期,數據的價值更大。

G. 大數據的數據科學與關鍵技術是什麼

對於大數據想必大家都有所了解了吧?隨著信息化的不斷發展,大數據也越來越被人們所熟知。我們都知道,現在很多行業都離不開數據分析,在數據分析中我們有聽說了大數據,大數據涉及到了很多的行業,一般來說,大數據涉及到了金融、交通、醫療、安全、社交、電信等等。由此可見,大數據面向的方向有很多,面向的范圍很廣。我們可以把大數據比喻成一個大容器,很多的東西都能夠裝在這個大容器中,但是大數據都是有一些技術組成的,那麼大數據的數據科學和關鍵技術都是什麼呢?在這篇文章我們就給大家解答一下這個問題。
通常來說,大數據的數據採集是通過感測器、智能終端設備、數據儲存這三個方面組成,而通過感測器的大數據離不開物聯網,通過智能終端的大數據離不開互聯網,而數據的海量儲存離不開雲計算,最重要的就是大數據的計算分析採用機器學習,大數據的互動展示離不開可視化,所以我們需要知道大數據的數據科學和關鍵技術,只有這樣我們才能夠用好大數據。
首先我們來說說數據科學,數據科學可以理解為一個跨多學科領域的,從數據中獲取知識的科學方法,技術和系統集合,其目標是從數據中提取出有價值的信息,它結合了諸多領域中的理論和技術,包括應用數學,統計,模式識別,機器學習,人工智慧,深度學習,數據可視化,數據挖掘,數據倉庫,以及高性能計算等。很多的領域都是離不開數據科學的。
那麼數據科學的過程是什麼呢?一般來說,數據科學的過程就是有原始數據採集,數據預處理和清洗,數據探索式分析,數據計算建模,數據可視化和報表,數據產品和決策支持等內容,而傳統信息化技術多是在結構化和小規模數據上進行計算處理,大數據時代呢,數據變大了,數據多源異構了,需要智能預測和分析支持了,所以核心技術離不開機器學習、數據挖掘、人工智慧等,另外還需考慮海量數據的分布式存儲管理和機器學習演算法並行處理,所以數據的大規模增長客觀上促進了數據科學技術生態的繁榮與發展,包括大數據採集、數據預處理、分布式存儲、MySQL資料庫、多模式計算、多模態計算、數據倉庫、數據挖掘、機器學習、人工智慧、深度學習、並行計算、可視化等各種技術范疇和不同的層面。由此可見大數據是一門極度專業性的學科。
在這篇文章中我們給大家介紹了數據科學的關鍵技術的實際內容,大數據的數據科學的關鍵技術有很多,我們需要學習很多的知識,這樣我們才能夠觸類旁通,讓大數據更好地為我們服務。

H. 大數據的關鍵技術有哪些_大數據處理的關鍵技術有哪些

大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分早李爛析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。

一、大數據採集技術

數據是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方擾帆式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。

二、大數據預處理技術

主要完成對已接收數據的辨析、抽取、清洗等操作。1)抽取:因獲取的數據可能具有多種結構和類型,數據抽取過程可以幫助我們將這些復雜的數據轉化為單一的或者便於處理的構型,以達到快速分析處理的目的。2)清洗:對於大數據,並不全是有價值的,有些數據陸漏並不是我們所關心的內容,而另一些數據則是完全錯誤的干擾項,因此要對數據通過過濾「去噪」從而提取出有效數據。

三、大數據存儲及管理技術

大數據存儲與管理要用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。重點解決復雜結構化、半結構化和非結構化大數據管理與處理技術。主要解決大數據的可存儲、可表示、可處理、可靠性及有效傳輸等幾個關鍵問題。

四、大數據分析及挖掘技術

大數據分析技術。改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。

六、大數據展現與應用技術

大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。在我國,大數據將重點應用於以下三大領域:商業智能、政府決策、公共服務。例如:商業智能技術,政府決策技術,電信數據信息處理與挖掘技術,電網數據信息處理與挖掘技術,氣象信息分析技術,環境監測技術,警務雲應用系統(道路監控、視頻監控、網路監控、智能交通、反電信詐騙、指揮調度等公安信息系統)本回答根據網路文庫資料整理,原文請參見《大數據關鍵技術》

閱讀全文

與大數據三個重要的技術問題相關的資料

熱點內容
不想iphone和ipad同步 瀏覽:98
壓縮文件質量怎麼樣 瀏覽:337
通達信標記存在哪些文件夾 瀏覽:647
美國蘋果商店ipad 瀏覽:961
iphone備忘錄提示音 瀏覽:801
蘋果5s電信網路設置 瀏覽:31
win10系統中文版嗎 瀏覽:971
公司采購一般公布在哪些網站 瀏覽:70
如何連接車上的無線網路 瀏覽:170
mate7升級emui31 瀏覽:714
tomcat7forlinux下載 瀏覽:437
在根里查找文件linux 瀏覽:819
飢荒安卓人物mod 瀏覽:91
如何看地災監測預警數據變化 瀏覽:864
pdf文件反了怎麼轉回去 瀏覽:767
angularjs封裝service 瀏覽:42
亞馬遜js工具 瀏覽:641
qq動態生肖蛋糕圖片 瀏覽:962
cad文件怎麼存到u盤 瀏覽:916
iphone6晶元型號查詢 瀏覽:493

友情鏈接